Abim Certification Exam: Nephrology

Total Page:16

File Type:pdf, Size:1020Kb

Abim Certification Exam: Nephrology 7/12/16 Disclosures • I am site PI for the REPRISE study evaluating efficacy of ABIM CERTIFICATION tolvaptan in autosomal dominant polycystic kidney EXAM: NEPHROLOGY disease (Otsuka pharmaceuticals) JULY 2016 UCSF CME Division of NephroloGy Department of Medicine Meyeon Park, MD MAS As s is tant Pr ofes s or Roadmap for today • Glomerular diseases (30 min) ---------Scheduled 15 min break------- • Common electrolyte abnormalities (30 min) • Acid-base (45 min) • Acute kidney injury (20 min) GLOMERULAR DISEASES • Secondary hypertension (10 min) 1 7/12/16 Case Laboratory studies A 74 yo man is evaluated for a 5-month history of sinusitis • Hemoglobin 11.5 g/dl and intermittent otitis media. He has lost 9 lbs (4.1 kg) • Leukocyte count 10.8x10^9 /L and has occasional joint pains. • Blood urea nitrogen 28 mg/dl Physical exam: Afebrile • Creatinine 1.6 m/dl HEENT: crusting in right nares; opaque right tympanic • Albumin 3.8 g/dl membrane; bilateral maxillary sinus tenderness • C3 100 mg/dl CV: 2/6 systolic murmur • C4 32 mg/dl Lungs: rhonchi • Urinalysis: 18 dysmorphic erythrocytes and 1 erythrocyte Extremities: 2+ edema bilateral lower ext cast/hpf • CXR: nodule in RUL, hazy density in LLL Case Question Case answer review A. Antinuclear antibody – lupus nephritis – wrong age / Which one of the following studies is most appropriate? sex – low complements A. Antinuclear antibody B. Anti-glomerular basement membrane antibody – wrong B. Anti-glomerular basement membrane antibody history; usually younger men; no respiratory C. Myeloperoxidase antineutrophil cytoplasmic antibody involvement D. Proteinase-3 antineutrophil cytoplasmic antibody C. Myeloperoxidase ANCA – can exist in granulomatous E. Anti-double-stranded DNA antibody polyangiitis (Wegener’s) but less specific D. Proteinase-3 ANCA – right answer – granulomatous polyangiitis E. Anti-double-stranded DNA antibody – lupus nephritis – wrong age / sex 2 7/12/16 Granulomatous polyangiitis (GPA) Glomerular diseases: ‘nephritic’ • Formerly known as Wegener’s granulomatosis • Hematuria, tea-colored urine • Granulomatous inflammation involving respiratory tract • Hypertension (often acute) and necrotizing vasculitis affecting small to medium sized • +/- Edema vessels • +/- Rapid loss of GFR • Necrotizing glomerulonephritis is common • Active urine sediment • Dysmorphic red blood cells • Red cell casts Glomerulonephritis: many ways to Vasculitis approach approach • Small vessel: microscopic polyangiitis, GPA, Churg- • Renal limited (mostly): IgA nephropathy, post-strep GN, Strauss, cryoglobulinemic, Henoch-Schonlein purpura– anti-GBM antibody disease inflammation / leukocyte infiltration; crescentic • Pulmonary-renal: Goodpasture’s syndrome, microscopic glomerulonephritis polyangiitis, Churg-Strauss, granulomatous polyangiitis • Renal-dermal: Henoch-Schonlein purpura; ANCA- • Medium-vessel: kawasaki’s disease, polyarteritis nodosa associated vasculitis; cryoglobulinemia; systemic lupus – renal infarctions / renovascular hypertension erythematosus • Systemic: systemic lupus erythematosus; HUS/TTP • Large-vessel: giant cell arteritis, Takayasu’s arteritis- renal ischemia due to narrowed abdominal aorta / renal arteries • Rapidly progressive GN: 50% eGFR loss in <30 days 3 7/12/16 ImmunoloGic approach Rapidly proGressive Glomerulonephritis Ser ologic analy s is • Immune complex mediated: Henoch-Schonlein purpura; cryoglobulinemic vasculitis; lupus; serum sickness; Anti-neutrophil cytoplasmic Anti-GBM Immune c omplex rheumatoid; polyarteritis nodosa; infection-induced; viral autoantibodies (ANCA) autoantibodies disease markers (hep B/C), bacterial (strep); Goodpasture’s (anti-GBM Others antibodies) No extra- Systemic Pulmonary Asthma Lung Anti-DNA Anti-pathogen renal necrotizing