Sedimentary Provenance of the Wedington Member, Fayetteville Shale, from Age Relations of Detrital Zircons William Tyson Cains University of Arkansas, Fayetteville

Total Page:16

File Type:pdf, Size:1020Kb

Sedimentary Provenance of the Wedington Member, Fayetteville Shale, from Age Relations of Detrital Zircons William Tyson Cains University of Arkansas, Fayetteville University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2013 Sedimentary Provenance of the Wedington Member, Fayetteville Shale, From Age Relations of Detrital Zircons William Tyson Cains University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Geology Commons, Other Earth Sciences Commons, Sedimentology Commons, and the Stratigraphy Commons Recommended Citation Cains, William Tyson, "Sedimentary Provenance of the Wedington Member, Fayetteville Shale, From Age Relations of Detrital Zircons" (2013). Theses and Dissertations. 992. http://scholarworks.uark.edu/etd/992 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Sedimentary Provenance of the Wedington Member, Fayetteville Shale, From Age Relations of Detrital Zircons Sedimentary Provenance of the Wedington Member, Fayetteville Shale, From Age Relations of Detrital Zircons A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology by William Cains University of Arkansas Bachelor of Science in Geology, 2012 December 2013 University of Arkansas This Thesis is approved for recommendation to the Graduate Council. Dr. Walter L. Manger Thesis Director Dr. Xiangyang Xie Committee Member Dr. Doy Zachry Committee Member ABSTRACT U-Pb geochronology of detrital zircons collected from the Chesterian Wedington Sandstone allows interpretation of sediment provenance and dispersal patterns in the southern midcontinent during the Late Mississippian. Detrital zircons analyzed from six samples of Wedington Sandstone yielded a final result of 565 concordant analyses used for interpretation. Results are plotted as Probability-Density Plots to interpret the spectrum of ages. Significant peaks occurred at 350-500 Ma, 950-1250 Ma, 1300-1500 Ma, 1600-1800 Ma, 1800-2300 Ma, and >2500 Ma. These peaks are interpreted as sourced by crystalline rocks within the Laurentian craton from Taconic-Acadian, Grenville, Midcontinent Granite-Rhyolite, Yavapai-Mazatzal, Paleoproterozoic, and Superior Provinces. The high percentage of grains derived from Acadian, Taconic, and Grenville Provinces indicate the Appalachian Mountains were the primary source of sediment during the Chesterian. The Midcontinent Granite-Rhyolite and Yavapai-Mazatzal Provinces were the second most prevalent source terranes, indicating the Nemaha Ridge was uplifted and supplying a significant amount of sediment by the Late Mississippian. Sediments were likely transported from both eastern and western sources into a drainage basin moving sediments south into northwest Arkansas, where they were deposited on the Arkoma shelf as a small constructive delta complex. ACKNOWLEDGEMENTS I would like to thank my parents, Bill and Mary Jane Cains, for putting me through school, and especially my dad, for inciting my interest in geology. I’d like to thank my sisters, Caroline, Amanda and especially Julie, for her artistic contributions. Special thanks for Dr. Walter Manger, whose invaluable advice led to my decision to enter the Graduate Program at the University of Arkansas, and also for taking over as Committee Chair halfway through the thesis. Special thanks for Dr. Cheyenne Xie for offering me the project as part of his ongoing research, and serving as Chair for much of the thesis process. I would also like to thank Dr. Doy Zachry for his critiques and for always being available to discuss ideas. Thanks to Department of Geosciences and Ralph Davis, for offering the opportunity to achieve and education in something I hold so dear (Rocks!). Special thanks to all those whose work came before mine and served as stepping stones to getting the project completed: C. McNully, T. Cochran, Chuck Price, Daniel Allen, Walter Manger, Doy Zachry, George Gehrels, William Dickinson, and many more that contributed to North American Geology over the past century. TABLE OF CONTENTS I. Introduction .................................................................................................................. 1 A. Purpose and Scope ...................................................................................................... 4 B. Study Area .................................................................................................................... 4 C. Methods ........................................................................................................................ 4 Sampling Method ......................................................................................................... 4 Procedure ..................................................................................................................... 6 U-Pb Detrital Zircon Geochronology ......................................................................... .7 Stratigraphy ............................................................................................................... .11 D. Geologic Setting. ........................................................................................................ 15 E. Previous Investigations. .............................................................................................. 