Over Production of Milk Clotting Enzyme from Rhizomucor Miehei Through Adjustment of Growth Under Solid State Fermentation Conditions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diapositive 1
ESCMID Postgraduate Education Course Cluj-Napoca, Romania. State-of-the-art in Emerging Fungal Infections 8th-9th September 2011 Diagnosis of zygomycosis in the clinical microbiology laboratory Eric DANNAOUI • Université Paris Descartes © by author • Unité de Parasitologie-Mycologie, Service de Microbiologie Hôpital Européen Georges Pompidou (HEGP) ESCMID Online Lecture Library Introduction Why is it important to have a diagnosis of zygomycosis and to identify the species ? Specific treatment of zygo vs other fungi (e.g. Aspergillus)1 Some species are contamination (e.g. R. stolonifer) 2 Sometimes nosocomial infection Species differ for antifungal susceptibility Current problems Identification of the species© by inauthor culture Identification of the species directly from tissues when cultures are negative Multiresistance to antifungals ESCMID Online Lecture1. Spellberg Library et al. CID 2009 48:1743 2. Rammaert et al. ICAAC 2009 Introduction Zygomycetes Ubiquitous in environment From Antarctica1 to hot geothermal soil2 Some species seem to be more restricted geographically Tropical areas (Saksenaea / Apophysomyces) Europe3 (Lichtheimia spp.) China4 (Rh. variabilis) © by author 1. Lawley B., et al.ESCMID 2004. Appl. Environ. Online Microbiol. 70: 5963. Lecture 3. Nicco Library E., et al. 2011. ICAAC. M-1513. 2. Redman RS., et al. 1999. Appl. Environ. Microbiol. 65: 5193. 4. Lu XL., et al. 2009. CID. 49: e39. Zygomycetes : ecology Ecology, pathogenic species Group of filamentous fungi characterized by non-septate mycelium Saprobes soil decaying organic matter fruits various grains © by author Sporulation ++, fungal spores in the air ESCMID Frequently isolatedOnline as Lecturea culture contaminant Library Pathogenic species Pathogenic species : ca. 20 species / 10 genera Family Genus Species Mucoraceae Rhizopus R. -
Biology, Systematics and Clinical Manifestations of Zygomycota Infections
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by IBB PAS Repository Biology, systematics and clinical manifestations of Zygomycota infections Anna Muszewska*1, Julia Pawlowska2 and Paweł Krzyściak3 1 Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawiskiego 5a, 02-106 Warsaw, Poland; [email protected], [email protected], tel.: +48 22 659 70 72, +48 22 592 57 61, fax: +48 22 592 21 90 2 Department of Plant Systematics and Geography, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw, Poland 3 Department of Mycology Chair of Microbiology Jagiellonian University Medical College 18 Czysta Str, PL 31-121 Krakow, Poland * to whom correspondence should be addressed Abstract Fungi cause opportunistic, nosocomial, and community-acquired infections. Among fungal infections (mycoses) zygomycoses are exceptionally severe with mortality rate exceeding 50%. Immunocompromised hosts, transplant recipients, diabetic patients with uncontrolled keto-acidosis, high iron serum levels are at risk. Zygomycota are capable of infecting hosts immune to other filamentous fungi. The infection follows often a progressive pattern, with angioinvasion and metastases. Moreover, current antifungal therapy has often an unfavorable outcome. Zygomycota are resistant to some of the routinely used antifungals among them azoles (except posaconazole) and echinocandins. The typical treatment consists of surgical debridement of the infected tissues accompanied with amphotericin B administration. The latter has strong nephrotoxic side effects which make it not suitable for prophylaxis. Delayed administration of amphotericin and excision of mycelium containing tissues worsens survival prognoses. More than 30 species of Zygomycota are involved in human infections, among them Mucorales are the most abundant. -
Mucormycosis: Botanical Insights Into the Major Causative Agents