necrotizing and hemorrhage autoabs abs Cryoglobulins/ disease HCV • ANCA mediated (non-immune-complex mediated): GPA, arteritis granulomas eosinophilia No lung MPA, Churg-Strauss hemorrhage IgA Renal Microscopic Granulo- Churg- Goodpasture's Lupus GN Post-strep Cryo- • Cell-mediated: allograft cellular vascular rejection; giant limited polyangiitis matosis Strauss syndrome GN globulinemic vasculitis GN / MPGN cell arteritis; Takayasu’s with syndrome Anti-GBM polyangitis GN ANCA GN Anti-GBM GN Immune complex GN (‘pauci-immune’) Immune complex GN Immune complex GN • Post-streptococcal GN • SLE nephritis • Hematuria 2-3 weeks after pharyngitis or skin infection • Usually occurs within first 3 years of SLE diagnosis • Elevated ASO and anti-DNase B antibody • ANA, anti-dsDNA, anti-Smith antibodies • Low C3 / low-normal C4 • Immunosuppression: • No direct therapy available • Mycophenolate (CellCept) or cyclophosphamide • IgA nephropathy • Steroids (combined with above) • Synpharyngitic gross hematuria • Henoch-Schonlein Purpura (HSP) = Abdominal pain, diarrhea, often seen in kids, rarely in adults • Rx: steroids, fish oil(?), ACEi/ARB 4 7/12/16 Immune complex GN Anti-GBM antibody disease • Membranoproliferative glomerulonephritis (MPGN) type I • Antibodies to noncollagenous portion of type IV collagen causes autoantigen response • Secondary to cryoglobulinem ia, neoplasms, or chronic infections (eg HCV) • Renal limited: Anti-GBM Disease (older women) • Cryoglobulin deposits in vessels -> mesangiocapillar y GN • Pulmonary renal syndrome (hemoptysis / pulmonary hemorrhage + RPGN): Goodpasture’s Syndrome (young Caucasian men) • Low complements; + C3 nephritic factor (autoantibody against C3 convertase of alternative complement activation pathway) • Anti-GBM titer, kidney biopsy • Cryos: arthralgias, purpura, livedo reticularis • Rx: Plasmapheres is, steroids, cyclophosphamide • Rx: Underlying HCV à interferon and ribavirin ANCA Pauci-Immune GN /ANCA Vasculitis • Antineutrophil Cytoplasmic Antibodies • Diagnosis: ANCA +, normal complements, no • ANCAs react with cytoplasmic antigens (PR3 and MPO) that are immunohistologic evidence for vascular immune complex present at surface of cytokine-stimulated leukocytes, causing localization on biopsy leukocytes to adhere to vessel walls, degranulate, and generate toxic oxygen metabolites • Microscopic polyangiitis (p-ANCA) • Specific for proteins within granules of neutrophils and monocytes • Necrotizing vasculitis; no granulomas • Cytoplasmic (c-ANCA) versus perinuclear (p-ANCA) • Granulomatosis with polyangiitis (c-ANCA) • Cytoplasmic = PR3 (serine proteinase) = more common in GPA • Lung disease, upper airway disease, granulomas (Wegener) • Churg-Strauss Disease (p-ANCA or ANCA neg) • Perinuclear = myeloperoxidas e (MPO) = more common in MPA • Eosinophilia, asthma, sinus disease, peripheral neuropathy, (microscopic polyangiitis) granulomas • Treatment: Steroids, cyclophosphamide (+/- pheresis if hemoptysis, GPA) 5 7/12/16 IgA and SLE: Chameleons Case Both IgA Nephropathy and SLE can be… A 67 yo man with a h/o osteoarthritis, BPH, hyperlipidemia • Indolent or rapidly progressive is evaluated for new-onset joint pain in shoulders • Crescentic GN accompanied by lower extremity swelling. 3 months ago, • Nephritic and/or nephrotic baseline kidney function was normal. Meds include tamsulosin, simvastatin, naproxen. IgA Nephropathy Physical examination reveals BP 132/68. • More common in Asians and Hispanics HEENT: pale conjunctivae • Episodic macrohematuria Cardiac: S3 gallop SLE Pulmonary: decreased breath sounds at bases • More common in Asians, Hispanics, African-Americans Ext: 3+ LE edema • Up to 75% with SLE have renal disease; usually presents with proteinuria Case, continued Case Question Labs Which of the following studies is most likely to confirm the • Hemoglobin 8.2 g/dl cause of