17 II. Southern Midcontinent Depositional Dynamics. ....................................................... 20 III. Detrital Zircon Analysis ............................................................................................. 26 A. WD-1 .......................................................................................................................... 26 B. WD-2 .......................................................................................................................... 28 C. WD-3 .......................................................................................................................... 29 D. WD-5. ......................................................................................................................... 29 E. WD-6 .......................................................................................................................... 31 F. WD-8 .......................................................................................................................... 31 IV. Potential Provenance Terranes .................................................................................. 34 A. Archean ...................................................................................................................... 34 B. Paleoproterozoic. ........................................................................................................ 35 C. Yavapai – Mazatzal Provinces ................................................................................... 35 D. Midcontinent Granite-Rhyolite Province. .................................................................. 36 E. Grenville Province ...................................................................................................... 37 F. Iapetan Synrift ........................................................................................................... 37 G. Acadian – Taconic Orogenic Terranes. ...................................................................... 38 V. Provenance Discussion .............................................................................................. 40 A. Archean Paleoproterozoic Provenance ...................................................................... 44 B. Midcontinent and Yavapai – Mazatzal Provenance. .................................................. 47 C. Appalachian Provenance .............................................................................................. 49 Future Study ...................................................................................................................... 52 Conclusions ....................................................................................................................... 54 References. ........................................................................................................................ 55 Appendix ........................................................................................................................... 59 LIST OF FIGURES Figure 1 – Generalized Stratigraphic Column for Chesterian of northern Arkansas ......... 3 Figure 2 – Lithofacies map with sample locations ............................................................ 5 Figure 3 – Cathodoluminescence image of mounted zircons ........................................... 8 Figure 4 – Probability density plot for Sample WD-8. ...................................................... 9 Figure 5 – Concordia diagram for Sample WD-8 ............................................................ 10 Figure 6 – Type log for the Wedington Sandstone .......................................................... 12 Figure 7 – Isopach map of the Wedington Sandstone ..................................................... 13 Figure 8 – Depositional Model for the Wedington Delta ..................................................... .14 Figure 9 – Geologic Provinces of Arkansas.................................................................... .15 Figure 10 – Contact of Wedington Sandstone and Lower Fayetteville. ......................... 19 Figure 11 – Early to Middle Mississippian Sed-Tectonic
Recommended publications
  • Revision of Some of Girty's Invertebrate Fossils from the Fayetteville Shale (Mississippian) of Arkansas and Oklahoma Introduction by MACKENZIE GORDON, JR
    Revision of Some of Girty's Invertebrate Fossils from the Fayetteville Shale (Mississippian) of Arkansas and Oklahoma Introduction By MACKENZIE GORDON, JR. Corals By WILLIAM J. SANDO Pelecypods By JOHN POJETA, JR. Gastropods By ELLIS L. YOCHELSON Trilobites By MACKENZIE GORDON, JR. Ostracodes By I. G. SOHN GEOLOGICAL SURVEY PROFESSIONAL PAPER 606-A, B, C, D, E, F Papers illustrating and describing certain of G. H. Girty' s invertebrate fossils from the Fayetteville Shale UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1969 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 70-650224 For sale by the Superintendent of Documents, U.S. Government Printing Office Washing.ton, D.C. 20402 CONTENTS [The letters in parentheses preceding the titles are those used to designate the chapters] Page (A) Introduction, by Mackenzie Gordon, Jr _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 (B) Corals, by William J. Sando__________________________________________________________________________________ 9 (C) Pelecypods, by John Pojeta, Jr _____ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 15 (D) Gastropods, by Ellis L.