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 June 2021 doi:10.20944/preprints202106.0218.v1 Mucormycosis: Botanical Insights Into The Major Causative Agents Naser A. Anjum Department of Botany, Aligarh Muslim University, Aligarh-202002 (India). e-mail: [email protected]; [email protected]; [email protected] SCOPUS Author ID: 23097123400 https://www.scopus.com/authid/detail.uri?authorId=23097123400 © 2021 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 June 2021 doi:10.20944/preprints202106.0218.v1 Abstract Mucormycosis (previously called zygomycosis or phycomycosis), an aggressive, liFe-threatening infection is further aggravating the human health-impact of the devastating COVID-19 pandemic. Additionally, a great deal of mostly misleading discussion is Focused also on the aggravation of the COVID-19 accrued impacts due to the white and yellow Fungal diseases. In addition to the knowledge of important risk factors, modes of spread, pathogenesis and host deFences, a critical discussion on the botanical insights into the main causative agents of mucormycosis in the current context is very imperative. Given above, in this paper: (i) general background of the mucormycosis and COVID-19 is briefly presented; (ii) overview oF Fungi is presented, the major beneficial and harmFul fungi are highlighted; and also the major ways of Fungal infections such as mycosis, mycotoxicosis, and mycetismus are enlightened; (iii) the major causative agents of mucormycosis -
DETECTION of Rhizomucor Pusillus on SUNFLOWER SEED
HELIA, 36, Nr. 59, p.p. 59-70, (2013) UDC 633.854.78:632.581.2 DOI: 10.2298/HEL1359059L DETECTION OF Rhizomucor pusillus ON SUNFLOWER SEED Lević, J.*, Ivanović, D., Stanković, S., Milivojević, M., Vukadinović, R. and Stepanić, A. Maize Research Institute, Zemun Polje, S. Bajića 1, 11185 Belgrade, Republic of Serbia Received: August 20, 2013 Accepted: December 05, 2013 SUMMARY The accelerated ageing test method (AA), agar plate method (A) and blot- ter method (B) have been used to detect the Rhizomucor pusillus and other mycobita on 24 samples of sunflower seed. Sterilised and unsterilised sun- flower seeds have been incubated at 25ºC and 42ºC in the dark for 72 and 144 hours. The fungus was not detected in any sample at 25ºC, not even after 144 h incubation of seeds. The fungal frequency ranged from 58.3 (B method) to 75.0% (A method) and from 4.2% (B method) to 16.7% (AA method) after 72 h incubation of unsterilised and sterilised samples at 42ºC, respectively. The fun- gal incidence was 25.5% (AA method), 21.9% (A method) and 20.3% (B method) after 72 h incubation of unsterilised seed, and 2% on sterilised seed in all three applied methods. By extended incubation of unsterilised and steri- lised seeds up to 144 h at 42°C the frequency and incidence of the fungus did not significantly change. The results of the present research show that the AA test method, widely applied in seed longevity testing, can be used as a simple and efficient method for the detection of R. -
The Ecology of the Zygomycetes and Its Impact on Environmental Exposure
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REVIEW 10.1111/j.1469-0691.2009.02972.x The ecology of the Zygomycetes and its impact on environmental exposure M. Richardson The University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester, Manchester, UK and Regional Mycology Laboratory, Wythenshawe Hospital, Manchester, UK Abstract Zygomycetes are unique among filamentous fungi in their great ability to infect a broader, more heterogeneous population of human hosts than other opportunistic moulds. Various members of the Zygomycetes have been implicated in zygomycosis, although those belonging to the family Mucoraceae are isolated more frequently than those of any other family. The environmental microbiology litera- ture provides limited insights into how common zygomycetes are in the environment, and provides a few clues about which ecological niches these fungi are found in. Mucorales are thermotolerant moulds that are supposedly ubiquitous in nature and widely found on organic substrates, including bread, decaying fruits, vegetable matter, crop debris, soil between growing seasons, compost piles, and animal excreta. The scientific and medical literature does not support this generalization. Sporangiospores released by mucorales range from 3 to 11 lm in diameter, are easily aerosolized, and are readily dispersed throughout the environment. This is the major mode of transmission. However, there are very few data concerning the levels of zygomycete sporangiospores in outdoor and indoor air, espe- cially in geographical areas where zygomycosis is particularly prevalent. Airborne fungal spores are almost ubiquitous and can be found on all human surfaces in contact with air, especially on the upper and lower airway mucosa. -