this patient’s kidney failure? • Leukocyte count 8.1 x10^9/L • Platelets 132k/mcL A. ANCA antibodies • BUN 68 mg/dl, Creatinine 5.6 mg/dl B. Serum protein electrophoresis / urine protein • Na 131 / k 3.5 / Cl 110 / Bicarb 18 / Albumin 3 / Anion electrophoresis gap 3 C. Urine eosinophil measurement • Ca 10.5 / Phos 5.4 • UA: pH 5, SG 1.015, no blood, 2+ protein D. Hepatitis C antibody assay • Urine protein:creatinine ratio 5 mg/g E. kidney ultrasonography 6 7/12/16 Case answer review Nephrotic disease: Amyloidosis A. ANCA antibodies – no hematuria • Pathology B. Serum protein electrophoresis / urine protein • β pleated structure that forms 8-10 nm fibrils electrophoresis – right answer – amyloidosis, multiple • Congo Red stain has apple-green birefringence with polarized light myeloma – low anion gap (increase in unmeasured • Classification cations including immunoglobulins) • ~ 20 unique amyloidoses • AL (primary) amyloidosis C. Urine eosinophil measurement – wrong history; test no • myeloma and monoclonal gammopathies longer favored even in AIN • AA (secondary) amyloidosis D. Hepatitis C antibody assay – MPGN can be nephrotic • chronic infections, inflammatory states (inflammatory bowel disease, rheumatoid arthritis, familial Mediterranean fever) and associated with RPGN, but no hematuria E. kidney ultrasonography – dx obstructive uropathy in older man with BPH, but more going on here Nephrotic Disease: Amyloidosis Nephrotic Disease: Amyloidosis • Clinical findings • Treatment • Large kidneys and massive proteinuria • AA Amyloidosis: Treat underlying infection or inflammation, • Multi-organ involvement colchicine for Familial Mediterranean Fever • Periorbital hemorrhage (raccoon sign), macroglossia • AL Amyloidosis: Treat underlying myeloma, melphalan, prednisone, • Cardiac deposits stem-cell transplant • GI involvement, hepatomegaly • Adjuvant therapy: ACEi/ARB, blood pressure control, diuretics,
Recommended publications
  • Pathophysiology of Acid Base Balance: the Theory Practice Relationship
    Intensive and Critical Care Nursing (2008) 24, 28—40 ORIGINAL ARTICLE Pathophysiology of acid base balance: The theory practice relationship Sharon L. Edwards ∗ Buckinghamshire Chilterns University College, Chalfont Campus, Newland Park, Gorelands Lane, Chalfont St. Giles, Buckinghamshire HP8 4AD, United Kingdom Accepted 13 May 2007 KEYWORDS Summary There are many disorders/diseases that lead to changes in acid base Acid base balance; balance. These conditions are not rare or uncommon in clinical practice, but every- Arterial blood gases; day occurrences on the ward or in critical care. Conditions such as asthma, chronic Acidosis; obstructive pulmonary disease (bronchitis or emphasaemia), diabetic ketoacidosis, Alkalosis renal disease or failure, any type of shock (sepsis, anaphylaxsis, neurogenic, cardio- genic, hypovolaemia), stress or anxiety which can lead to hyperventilation, and some drugs (sedatives, opoids) leading to reduced ventilation. In addition, some symptoms of disease can cause vomiting and diarrhoea, which effects acid base balance. It is imperative that critical care nurses are aware of changes that occur in relation to altered physiology, leading to an understanding of the changes in patients’ condition that are observed, and why the administration of some immediate therapies such as oxygen is imperative. © 2007 Elsevier Ltd. All rights reserved. Introduction the essential concepts of acid base physiology is necessary so that quick and correct diagnosis can The implications for practice with regards to be determined and appropriate treatment imple- acid base physiology are separated into respi- mented. ratory acidosis and alkalosis, metabolic acidosis The homeostatic imbalances of acid base are and alkalosis, observed in patients with differing examined as the body attempts to maintain pH bal- aetiologies.