    [Show full text]
  • Revised Bedrock Geology of War Eagle Quadrangle, Benton County, Arkansas Robert A
    Journal of the Arkansas Academy of Science Volume 56 Article 27 2002 Revised Bedrock Geology of War Eagle Quadrangle, Benton County, Arkansas Robert A. Sullivan University of Arkansas, Fayetteville Stephen K. Boss University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Geographic Information Sciences Commons, and the Stratigraphy Commons Recommended Citation Sullivan, Robert A. and Boss, Stephen K. (2002) "Revised Bedrock Geology of War Eagle Quadrangle, Benton County, Arkansas," Journal of the Arkansas Academy of Science: Vol. 56 , Article 27. Available at: http://scholarworks.uark.edu/jaas/vol56/iss1/27 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected]. Journal of the Arkansas Academy of Science, Vol. 56 [2002], Art. 27 Revised Bedrock Geology of War Eagle Quadrangle, Benton County, Arkansas Robert A. Sullivan and Stephen K.Boss* Department of Geosciences 113 Ozark Hall University of Arkansas Fayetteville, AR 72701 ¦"Corresponding Author Abstract A digital geologic map of War Eagle quadrangle (WEQ) was produced at the 1:24000 scale using the geographic information system (GIS) software ArcView® by digitizing geological contacts onto the United States Geological Survey (USGS) digital raster graphic (DRG).
    [Show full text]
  • Bedrock Geology of Sonora Quadrangle, Washington and Benton Counties, Arkansas Camille M
    Journal of the Arkansas Academy of Science Volume 59 Article 15 2005 Bedrock Geology of Sonora Quadrangle, Washington and Benton Counties, Arkansas Camille M. Hutchinson University of Arkansas, Fayetteville Jon C. Dowell University of Arkansas, Fayetteville Stephen K. Boss University of Arkansas, Fayetteville, [email protected] Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Geographic Information Sciences Commons, and the Stratigraphy Commons Recommended Citation Hutchinson, Camille M.; Dowell, Jon C.; and Boss, Stephen K. (2005) "Bedrock Geology of Sonora Quadrangle, Washington and Benton Counties, Arkansas," Journal of the Arkansas Academy of Science: Vol. 59 , Article 15. Available at: http://scholarworks.uark.edu/jaas/vol59/iss1/15 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 59 [2005], Art. 15 Bedrock Geology of Sonora Quadrangle, Washington and Benton Counties, Arkansas CAMILLEM.HUTCHINSONJON C. DOWELL, AND STEPHEN K.BOSS* Department ofGeosciences, 113 Ozark Hall, University ofArkansas, Fayetteville, AR 72701 Correspondent: [email protected] Abstract A digital geologic map of Sonora quadrangle was produced at 1:24,000 scale using the geographic information system GIS) software Maplnfo.
    [Show full text]
  • B2150-B FRONT Final
    Bedrock Geology of the Paducah 1°×2° CUSMAP Quadrangle, Illinois, Indiana, Kentucky, and Missouri By W. John Nelson THE PADUCAH CUSMAP QUADRANGLE: RESOURCE AND TOPICAL INVESTIGATIONS Martin B. Goldhaber, Project Coordinator T OF EN TH TM E U.S. GEOLOGICAL SURVEY BULLETIN 2150–B R I A N P T E E R D . I O S . R A joint study conducted in collaboration with the Illinois State Geological U Survey, the Indiana Geological Survey, the Kentucky Geological Survey, and the Missouri M 9 Division of Geology and Land Survey A 8 4 R C H 3, 1 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1998 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Mark Schaefer, Acting Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Nelson, W. John Bedrock geology of the Paducah 1°×2° CUSMAP Quadrangle, Illinois, Indiana, Ken- tucky, and Missouri / by W. John Nelson. p. cm.—(U.S. Geological Survey bulletin ; 2150–B) (The Paducah CUSMAP Quadrangle, resource and topical investigations ; B) Includes bibliographical references. Supt. of Docs. no. : I 19.3:2150–B 1. Geology—Middle West. I. Title. II. Series. III. Series: The Paducah CUSMAP Quadrangle, resource and topical investigations ; B QE75.B9 no. 2150–B [QE78.7] [557.3 s—dc21 97–7724 [557.7] CIP CONTENTS Abstract ..........................................................................................................................
