Bayesian Incentive Compatibility Via Matchings

Total Page:16

File Type:pdf, Size:1020Kb

Bayesian Incentive Compatibility Via Matchings Bayesian Incentive Compatibility via Matchings Jason D. Hartline∗ Robert Kleinberg† Azarakhsh Malekian‡ Abstract sider a relaxation of the performance constraints of We give a simple reduction from Bayesian incentive algorithms; we allow algorithms not to be worst-case compatible mechanism design to algorithm design in approximations. In this context we give a very gen- settings where the agents’ private types are multi- eral reduction from Bayesian mechanism design to dimensional. The reduction preserves performance algorithm design that approximately preserves or im- up to an additive loss that can be made arbitrarily proves the expected performance, i.e., social welfare, small in polynomial time in the number of agents and of the algorithm. Of course, our reduction can also be the size of the agents’ type spaces. applied to a worst-case β-approximation algorithm; in such a setting it results in a mechanism that is a 1 Introduction Bayesian β(1 + )-approximation. This approach to mechanism design sits well with Motivated by Internet applications the methodologies a standard paradigm for algorithm design wherein a of mechanism design have been adopted to consider practitioner might fine-tune their algorithm to the design of algorithms and protocols for selfish agents. actual workload they face rather than optimize for the A central problem in this area is in merging compu- worst case. Furthermore, in the Internet applications tational constraints (from approximation algorithms) that motivate this field, protocols are executed at a with incentive constraints (from mechanism design). large scale and distributions are likely to be learnable. Much of the recent literature on this problem has fo- This paper is a direct followup to work of Hartline cused on mechanisms satisfying the strongest possible and Lucier [8] that gives a such a Bayesian reduction incentive constraints and the strongest possible no- for the special case where the selfish agents’ prefer- tions of tractability. Namely, the focus has been on ex ences are single-dimensional, e.g., a value for receiv- post incentive compatibility (i.e., truthtelling in dom- ing service. While this work has elegant economic inant strategies) and worst-case approximation algo- motivation, its sampling-based blackbox reduction rithms. Positive results in this area are in the form of requires much extra machinery to achieve Bayesian new algorithms for paradigmatic problems that sat- incentive compatibility; furthermore, it has no clear isfy incentive constraints and match the worst-case generalization of its ironing-based approach to more performance bounds of the algorithmic design prob- the general (and fundamental) multi-dimensional set- lem sans incentive constraints. For ex post incentive ting, e.g., where an agent might have distinct values compatibility, no general reductions are known. for several services that are available. In contrast we In this paper we consider a relaxation of the in- consider multi-dimensional settings and give a very centive constraints to Bayesian incentive compatibil- simple reduction. Essentially: incentive constraints ity (BIC) where truthtelling is a Bayes-Nash equilib- in BIC mechanism design are as simple as solving rium, i.e., where strategies are a mutual best response a bipartite matching problem independently on the to strategies of other agents when agent preferences type space of each agent. In settings with small type are drawn from a known distribution. We also con- spaces but many agents, this gives a general polyno- mial time reduction from mechanism design to algo- ∗Department of Electrical Engineering and Computer rithm design. Science, Northwestern University, Evanston, IL. Email: The main approach is similar to the one in [8]. [email protected]. Supported in part by NSF Grant CCF-0830773 and NSF Career Award CCF-0846113. Our reduction will accept reported types from agents. †Department of Computer Science, Cornell University, It will transform each of these types to a distribution Ithaca, NY. Email: [email protected]. Supported by NSF over types with the properties: (a) the transforma- grants CCF-0643934 and AF-0910940, an Alfred P. Sloan tion applied to a random type from the distribution Foundation Fellowship, and a Microsoft Research New Faculty results in the transformed type with the same distri- Fellowship. ‡Department of Electrical Engineering and Computer bution, (b) the transformation weakly improves per- Science, Northwestern University, Evanston, IL. Email: formance, and (c) the algorithm composed with the [email protected]. transformation is Bayesian incentive compatible. It then inputs the transformed types into the original al- watnotai et al. [5], where “solved” means that the gorithm and returns its output. Finally, it computes approximation factor of the mechanism matches the appropriate payments. algorithmic lower bound. There is also a large lit- The transformation we