    [Show full text]
  • A Lady with Renal Stones
    A lady with renal stones Dr KC Lo, Dr KY Lo, Dr SK Mak KWH History 53/F NSND, NKDA Good past health Complained of bilateral loin pain for few years No urinary symptoms/UTIs No haematuria Not on regular medications/vitamins No significant family history History Attended private practitioner in Feb, 2006: Blood test : Na/K 143/3.9 Ur/Cr 7.3/101 LFT N Urine test : RBC numerous/HPF WBC 5-8/HPF CXR unremarkable Given analgesics History Still on-and-off bilateral loin and lower chest pain Seek advice from Private Hospital: Blood test: WBC 3.2 Hb 12.9 Plt 139 Na/K 146/ 3.0 Ur/Cr 6.3/108 Ca2+/PO4 2.11/1.39 LFT unremarkable Urine test : RBC 6-8/HPF, WBC 0-1/HPF no cast KUB: bilateral renal stones (as told by patient) History ESWL done to right renal stone in 5/06, planned to have ESWL to left stone later But she then defaulted FU History This time admitted to our surgical ward complaining of similar bilateral lower chest wall pain (for six months) Had vomiting of undigested food 8 times per day for 1 day, no diarrhoea No fever Recent intake of herbs one week ago Physical exam BP 156/77 P 68 afebrile Hydration normal Chest, CVS unremarkable Local tenderness over bilateral lower chest wall Abdomen soft, mild epigastric tenderness, no rebound and guarding KUB Multiple tiny calcific densities projecting in bilateral renal areas with apparent distribution of the renal medulla bilateral medullary nephrocalcinosis CT Scan 1 yr ago in private CT Scan 1 yr ago in private Investigations WBC 3.1 HB 13.1 Plt 137 Na
    [Show full text]
  • Electrolyte and Acid-Base
    Special Feature American Society of Nephrology Quiz and Questionnaire 2013: Electrolyte and Acid-Base Biff F. Palmer,* Mark A. Perazella,† and Michael J. Choi‡ Abstract The Nephrology Quiz and Questionnaire (NQ&Q) remains an extremely popular session for attendees of the annual meeting of the American Society of Nephrology. As in past years, the conference hall was overflowing with interested audience members. Topics covered by expert discussants included electrolyte and acid-base disorders, *Department of Internal Medicine, glomerular disease, ESRD/dialysis, and transplantation. Complex cases representing each of these categories University of Texas along with single-best-answer questions were prepared by a panel of experts. Prior to the meeting, program Southwestern Medical directors of United States nephrology training programs answered questions through an Internet-based ques- Center, Dallas, Texas; † tionnaire. A new addition to the NQ&Q was participation in the questionnaire by nephrology fellows. To review Department of Internal Medicine, the process, members of the audience test their knowledge and judgment on a series of case-oriented questions Yale University School prepared and discussed by experts. Their answers are compared in real time using audience response devices with of Medicine, New the answers of nephrology fellows and training program directors. The correct and incorrect answers are then Haven, Connecticut; ‡ briefly discussed after the audience responses, and the results of the questionnaire are displayed. This article and Division of recapitulates the session and reproduces its educational value for the readers of CJASN. Enjoy the clinical cases Nephrology, Department of and expert discussions. Medicine, Johns Clin J Am Soc Nephrol 9: 1132–1137, 2014.