    [Show full text]
  • Stratigraphy and Depositional Characterization of the Moorefield
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2019 Stratigraphy and Depositional Characterization of the Moorefield hS ale (Middle-Late Mississippian) in its Type Area, Northeastern Arkansas (Eastern Arkoma Basin) Griffina W rner Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Geology Commons, Sedimentology Commons, and the Stratigraphy Commons Stratigraphy and Depositional Characterization of the Moorefield Shale (Middle-Late Mississippian) in its Type Area, Northeastern Arkansas (Eastern Arkoma Basin) A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology by Griffin Warner University of Arkansas Bachelor of Science in Geology, 2017 May 2019 University of Arkansas This thesis is approved for recommendation to the Graduate Council Walter L. Manger, Ph.D. Thesis Advisor T.A. “Mac” McGilvery, Ph.D. Committee Member Glenn Sharman, Ph.D. Committee Member Abstract The Moorefield Shale represents the Meramecian Series in the Eastern Arkoma Basin in northern Arkansas. Lying on the margin of the Mississippi Embayment and Reelfoot Rift, sequence stratigraphic interpretations have labelled the Moorefield Shale a lowstand wedge succeeding the Early Mississippian (Osagean) Boone Limestone conformably and overlain conformably by the Hindsville Limestone/Batesville Sandstone. The unit contains a basal brown- black limestone and succeeding brown-black phosphatic shale. The Moorefield Shale was deposited along the broad, stable cratonic platform on the southern flank of Laurasia, before it’s collision with Gondwanaland to form the supercontinent Pangea at the end of the Paleozoic. During this time, the midcontinent region was covered by shallow seas and carbonates covered most of the region.
    [Show full text]
  • Calico Rock Sandstone Member of the Everton Formation (Ordovician), Northern Arkansas Raymond W
    Journal of the Arkansas Academy of Science Volume 29 Article 24 1975 Calico Rock Sandstone Member of the Everton Formation (Ordovician), Northern Arkansas Raymond W. Suhm Texas A&M University Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Stratigraphy Commons Recommended Citation Suhm, Raymond W. (1975) "Calico Rock Sandstone Member of the Everton Formation (Ordovician), Northern Arkansas," Journal of the Arkansas Academy of Science: Vol. 29 , Article 24. Available at: http://scholarworks.uark.edu/jaas/vol29/iss1/24 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 29 [1975], Art. 24 The Calico Rock Sandstone Member ofthe Everton Formation (Ordovician), Northern Arkansas RAYMONDW.SUHM Department of Geography and Geology, Texas A &IUniversity, Kingsville, Texas 78363 ABSTRACT Surface and subsurface stratigraphic studies in northeastern Arkansas show the Calico Rock Sandstone (Middle Ordovician) to be a lobate sand body up to 200 ft thick. The environment of deposition is considered from a study of grain characteristics, ripple marks, subjacent and superjacent units and unpublished isopachous maps.