apply to each agent’s erature on multi-dimensional combinatorial auctions type is based on computing the maximum weighted and approximation that we do not cite exhaustively. matching in a bipartite graph between the random There have been a few reductions from ex post types from the distribution (including the agent’s real incentive compatible mechanism design to algorithm type), termed “replicas”, and the set of outcomes of design for special classes of algorithms. Of course the the algorithm on another equal-sized random set of VCG mechanism reduces the IC mechanism design types drawn from the distribution, termed “surro- problem to exact algorithm design [13, 4, 7]. Lavi gates”. The transformation then outputs the surro- and Swamy [9] consider IC mechanisms for multi- gate type to which the agent’s real type is matched. parameter packing problems and give a technique for This basic replica-surrogate-matching approach can constructing a (randomized) β-approximation mech- be further refined and improved for the special cases anism from any β-approximation algorithm that ver- of single-dimensional agents and discrete explicitly ifies an integrality gap. For polynomial time approx- specified type spaces. (The latter reduction was in- imation schemes (PTAS), Briest et al. [3] solve the dependently and concurrently discovered by Bei and single-dimensional case and Dugmhi and Roughgar- Huang [2].) den [6] solve the case of multi-dimensional additive To solve the above maximum weighted matching valuations in downward-closed settings; both papers problem we need to be able to evaluate the value of can be viewed as blackbox reductions from the ex each replica for the outcome the algorithm obtains post IC mechanism design problem to the PTAS al- for each of the surrogates. If a replica is matched gorithm design problem. to a surrogate the value it obtains is the expected Finally, for Bayesian incentive compatibility, value over outcomes the algorithm produces when Hartline and Lucier [8] give a blackbox reduction run on the surrogate and random types of the other from BIC mechanism design to algorithm design in agents. We consider two computational models: single-dimensional settings. This reduction converts an ideal model (Section 3) where we are able to any algorithm into a mechanism and approximately exactly calculate the expected value an agent might preserves its expected (for the Bayesian prior) per- have for the distribution over outcomes produced formance. Our approach follows their methodol- by the algorithm, and a blackbox model (Section 4) ogy closely. We improve on their results for single- where we can only estimate this value by repeatedly dimensional settings and extend them to to multi- sampling the types of the other agents and running dimensional settings. the algorithm. Naturally, the blackbox model is more In concurrent and independent work Bei and realistic, though it presents some serious challenges. Huang [2] reduce ε-BIC mechanism design to algo- Results. In the ideal model the replica- rithm design in settings with discrete and explicitly surrogate matching and variants are BIC and we given type spaces. In contrast, our work for discrete give bounds on the number of replicas and surrogates settings uses the same basic approach but produces needed to ensure that the surplus loss of the result- a BIC mechanism, albeit in pseudo-polynomial time. ing mechanism is at most a small additive ε. Nat- Importantly, Bei and Huang give a nice application urally, these bounds degrade with a suitable notion of the approach to the paradigmatic problem of com- of the complexity of the type space. In the black- binatorial auctions with subadditive bidders. box model our results for single-dimensional settings can be extended to give BIC mechanisms. For dis- 2 Preliminaries crete explicitly specified type spaces we can correct We consider mechanisms for selfish agents. An agent errors inherent in sampling to give a BIC reduction in has a private type t from type space T . There are pseudo-polynomial time. For continuous type spaces n agents. When we wish to be specific about a our reduction is not BIC but it is ε-BIC. particular agent κ ∈ [n] we index as, e.g., tκ and Related Work. There has been extensive work T κ. The type profile of the n agents is denoted by on designing ex post incentive compatible and t = (t1, . , tn) ∈ T 1 × · · · × T n. An algorithm A tractable mechanisms that provide worst-case ap- maps a type profile t to an outcome x from outcome proximation guarantees. The paradigmatic problem space X . Agent κ with type tκ has valuation v(tκ, x) of single-minded combinatorial auctions was solved for outcome x. We assume that agent values are by Lehmann et al. [10] and related machine schedul- non-negative and come from a bounded range that, ing (to minimize makespan) was solved by Dhang- without loss of generality, is [0, 1]. A mechanism M = (A, p) maps the type profile into an outcome optimal outcome with agent κ but does not include via an algorithm A and into a payment profile p = κ’s value in the sum.