A Guide to Investigating Suspected Outbreaks of Mucormycosis in Healthcare
Journal of Fungi Review A Guide to Investigating Suspected Outbreaks of Mucormycosis in Healthcare Kathleen P. Hartnett 1,2, Brendan R. Jackson 3, Kiran M. Perkins 1, Janet Glowicz 1, Janna L. Kerins 4, Stephanie R. Black 4, Shawn R. Lockhart 3, Bryan E. Christensen 1 and Karlyn D. Beer 3,* 1 Prevention and Response Branch, Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA 2 Epidemic Intelligence Service, CDC, Atlanta, GA 30333, USA 3 Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, CDC, Atlanta, GA 30333, USA 4 Chicago Department of Public Health, Chicago, IL 60604, USA * Correspondence: [email protected] Received: 31 May 2019; Accepted: 17 July 2019; Published: 24 July 2019 Abstract: This report serves as a guide for investigating mucormycosis infections in healthcare. We describe lessons learned from previous outbreaks and offer methods and tools that can aid in these investigations. We also offer suggestions for conducting environmental assessments, implementing infection control measures, and initiating surveillance to ensure that interventions were effective. While not all investigations of mucormycosis infections will identify a single source, all can potentially lead to improvements in infection control. Keywords: mucormycosis; mucormycetes; mold; cluster; outbreak; infections; hospital; healthcare 1. Introduction Mucormycosis is a rare but serious infection that can affect immunocompromised patients in healthcare settings. Investigations of possible mucormycosis outbreaks in healthcare settings have enabled critical insights into the exposures and environmental conditions that can lead to transmission. The purpose of this report is to compile resources and experiences that can serve as a guide for facilities and health departments investigating mucormycosis infections and suspected outbreaks in healthcare settings. -
Allergenicity, Mycotoxin Production, Biochemical Analyses and Microbiology of a Fungal Single-Cell Protein Product
European Journal of Nutrition & Food Safety 12(10): 146-155, 2020; Article no.EJNFS.63064 ISSN: 2347-5641 Safety Evaluation of Fermotein: Allergenicity, Mycotoxin Production, Biochemical Analyses and Microbiology of a Fungal Single-cell Protein Product Marjolein van der Spiegel1, José J. van den Driessche1, Elisa Leune2, Lucie Pařenicová2 and Wim de Laat2* 1Schuttelaar & Partners, Wageningen, Netherlands. 2The Protein Brewery, Breda, Netherlands. Authors’ contributions This work was carried out in collaboration among all authors. Authors MS and JJD wrote the first draft of the manuscript and supported in the strategy of analyses and studies. Authors MS and EL performed the literature review. Authors EL, LP and WL reviewed the manuscript and managed the analyses of the studies and study design. All authors read and approved the final manuscript. Article Information DOI: 10.9734/EJNFS/2020/v12i1030311 Editor(s): (1) Dr. Kristina Mastanjevic, Josip Juraj Strossmayer University of Osijek, Croatia. (2) Dr. Rasha Mousa Ahmed Mousa, University of Jeddah, Saudi Arabia. Reviewers: (1) Surachai Rattanasuk, Roi Et Rajabhat University, Thailand. (2) Michael Tarasev, USA. Complete Peer review History: http://www.sdiarticle4.com/review-history/63064 Received 17 September 2020 Accepted 22 November 2020 Original Research Article Published 01 December 2020 ABSTRACT Aim: Single-cell proteins (SCPs) are considered as innovative and sustainable alternatives to animal-based products. Fermotein is an innovative SCP obtained from fermentation of the filamentous fungus Rhizomucor pusillus. The toxicity, capability to produce secondary metabolites and allergenic potential of this fungus has never been assessed before. Like other filamentous fungi, there is a lack of information on this species to assess its safety for human consumption. -
Disseminated Rhizomucor Pusillus Infection in a Patient with Acute