    [Show full text]
  • Illinois State Geological Survey Reports of Investigations
    JO~ s /' • I' • ... ' 1/' t$ 6. ~ n'" t 14.GS: .f.~~?[; . • 5ft' RPI 105 C.) STATE OF ILLINOIS DWIGHT H. GREEN, Govtrnor DEPARTMENT OF REGISTRATION AND EDUCATION FRANK G. THOMPSON, Dirtctor DIVISION OF THE STATE GEOLOGICAL SURVEY M. M. LEIGHTON, Chit/ URBANA REPORT OF INVESTIGATIONS-No. lOS I-SUBSURFACE RELATIONS OF THE MAQUOKETA AND "TRENTON" FORMATIONS IN ILLINOIS BY E. P. Du BOis I , ' II-PETROLEUM POSSIBILITIES OF MAQUOKETA AND "TRENTON" IN ILLINOIS BY CARL A. BAYS PRINTED BY AUTHORITY OF THE STATE OF ILLINOIS URBANA, ILLINOIS 194S STATE OF JLLINOIS DWIGHT I-I. GREE , Governor DEPARTMENT OF REGISTRATION A D EDUCATION FRANK G. THOMPSON, Director DIVIS!O OF THE STATE GEOLOGICAL SURVEY M. M . LEIGHTO , Chief URBA A REPORT OF INVESTIGATIONS-No. 105 I-SUBSURFACE RELATIONS OF THE MAQUOKETA AND "TRENTON" FORMATIONS IN ILLINOIS BY E. P. Du BOis II-PETROLEUM POSSIBILITIES OF MAQUOKETA AND "TRENTON" IN ILLINOIS BY CARL A. BAYS PRINTED BY AUTHORITY OF THE STATE OF ILLINOIS URBANA, ILLINOIS 1 9 4 5 ORGANIZATION STATE OF ILLINOIS RON. DWIGHT H. GREEN, Governor DEPARTMENT OF REGISTRATION AND EDUCATION HON. FRA K G. THOMPSON, Director BOARD OF NATURAL RESOURCES AND CONSERVATION RON. FRA K G. THOMPSON, Chairman NORMAN L. BOWEN, PH.D., D.Sc., Geology ROGER ADAMS, PH.D., D.Sc., Chemistry LOUIS R. HOWSON, C.E., Enginuring *WILLIAM TRELEASE, D.Sc., LL.D., Biology EZRA JACOB KRAUS, PHD., D.Sc., Forestry ARTHUR CUTTS WILLARD, D.ENGR., LL.D. Prnident of the University o/ Illinois GEOLOGICAL SURVEY DIVISION M. M. LEIGHTON, Chit/ (83335-2,500-6-45) ~2 SCIENTIFIC AND TECHNICAL STAFF OF THE S TATE GEOLOGICAL SURVEY DIVISION 100 Natural R esources BuildinK, Urbana M.
    [Show full text]
  • Aquifer List
    ARKANSAS NATURAL RESOURCES COMMISSION 101 East Capitol Avenue, Suite 350; Little Rock, AR 72201 Phone: (501) 682-1611 Fax: (501) 682-3991 www.anrc.arkansas.gov T T Arkansas Aquifer Codes E This is a list of the identified underground aquifers and their code numbers in the state. E ALLUVIUM 112ALVM EVERTON FORMATION 364EVRN PENTERS CHERT 347PNRS ANNONA CHALK 211ANNN FAYETTEVILLE SHALE 332FTVL PIKE GRAVEL 217PIKE ARKADELPHIA MARL 211AKDP FERNVALE LIMESTONE 361FRVL PITKIN LIMESTONE 331PTKN E E ARKANSAS NOVACULITE 330ARKS GASCONADE DOLOMITE 367GSCK PLATTIN LIMESTONE 364PLTN ATOKA FORMATION 326ATOK GOODLAND LIMESTONE 218GDLD PLEISTOCENE SERIES 112PLSC ATOKAN SERIES 326ATKN GUNTER SANDSTONE 367GNTR PLIOCENE SERIES 121PLCN BATESVILLE SANDSTONE 331BSVL HALE FORMATION 328HALE POLK CREEK SHALE 361PKCK H H BIGFORK CHERT 364BGFK HARTSHORNE SANDSTONE 325HRSR PORTERS CREEK CLAY 125PRCK BLACK ROCK FORMATION 367PKRK HATTON TUFF LENTIL 330HNTF POTOSI DOLOMITE 371POTS BLAKELY SANDSTONE 367BLKL HINDSVILLE LIMESTONE 331HDVL POWELL DOLOMITE 368PWLL BLAYLOCK SANDSTONE 350BLCK HOLLY CREEK FORMATION 218HLCK PRAIRIE GROVE 328PRGV S S BLOYD SHALE 328BLVD HOLOCENE ALLUVIUM 111ALVM PRECAMBRIAN ERATHEM 400PCMB BOGGY SHALE 325BGGY HOLOCENE SERIES 111HLCN PRECAMBRIAN IGNEOUS ROCKS 400IGNS BONNETERRE DOLOMITE 371BNTR HOT SPRINGS SANDSTONE 330HSPG QUATERNARY ALLUVIUM 110ALVM BOONE FORMATION 330BOON JACKFORK SANDSTONE 328JKFK REDFIELD FORMATION 124RDFD BRASSFIELD LIMESTONE 357BFLD JACKSON GROUP 124JCKS ROUBIDOUX FORMATION 367RBDX T T BRENTWOOD LIMESTONE 328 BRND JEFFERSON