Recommended publications
  • Collusion Constrained Equilibrium
    Theoretical Economics 13 (2018), 307–340 1555-7561/20180307 Collusion constrained equilibrium Rohan Dutta Department of Economics, McGill University David K. Levine Department of Economics, European University Institute and Department of Economics, Washington University in Saint Louis Salvatore Modica Department of Economics, Università di Palermo We study collusion within groups in noncooperative games. The primitives are the preferences of the players, their assignment to nonoverlapping groups, and the goals of the groups. Our notion of collusion is that a group coordinates the play of its members among different incentive compatible plans to best achieve its goals. Unfortunately, equilibria that meet this requirement need not exist. We instead introduce the weaker notion of collusion constrained equilibrium. This al- lows groups to put positive probability on alternatives that are suboptimal for the group in certain razor’s edge cases where the set of incentive compatible plans changes discontinuously. These collusion constrained equilibria exist and are a subset of the correlated equilibria of the underlying game. We examine four per- turbations of the underlying game. In each case,we show that equilibria in which groups choose the best alternative exist and that limits of these equilibria lead to collusion constrained equilibria. We also show that for a sufficiently broad class of perturbations, every collusion constrained equilibrium arises as such a limit. We give an application to a voter participation game that shows how collusion constraints may be socially costly. Keywords. Collusion, organization, group. JEL classification. C72, D70. 1. Introduction As the literature on collective action (for example, Olson 1965) emphasizes, groups often behave collusively while the preferences of individual group members limit the possi- Rohan Dutta: [email protected] David K.
    [Show full text]
  • Informational Size and Incentive Compatibility
    Econometrica, Vol. 70, No. 6 (November, 2002), 2421–2453 INFORMATIONAL SIZE AND INCENTIVE COMPATIBILITY By Richard McLean and Andrew Postlewaite1 We examine a general equilibrium model with asymmetrically informed agents. The presence of asymmetric information generally presents a conflict between incentive com- patibility and Pareto efficiency. We present a notion of informational size and show that the conflict between incentive compatibility and efficiency can be made arbitrarily small if agents are of sufficiently small informational size. Keywords: Incentive compatibility, mechanism design, incomplete information. 1 introduction The incompatibility of Pareto efficiency and incentive compatibility is a central theme in economics and game theory. The issues associated with this incompatibility are particularly important in the design of resource allocation mechanisms in the presence of asymmetrically informed agents where the need to acquire information from agents in order to compute efficient outcomes and the incentives agents have to misrepresent that information for personal gain come into conflict. Despite a large literature that focuses on these issues, there has been little work aimed at understanding those situations in which informational asymmetries are quantitatively important. Virtually every transaction is characterized by some asymmetry of information: any investor who buys or sells a share of stock generally knows something rel- evant to the value of the share that is not known to the person on the other side of the transaction. In order to focus on more salient aspects of the problem, many models (rightly) ignore the incentive problems associated with informa- tional asymmetries in the belief that, for the problem at hand, agents are “infor- mationally small.” However, few researchers have investigated the circumstances under which an analysis that ignores these incentive problems will yield results similar to those obtained when these problems are fully accounted for.
    [Show full text]
  • Agency Business Cycles
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Golosov, Michail Ju.; Menzio, Guido Article Agency business cycles Theoretical Economics Provided in Cooperation with: The Econometric Society Suggested Citation: Golosov, Michail Ju.; Menzio, Guido (2020) : Agency business cycles, Theoretical Economics, ISSN 1555-7561, Wiley, Hoboken, NJ, Vol. 15, Iss. 1, pp. 123-158, http://dx.doi.org/10.3982/TE3379 This Version is available at: http://hdl.handle.net/10419/217101 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. https://creativecommons.org/licenses/by-nc/4.0/ www.econstor.eu Theoretical Economics 15 (2020), 123–158 1555-7561/20200123 Agency business cycles Mikhail Golosov Department of Economics, University of Chicago and NBER Guido Menzio Department of Economics, New York University and NBER We develop a theory of endogenous and stochastic fluctuations in economic ac- tivity.