Tenri Medical Bulletin 2018;21(1):30-40 DOI: 10.12936/tenrikiyo.21-004 Case Report Disseminated Rhizomucor pusillus infection in a patient with acute myeloid leukemia successfully treated with extensive surgical debridement and long-term liposomal amphotericin B Yusuke Toda1*, Yuya Nagai1, Noriyuki Abe2, Toshiyuki Hata3, Tatsuo Nakagawa4, Gen Honjo5, Satoshi Noma6, Takashi Misaki7, Hitoshi Ohno1 1Department of Hematology, Tenri Hospital; 2Department of Clinical Laboratory Medicine, Tenri Hospital; 3Department of Gastrointestinal Surgery, Tenri Hospital; 4Department of Thoracic Surgery, Tenri Hospital; 5Department of Diagnostic Surgical Pathology, Tenri Hospital; 6Department of Radiology, Tenri Hospital; 7Isotope center, Tenri Hospital Received 2018/3/12; accepted 2018/4/18; released online 2018/7/1 A woman in her fifties was diagnosed with hypoplastic acute myeloid leukemia (AML). Soon after induction treatment, she developed pulmonary infiltrates in the lower lobe of the right lung, which shortly evolved into disseminated disease involving the left thorax, spleen, and liver. Although she had this life- threatening complication, complete hematological response was achieved after salvage and consolidation treatments. Positron emission tomography combined with computed tomography demonstrated formation of multiple abscesses, and biopsy of the liver revealed fungal hyphae, the morphology of which suggested mucormycetes; however, culture yielded no growth. As involved lesions remained unchanged or even deteriorated after >4 months of liposomal amphotericin B treatment, and because the underlying AML was in remission with normal hematopoietic recovery, the patient underwent carefully organized two-stage surgery to debride infected organs and tissues. The surgical specimens were composed of necrotic debris, but some areas contained hyphae with similar morphological features as those of the liver biopsy. -
Identification of Mucorales by Matrix-Assisted Laser Desorption
Journal of Fungi Article Identification of Mucorales by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry Patrick Schwarz 1,2,* , Houssem Guedouar 3, Farah Laouiti 3, Frédéric Grenouillet 4 and Eric Dannaoui 3,5 1 Department of Internal Medicine, Respiratory and Critical Care Medicine, University Hospital Marburg, D-35043 Marburg, Germany 2 Center for Invasive Mycoses and Antifungals, Philipps University Marburg, D-35037 Marburg, Germany 3 Université Paris Descartes, Faculté de Médecine, AP-HP, Hôpital Européen Georges Pompidou, Unité de Parasitologie-Mycologie, F-75015 Paris, France 4 Centre Hospitalier Régional Universitaire, Hôpital Jean Minjoz, Sérologies Parasitaires et Fongiques, F-25030 Besançon, France 5 Working Group Dynamyc, Faculté de Médecine, Hôpital Henri Mondor, F-94010 Créteil, France * Correspondence: [email protected] Received: 22 May 2019; Accepted: 28 June 2019; Published: 2 July 2019 Abstract: More than 20 different species of Mucorales can be responsible for human mucormycosis. Accurate identification to the species level is important. The morphological identification of Mucorales is not reliable, and the currently recommended identification standard is the molecular technique of sequencing the internal transcribed spacer regions. Nevertheless, matrix-assisted laser desorption ionization time-of-flight mass spectrometry has been shown to be an accurate alternative for the identification of bacteria, yeasts, and even filamentous fungi. Therefore, 38 Mucorales isolates, belonging to 12 different species or varieties, mainly from international collections, including 10 type or neo-type strains previously identified by molecular methods, were used to evaluate the usefulness of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the identification of human pathogenic Mucorales to the species level. -
Descriptions of Medical Fungi
DESCRIPTIONS OF MEDICAL FUNGI THIRD EDITION (revised November 2016) SARAH KIDD1,3, CATRIONA HALLIDAY2, HELEN ALEXIOU1 and DAVID ELLIS1,3 1NaTIONal MycOlOgy REfERENcE cENTRE Sa PaTHOlOgy, aDElaIDE, SOUTH aUSTRalIa 2clINIcal MycOlOgy REfERENcE labORatory cENTRE fOR INfEcTIOUS DISEaSES aND MIcRObIOlOgy labORatory SERvIcES, PaTHOlOgy WEST, IcPMR, WESTMEaD HOSPITal, WESTMEaD, NEW SOUTH WalES 3 DEPaRTMENT Of MOlEcUlaR & cEllUlaR bIOlOgy ScHOOl Of bIOlOgIcal ScIENcES UNIvERSITy Of aDElaIDE, aDElaIDE aUSTRalIa 2016 We thank Pfizera ustralia for an unrestricted educational grant to the australian and New Zealand Mycology Interest group to cover the cost of the printing. Published by the authors contact: Dr. Sarah E. Kidd Head, National Mycology Reference centre Microbiology & Infectious Diseases Sa Pathology frome Rd, adelaide, Sa 5000 Email: [email protected] Phone: (08) 8222 3571 fax: (08) 8222 3543 www.mycology.adelaide.edu.au © copyright 2016 The National Library of Australia