    [Show full text]
  • U.S. Geological Survey Karst Interest Group Proceedings, San Antonio, Texas, May 16–18, 2017
    A Product of the Water Availability and Use Science Program Prepared in cooperation with the Department of Geological Sciences at the University of Texas at San Antonio and hosted by the Student Geological Society and student chapters of the Association of Petroleum Geologists and the Association of Engineering Geologists U.S. Geological Survey Karst Interest Group Proceedings, San Antonio, Texas, May 16–18, 2017 Edited By Eve L. Kuniansky and Lawrence E. Spangler Scientific Investigations Report 2017–5023 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN ZINKE, Secretary U.S. Geological Survey William Werkheiser, Acting Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Kuniansky, E.L., and Spangler, L.E., eds., 2017, U.S. Geological Survey Karst Interest Group Proceedings, San Antonio, Texas, May 16–18, 2017: U.S. Geological Survey Scientific Investigations Report 2017–5023, 245 p., https://doi.org/10.3133/sir20175023.
    [Show full text]
  • 1 STEPHEN ANDREW LESLIE Department of Geology And
    STEPHEN ANDREW LESLIE Department of Geology and Environmental Science James Madison University, MSC 6903 Harrisonburg, VA 22807 Phone: (540) 568-6144; Fax: (540) 568-8058 E-mail: [email protected] EDUCATION Ph.D. Geology, The Ohio State University, June 1995 Dissertation: Upper Middle Ordovician conodont biofacies distribution patterns in eastern North America and northwestern Europe: Evaluations using the Deicke, Millbrig and Kinnekulle K-bentonite beds as time planes. M.S. Geology, University of Idaho, May 1990 Thesis: The Late Cambrian-Middle Ordovician Snow Canyon Formation of the Valmy Group, Northeastern Nevada. B.S. Geology, Bowling Green State University, May 1988, Cum Laude Minor in Classical Studies GEOLOGY EMPLOYMENT 7/07-present Department Head and Professor with tenure, Department of Geology and Environmental Science, James Madison University. 7/04-7/06 Department Chair, Department of Earth Sciences, University of Arkansas at Little Rock. 8/02-7/06 Acting Director/Director of the Master of Science in Integrated Science and Mathematics Program, College of Science and Mathematics 8/05 – 7/06 Professor with tenure, Department of Earth Sciences, University of Arkansas at Little Rock. 8/00 -7/05 Associate Professor with tenure, Department of Earth Sciences, University of Arkansas at Little Rock. 8/96 -7/00 Assistant Professor, Department of Earth Sciences, University of Arkansas at Little Rock. 6/95 - 8/96 Postdoctoral Research Scientist at The Ohio State University. 1/95 - 3/96 Lecturer at Otterbein College. 6/95 - 8/95 Lecturer at The Ohio State Univ.-Marion & Marion Correctional Institution 9/94 - 12/94 Lecturer at The Ohio State Univ.-Marion & Marion Correctional Institution 9/93 - 6/94 Doctoral Fellow at The Ohio State University.