    [Show full text]
  • Guidelines for Approach to a Child with Metabolic Acidosis (Including RTA)
    Guidelines for approach to a child with Metabolic acidosis (including RTA) Children’s Kidney Centre University Hospital of Wales Cardiff CF14 4XW DISCLAIMER: These guidelines were produced in good faith by the authors reviewing available evidence/opinion. They were designed for use by paediatric nephrologists at the University Hospital of Wales, Cardiff for children under their care. They are neither policies nor protocols but are intended to serve only as guidelines. They are not intended to replace clinical judgment or dictate care of individual patients. Responsibility and decision-making (including checking drug doses) for a specific patient lie with the physician and staff caring for that particular patient. Version 1, S. Hegde/Sept 2007 Metabolic acidosis ormal acid base balance Maintaining normal PH is essential for cellular enzymatic and other metabolic functions and normal growth and development. Although it is the intracellular PH that matter for cell function, we measure extra cellular PH as 1. It is easier to measure 2. It parallels changes in intracellular PH 3. Subject to more variation because of lesser number of buffers extra cellularly. Normal PH is maintained by intra and extra cellular buffers, lungs and kidneys. Buffers attenuate changes in PH when acid or alkali is added to the body and they act by either accepting or donating Hydrogen ions. Buffers function as base when acid is added or as acid when base is added to body. Main buffers include either bicarbonate or non-bicarbonate (proteins, phosphates and bone). Source of acid load: 1. CO2- Weak acid produced from normal metabolism, dealt with by lungs pretty rapidly(within hours) 2.
    [Show full text]
  • Chapter 26: Fluid, Electrolyte, and Acid-Base Balance
    Chapter 26: Fluid, Electrolyte, and Acid-Base Balance Chapter 26 is unusual because it doesn’t introduce much new material, but it reviews and integrates information from earlier chapters to cover 3 types of regulation: regulation of fluid volume, regulation of electrolyte (=ion) concentrations, and regulation of pH. • Outline of slides: • 1. Regulating fluid levels (blood/ECF) • Compartments of the body • Regulation of fluid intake and excretion • 2. Regulating ion concentrations (blood/ECF) • 3. Regulating pH (blood/ECF) • Chemical buffers • Physiological regulation • Respiratory • Renal 1 3 subsections to this chapter – we will cover the middle one only briefly. 1 Ch. 26: Test Question Templates • Q1. Given relevant plasma data, classify a patient’s possible acid-base disorder as a metabolic or respiratory acidosis or alkalosis that is or is not fully compensated. Or, if given such a disorder, give expected plasma pH and CO2 level (high, normal, or low). • Example A: Plasma pH is 7.32, CO2 levels in blood are low. What is this? • Example B: A patient’s plasma has a pH of 7.5. Explain how you could make an additional measurement to determine whether the cause of this unusual pH is metabolic or respiratory. • Example C: A patient’s plasma CO2 levels are very low, yet plasma pH is normal. How can this be? 2 Q1. Example A: (slight) metabolic acidosis. Example B: Measure the CO2 level in the plasma. If the high plasma pH is due to a respiratory problem, the CO2 concentration will be low. If the high pH is NOT due to a respiratory problem, the CO2 will not be low, and may be high if the person is undergoing respiratory compensation for a metabolic alkalosis.