    [Show full text]
  • Political Game Theory Nolan Mccarty Adam Meirowitz
    Political Game Theory Nolan McCarty Adam Meirowitz To Liz, Janis, Lachlan, and Delaney. Contents Acknowledgements vii Chapter 1. Introduction 1 1. Organization of the Book 2 Chapter 2. The Theory of Choice 5 1. Finite Sets of Actions and Outcomes 6 2. Continuous Outcome Spaces* 10 3. Utility Theory 17 4. Utility representations on Continuous Outcome Spaces* 18 5. Spatial Preferences 19 6. Exercises 21 Chapter 3. Choice Under Uncertainty 23 1. TheFiniteCase 23 2. Risk Preferences 32 3. Learning 37 4. Critiques of Expected Utility Theory 41 5. Time Preferences 46 6. Exercises 50 Chapter 4. Social Choice Theory 53 1. The Open Search 53 2. Preference Aggregation Rules 55 3. Collective Choice 61 4. Manipulation of Choice Functions 66 5. Exercises 69 Chapter 5. Games in the Normal Form 71 1. The Normal Form 73 2. Solutions to Normal Form Games 76 3. Application: The Hotelling Model of Political Competition 83 4. Existence of Nash Equilibria 86 5. Pure Strategy Nash Equilibria in Non-Finite Games* 93 6. Application: Interest Group Contributions 95 7. Application: International Externalities 96 iii iv CONTENTS 8. Computing Equilibria with Constrained Optimization* 97 9. Proving the Existence of Nash Equilibria** 98 10. Strategic Complementarity 102 11. Supermodularity and Monotone Comparative Statics* 103 12. Refining Nash Equilibria 108 13. Application: Private Provision of Public Goods 109 14. Exercises 113 Chapter 6. Bayesian Games in the Normal Form 115 1. Formal Definitions 117 2. Application: Trade restrictions 119 3. Application: Jury Voting 121 4. Application: Jury Voting with a Continuum of Signals* 123 5. Application: Public Goods and Incomplete Information 126 6.
    [Show full text]
  • Lectures in Contract Theory1
    Lectures in Contract Theory1 Steve Tadelis and Ilya Segal2 UC Berkeley and Stanford University Preliminary and Incomplete December 2005 1These notes were prepared for a second year graduate course in Contract theory at Stanford University (Econ 282/291) and UC Berkeley (Econ 206). They are preliminary and incomplete. Thanks also to Debbie Johnston for typing the first version and to Scott Hemphill for excellent research assistance. 2Copyright c 1998-2005 by Steven Tadelis and Ilya Segal. All rights reserved. No part of these° notes may be reproduced in any form by any electronuic or mechanical means without writen permission from the author. Contents IIntroduction 5 0.1Tradewithsmallnumbersofagents............... 6 0.2 Incentives ............................. 7 0.3BoundedRationality....................... 8 0.4Contracts,Mechanisms,Institutions............... 8 II Hidden Information 10 1 The Principal-Agent Model 12 1.1Setup................................ 12 1.1.1 Preferences........................ 12 1.1.2 Contracting........................ 13 1.2Single-CrossingandtheMonotonicityofChoice........ 13 1.3TheFullInformationBenchmark................ 16 1.4TheRevelationPrinciple..................... 18 1.5SolutionwithTwoTypes..................... 20 1.5.1 ManyDiscreteTypes................... 24 1.6SolutionwithaContinuumofTypes.............. 25 1.6.1 TheRelaxedProblem................... 28 1.6.2 Whattodoifmonotonicitybinds(technical)...... 31 1.7ApplicationsoftheModel.................... 32 1.7.1 SecondDegreePriceDiscrimination..........