    [Show full text]
  • OZARK UPLIFT PROVINCE (057) by Joseph R
    OZARK UPLIFT PROVINCE (057) By Joseph R. Hatch INTRODUCTION The Ozark Uplift Province covers approximately 53,000 sq mi in eastern and southern Missouri (76 counties) and northern Arkansas (10 counties). The province is bounded on the north by the Iowa Shelf Province (052), on the east by the Illinois Basin Province (064), on the south by the Arkoma Basin Province (058), and on the west by the Cherokee Platform (060) and Forest City Basin (056) Provinces. The major structural element in the province is the domal Ozark Uplift, from which sedimentary rocks have been eroded, leaving approximately 350 sq mi of Precambrian granite exposed in the core area. The sedimentary cover in the Ozark Uplift Province averages less than 2000 ft and primarily consists of dolomites and sandstones of Cambrian and lower Ordovician age. A generalized stratigraphic column for the province is shown in figure 2. In the western part of the Ozark area, Mississippian rocks overlap lower Ordovician rocks, and Middle Ordovician, Silurian, and Devonian rocks are absent. Middle Ordovician, Middle Devonian, Mississippian, and Pennsylvanian rocks are generally present in the counties north of the Missouri River (Adler and others, 1971). One conventional hypothetical play has been defined for this province, Middle Ordovician (Champlainian) Play (5701). ACKNOWLEDGMENTS Scientists affiliated with the American Association of Petroleum Geologists and from various State geological surveys contributed significantly to play concepts and definitions. Their contributions are gratefully acknowledged. CONVENTIONAL PLAYS 5701. MIDDLE ORDOVICIAN (CHAMPLAINIAN) PLAY (HYPOTHETICAL) The hypothetical Middle Ordovician (Champlainian) Play in the Ozark Uplift Province is based on (1) current hydrocarbon production from age-equivalent rocks in the adjacent Illinois Basin and Forest City Basin Provinces (064 and 056); (2) the presence of potentially good to excellent hydrocarbon source rocks in the Middle Ordovician section; and (3) the presence of potential sandstone and porous dolomite and limestone reservoirs.
    [Show full text]
  • Geologic Map of the Harrison 1° X2° Quadrangle, Missouri and Arkansas
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Geologic map of the Harrison 1° x2° quadrangle, Missouri and Arkansas by Mark A. Middendorf1, Kenneth C. Thomson2, Charles E. Robertson1, John W. Whitfield1, Ernest E. Glick3, William V. Bush4, Boyd R. Haley3, and John David McFarland HI4 Open-File Report 94-430 Prepared in cooperation with the Missouri Department of Natural Resources, Division of Geology and Land Survey, and the Arkansas Geological Commission This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Missouri Department of Natural Resources, Division of Geology and Land Survey 2Southwest Missouri State University 3U.S. Geological Survey, Little Rock, Ark. 4Arkansas Geological Commission 1994 FOLIO NOTE This map is the fifth in a folio of maps of the Harrison 1° x2° quadrangle, Arkansas and Missouri, prepared under the Conterminous United States Mineral Assessment Program. Previously published maps in this folio relate to the geochemistry of the subsurface carbonate rocks (Erickson and others, 1988), the geophysics of the basement terranes (McCafferty and others, 1989), the carbonate depositional lithofacies and mineralization in the Caulfield district (Hayes and others, 1992), and the mineral-resource potential of the quadrangle (Pratt and others, 1993). A multicolor version of this map is being processed for publication in the U.S. Geological Survey Miscellaneous Investigations Map series. Additional maps showing various other geologic aspects of the Harrison quadrangle will be published as U.S. Geological Survey Miscellaneous Field Studies Maps bearing the same serial number with different letter suffixes (MF-1994-E, -F, etc.).
    [Show full text]