    [Show full text]
  • The Electro-Physiology-Feeedback Measures of Interstitial Fluids
    INTERNATIONAL MEDICAL UNIVERSITY The elecTro-Physiology-Feeedback Measures oF inTersTiTial Fluids BY PROFESSOR OF MEDICINE DESIRÉ DUBOUNET IMUNE PRESS 2008 Electro-Physiology -FeedBack Measures of Interstitial Fluids edited by Professor Emeritus Desire’ Dubounet, IMUNE ISBN 978-615-5169-03-8 1 CHAPTER 1 THE ELECTRO-PHYSIOLOGY-FEEDBACK MEASURES OF INTERSTITIAL FLUIDS The interstitial liquid constitutes the true interior volume that bathe the organs of the human body. It is by its presence that all the exchanges between plasma and the cells are performed. With the vascular, lymphatic and nervous systems, it seems to be the fourth communication way of information's between all the cells. No direct methods for sampling interstitial fluid are currently available. The composition of interstitial fluid, which constitutes the environment of the cells and is regulated by the electrical process of electrochemistry. This has previously been sampled by the suction blister or liquid paraffin techniques or by implantation of a perforated capsule or wick. The results have varied, depending on the sampling technique and animal species investigated. In one study, the ion distribution between vascular and interstitial compartments agreed with the Donnan equilibrium; in others, the concentrations of sodium and potassium were higher in interstitial fluid than in plasma. The concentration of protein in interstitial fluid is lower than in plasma, and the free ion activities theoretically differ from those of plasma because of the Donnan effect. In spite of these differences, and for practical reasons only, plasma is used clinically to monitor fluid and electrolytes. The relation between plasma and interstitial fluid is important in treating patients with abnormal plasma volume or homeostasis.
    [Show full text]
  • New Jersey Chapter American College of Physicians Resident
    New Jersey Chapter American College of Physicians Resident Abstract Competition 2018 Submissions Category Name Additional Authors Program Abstract Title Abstract Clinical Vignette Ankit Bansal Ankit Bansal MD, Robert Atlanticare Rare Case of A 62‐year‐old male IV drug abuser with hepatitis C and diabetes presented to the emergency Lyman MS IV, Saraswati Regional Necrotizing department with progressively worsening right forearm pain and swelling for two days after injecting Racherla MD Medical Myositis leading to heroin. Vitals included temperature 98.8°F and heart rate 107 bmp. Physical examination showed Center Thoracic and erythematous skin with surrounding edema and abscess formation of the right biceps extending into (Dominik Abdominal the axilla, and tenderness to palpation of the right upper extremity (RUE). Labs were white blood cell Zampino) Compartment count 16.1 x103/uL with bands 26%, hemoglobin 12.4 g/dL, platelets 89 x103/uL and blood lactate 2.98 Syndrome mmol/L. Patient was admitted to telemetry for sepsis secondary to right arm cellulitis and abscess. Bedside incision and drainage was performed. Blood and wound cultures were drawn and patient was started on Vancomycin and Levofloxacin. On the third day of admission, patient became febrile, obtunded and had signs of systemic toxicity. Labs showed a worsening leukocytosis and lactic acidosis. CT RUE was consistent with complex fluid collection and with extensive gas tracking encircling the entire length of the right biceps brachii muscle. Surgical debridement was performed twice over the next few days. Blood cultures grew corynbacterium and coagulase negative staphylococcus; wound culture grew coagulase negative staphylococcus. Levofloxacin was switched to Aztreonam.
    [Show full text]
  • Acid-Base Disorders Made So Easy Even a Caveman Can Do It
    ACID-BASE DISORDERS MADE SO EASY EVEN A CAVEMAN CAN DO IT Lorraine R Franzi, MS/HSM, RD, LDN, CNSD Nutrition Support Specialist University of Pittsburgh Medical Center Pittsburgh, PA I. LEARNING OBJECTIVES The clinician after participating in the roundtable will be able to: 1) Indicate whether the pH level indicates acidosis or alkalosis. 2) State whether the cause of the pH imbalance is respiratory or metabolic. 3) Identify if there is any compensation for the acid-base imbalance. II. INTRODUCTION Acid-Base balance is an intricate concept which requires an intimate and detailed knowledge of the body’s metabolic pathways used to eliminate the H+ ion. Clinicians may find it daunting to understand when first introduced to the subject. This roundtable session will demonstrate how to analyze blood gas levels in a very elementary manner so as to diagnose any acid-base disorder in a matter of minutes. The body is in a constant state of flux delicately stabilizing the pH so as to maintain its normalcy. In order to prevent untoward effects of alkalosis or acidosis the body has three major buffering systems that it uses to adjust the pH. They are: 1) Plasma protein (Prot-) 2) Plasma hemoglobin (Hb-) 3) Bicarbonate (HCO3-) The Bicarbonate-Carbonic acid system is the most dominate buffering system and controls the majority of the hydrogen ion (H+) equilibrium. Maintaining homeostasis when these acid-base shifts occur is vital to survival. Metabolic and respiratory processes work in unison to keep the H+ normal and static. II. ACID-BASE ABNORMALITIES The four principal acid-base imbalances are illustrated in Table 1.