Cataloguing-in-Publication entry: creator: Kidd, Sarah, author. Title: Descriptions of medical fungi / Sarah Kidd, catriona Halliday, Helen alexiou, David Ellis. Edition: Third edition. ISbN: 9780646951294 (paperback). Notes: Includes bibliographical references and index. Subjects: fungi--Indexes. Mycology--Indexes. Other creators/contributors: Halliday, catriona l., author. Alexiou, Helen, author. Ellis, David (David H.), author. Dewey Number: 579.5 Printed in adelaide by Newstyle Printing 41 Manchester Street Mile End, South australia 5031 front cover: Cryptococcus neoformans, and montages including Syncephalastrum, Scedosporium, Aspergillus, Rhizopus, Microsporum, Purpureocillium, Paecilomyces and Trichophyton. back cover: the colours of Trichophyton spp. Descriptions of Medical Fungi iii PREFACE The first edition of this book entitled Descriptions of Medical QaP fungi was published in 1992 by David Ellis, Steve Davis, Helen alexiou, Tania Pfeiffer and Zabeta Manatakis. -
Redalyc.Identification of Mexican Thermophilic and Thermotolerant
Micología Aplicada International ISSN: 1534-2581 [email protected] Colegio de Postgraduados México Córdova, J.; Roussos, S.; Baratti, J.; Nungaray, J.; Loera, O. Identification of Mexican thermophilic and thermotolerant fungal isolates Micología Aplicada International, vol. 15, núm. 2, july, 2003, pp. 37-44 Colegio de Postgraduados Puebla, México Available in: http://www.redalyc.org/articulo.oa?id=68515201 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative MEXICAN MTHERMOPHILICICOLOGIA APLICADA AND I THERMOTOLERANTNTERNATIONAL, 15(2), FUNGI 2003, pp. 37-4437 © 2003, PRINTED IN BERKELEY, CA, U.S.A. http://micaplint.fws1.com IDENTIFICATION OF MEXICAN THERMOPHILIC AND THERMOTOLERANT FUNGAL ISOLATES J. CÓRDOVA1, S. ROUSSOS2, J. BARATTI3, J. NUNGARAY1 AND O. LOERA4 1 Departamento de Ingeniería Química, CUCEI, Universidad de Guadalajara, Blvd. Marcelino García Barragán y Calz. Olímpica, 44840 Guadalajara, Jalisco, Mexico. 2 Laboratoire de Micologie, IRD-Université de Provence, 163 Av. de Luminy F13228, Marseille, France. 3 Laboratoire de Biocatalyse et Chimie Fine, Faculté des Sciences de Luminy, case 901, 13288 Marseille cedex 9, France. 4 Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55- 535, 09340 Mexico, D.F. Accepted for publication: June 27, 2003 ABSTRACT Forty-four fungal strains capable of growing at temperatures above 50 C were isolated from different samples of soil and coconut residues collected in Mexican tropical and subtropical regions. These thermophilic and thermotolerant fungal strains were identified by microscopical analysis using standard procedures. -
Updates on the Taxonomy of Mucorales with an Emphasis on Clinically Important Taxa
Journal of Fungi Review Updates on the Taxonomy of Mucorales with an Emphasis on Clinically Important Taxa Grit Walther 1,*, Lysett Wagner 1 and Oliver Kurzai 1,2 1 German National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, 07745 Jena, Germany; [email protected] (L.W.); [email protected] (O.K.) 2 Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany * Correspondence: [email protected]; Tel.: +49-3641-5321038 Received: 17 September 2019; Accepted: 11 November 2019; Published: 14 November 2019 Abstract: Fungi of the order Mucorales colonize all kinds of wet, organic materials and represent a permanent part of the human environment. They are economically important as fermenting agents of soybean products and producers of enzymes, but also as plant parasites and spoilage organisms. Several taxa cause life-threatening infections, predominantly in patients with impaired immunity. The order Mucorales has now been assigned to the phylum Mucoromycota and is comprised of 261 species in 55 genera. Of these accepted species, 38 have been reported to cause infections in humans, as a clinical entity known as mucormycosis. Due to molecular phylogenetic studies, the taxonomy of the order has changed widely during the last years. Characteristics such as homothallism, the shape of the suspensors, or the formation of sporangiola are shown to be not taxonomically relevant. Several genera including Absidia, Backusella, Circinella, Mucor, and Rhizomucor have been amended and their revisions are summarized in this review. Medically important species that have been affected by recent changes include Lichtheimia corymbifera, Mucor circinelloides, and Rhizopus microsporus.