    [Show full text]
  • Arterial Acid–Base Status During Digestion and Following Vascular Infusion of Nahco3 and Hcl in the South American Rattlesnake, Crotalus Durissus
    Comparative Biochemistry and Physiology, Part A 142 (2005) 495 – 502 www.elsevier.com/locate/cbpa Arterial acid–base status during digestion and following vascular infusion of NaHCO3 and HCl in the South American rattlesnake, Crotalus durissus Sine K. Arvedsen a,b, Johnnie B. Andersen a,b, Morten Zaar a,b, Denis Andrade b, Augusto S. Abe b, Tobias Wang a,b,* a Department of Zoophysiology, The University of Aarhus, Denmark b Departamento de Zoologia, Instituto de Biocieˆncias, UNESP, Rio Claro, SP, Brazil Received 17 May 2005; received in revised form 30 September 2005; accepted 2 October 2005 Available online 10 November 2005 Abstract Digestion is associated with gastric secretion that leads to an alkalinisation of the blood, termed the ‘‘alkaline tide’’. Numerous studies on À different reptiles and amphibians show that while plasma bicarbonate concentration ([HCO3 ]pl) increases substantially during digestion, arterial pH (pHa) remains virtually unchanged, due to a concurrent rise in arterial PCO2 (PaCO2) caused by a relative hypoventilation. This has led to the suggestion that postprandial amphibians and reptiles regulate pHa rather than PaCO2. Here we characterize blood gases in the South American rattlesnake (Crotalus durissus) during digestion and following systemic infusions of NaHCO3 and HCl in fasting animals to induce a metabolic alkalosis or acidosis in fasting animals. The magnitude of these acid–base disturbances À À 1 were similar in magnitude to that mediated by digestion and exercise. Plasma [HCO3 ] increased from 18.4T1.5 to 23.7T1.0 mmol L during digestion and was accompanied by a respiratory compensation where PaCO2 increased from 13.0T0.7 to 19.1T1.4 mm Hg at 24 h.
    [Show full text]
  • Respiratory Considerations in the Patient with Renal Failure
    Respiratory Considerations in the Patient With Renal Failure David J Pierson MD FAARC Introduction Physiologic Connections Between the Lungs and the Kidneys Diseases That Affect Both Lungs and Kidneys Wegener’s Granulomatosis Systemic Lupus Erythematosus Goodpasture’s Syndrome Respiratory Effects of Chronic Renal Failure Pulmonary Edema Fibrinous Pleuritis Pericardial Effusion Tuberculosis and Other Infections Pulmonary Calcification Urinothorax Sleep Apnea Anemia Respiratory Effects of Acute Renal Failure Hemodialysis-Related Hypoxemia How Critical Illness and Mechanical Ventilation Can Damage the Kidneys Summary Lung and kidney function are intimately related in both health and disease. Respiratory changes help to mitigate the systemic effects of renal acid-base disturbances, and the reverse is also true, although renal compensation occurs more slowly than its respiratory counterpart. A large number of diseases affect both the lungs and the kidneys, presenting most often with alveolar hemorrhage and glomerulonephritis. Most of these conditions are uncommon or rare, although three of them— Wegener’s granulomatosis, systemic lupus erythematosus, and Goodpasture’s syndrome—are not infrequently encountered by respiratory care clinicians. Respiratory complications of chronic renal failure include pulmonary edema, fibrinous pleuritis, pulmonary calcification, and a predisposition to tuberculosis. Urinothorax is a rare entity associated with obstructive uropathy. Sleep distur- bances are extremely common in patients with end-stage renal disease, with sleep apnea occurring in 60% or more of such patients. The management of patients with acute renal failure is frequently complicated by pulmonary edema and the effects of both fluid overload and metabolic acidosis. These processes affect the management of mechanical ventilation in such patients and may interfere with weaning.
    [Show full text]
  • Neurologic Complications of Electrolyte Disturbances and Acid–Base Balance
    Handbook of Clinical Neurology, Vol. 119 (3rd series) Neurologic Aspects of Systemic Disease Part I Jose Biller and Jose M. Ferro, Editors © 2014 Elsevier B.V. All rights reserved Chapter 23 Neurologic complications of electrolyte disturbances and acid–base balance ALBERTO J. ESPAY* James J. and Joan A. Gardner Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, UC Neuroscience Institute, University of Cincinnati, Cincinnati, OH, USA INTRODUCTION hyperglycemia or mannitol intake, when plasma osmolal- ity is high (hypertonic) due to the presence of either of The complex interplay between respiratory and renal these osmotically active substances (Weisberg, 1989; function is at the center of the electrolytic and acid-based Lippi and Aloe, 2010). True or hypotonic hyponatremia environment in which the central and peripheral nervous is always due to a relative excess of water compared to systems function. Neurological manifestations are sodium, and can occur in the setting of hypovolemia, accompaniments of all electrolytic and acid–base distur- euvolemia, and hypervolemia (Table 23.2), invariably bances once certain thresholds are reached (Riggs, reflecting an abnormal relationship between water and 2002). This chapter reviews the major changes resulting sodium, whereby the former is retained at a rate faster alterations in the plasma concentration of sodium, from than the latter (Milionis et al., 2002). Homeostatic mech- potassium, calcium, magnesium, and phosphorus as well anisms protecting against changes in volume and sodium as from acidemia and alkalemia (Table 23.1). concentration include sympathetic activity, the renin– angiotensin–aldosterone system, which cause resorption HYPONATREMIA of sodium by the kidneys, and the hypothalamic arginine vasopressin, also known as antidiuretic hormone (ADH), History and terminology which prompts resorption of water (Eiskjaer et al., 1991).
    [Show full text]
  • ACS/ASE Medical Student Core Curriculum Acid-Base Balance
    ACS/ASE Medical Student Core Curriculum Acid-Base Balance ACID-BASE BALANCE Epidemiology/Pathophysiology Understanding the physiology of acid-base homeostasis is important to the surgeon. The two acid-base buffer systems in the human body are the metabolic system (kidneys) and the respiratory system (lungs). The simultaneous equilibrium reactions that take place to maintain normal acid-base balance are: H" HCO* ↔ H CO ↔ H O l CO g To classify the type of disturbance, a blood gas (preferably arterial) and basic metabolic panel must be obtained. A basic understanding of normal acid-base buffer physiology is required to understand alterations in these labs. The normal pH of human blood is 7.40 (7.35-7.45). This number is tightly regulated by the two buffer systems mentioned above. The lungs contain carbonic anhydrase which is capable of converting carbonic acid to water and CO2. The respiratory response results in an alteration to ventilation which allows acid to be retained or expelled as CO2. Therefore, bradypnea will result in respiratory acidosis while tachypnea will result in respiratory alkalosis. The respiratory buffer system is fast acting, resulting in respiratory compensation within 30 minutes and taking approximately 12 to 24 hours to reach equilibrium. The renal metabolic response results in alterations in bicarbonate excretion. This system is more time consuming and can typically takes at least three to five days to reach equilibrium. Five primary classifications of acid-base imbalance: • Metabolic acidosis • Metabolic alkalosis • Respiratory acidosis • Respiratory alkalosis • Mixed acid-base disturbance It is important to remember that more than one of the above processes can be present in a patient at any given time.
    [Show full text]