    [Show full text]
  • Mechanisms for Making Crowds Truthful
    Journal of Arti¯cial Intelligence Research 34 (2009) 209-253 Submitted 06/2008; published 03/2009 Mechanisms for Making Crowds Truthful Radu Jurca [email protected] Google Inc., Switzerland Boi Faltings [email protected] Ecole Polytechnique F¶ed¶erale de Lausanne (EPFL) Arti¯cial Intelligence Laboratory (LIA) CH-1015 Lausanne, Switzerland Abstract We consider schemes for obtaining truthful reports on a common but hidden signal from large groups of rational, self-interested agents. One example are online feedback mechanisms, where users provide observations about the quality of a product or service so that other users can have an accurate idea of what quality they can expect. However, (i) providing such feedback is costly, and (ii) there are many motivations for providing incorrect feedback. Both problems can be addressed by reward schemes which (i) cover the cost of obtaining and reporting feedback, and (ii) maximize the expected reward of a rational agent who reports truthfully. We address the design of such incentive-compatible rewards for feedback generated in environments with pure adverse selection. Here, the correlation between the true knowledge of an agent and her beliefs regarding the likelihoods of reports of other agents can be exploited to make honest reporting a Nash equilibrium. In this paper we extend existing methods for designing incentive-compatible rewards by also considering collusion. We analyze di®erent scenarios, where, for example, some or all of the agents collude. For each scenario we investigate whether a collusion-resistant, incentive-compatible reward scheme exists, and use automated mechanism design to specify an algorithm for deriving an e±cient reward mechanism.
    [Show full text]
  • A Strong Minimax Theorem for Informationally-Robust Auction Design∗
    A Strong Minimax Theorem for Informationally-Robust Auction Design∗ Benjamin Brooks Songzi Du October 9, 2020 Abstract We study the design of profit-maximizing mechanisms in environments with in- terdependent values. A single unit of a good is for sale. There is a known joint distribution of the bidders' ex post values for the good. Two programs are consid- ered: (i) Maximize over mechanisms the minimum over information structures and equi- libria of expected profit; (ii) Minimize over information structures the maximum over mechanisms and equi- libria of expected profit. These programs are shown to have the same optimal value, which we term the profit guarantee. In addition, we characterize a family of linear programs that relax (i) and produce, for any finite number of actions, a mechanism with a corresponding lower bound on equilibrium profit. An analogous family of linear programs relax (ii) and produce, for any finite number of signals, an information structure with a corresponding upper bound on equilibrium profit. These lower and upper bounds converge to the profit guarantee as the numbers of actions and signals grow large. Our model can be extended to allow for demand constraints, multiple goods, and ambiguity about the value distribution. We report numerical simulations of approximate solutions to (i) and (ii). Keywords: Mechanism design, information design, optimal auctions, profit maximiza- tion, interdependent values, max-min, Bayes correlated equilibrium, direct mechanism. JEL Classification: C72, D44, D82, D83. ∗Brooks: Department of Economics, University of Chicago, [email protected]; Du: Department of Economics, University of California San Diego, [email protected]. This research has been supported by NSF #1757222.
    [Show full text]
  • Mechanism Design and the Revelation Principle CSCI 1440/2440 2021-02-3
    Mechanism Design and the Revelation Principle CSCI 1440/2440 2021-02-3 First, we review the mechanism design formalism, in terms of games of incomplete information. Then, we introduce the notion of an indirect mechanism, presenting the English and Dutch auctions as examples. Finally, we cover the Revelation Principle,1 which can transform any 1 Roger B Myerson. Optimal auction mechanism into a direct one, ensuring incentive compatibility. design. Mathematics of operations research, 6(1):58–73, 1981; and Roger B Myerson. Incentive compatibility and 1 Mechanism Design Framework the bargaining problem. Econometrica: journal of the Econometric Society, pages 61–73, 1979 Mechanism design has been referred to as the engineering branch of game theory. It is concerned with designing mechanisms (i.e., games) such that the outcomes that arise when the games are played by rational agents (i.e., the equilibria) achieve some desiderata. The mechanism design framework thus consists of three parts: the mech- anism formalism, which is slightly generalizes games of incomplete information; solution concepts, or equilibria, which serve to predict the outcome of the mechanism/game; and desiderata, or objectives. Mechanisms The interaction between the designer of a mecha- nism and its participants can be modeled as a multi-stage game. The designer moves first by selecting a mechanism. The partici- pants observe the mechanism, and move thereafter. We restrict our present attention to a two-stage game, in which the participants play a simultaneous-move (i.e., one-shot) game in the second stage. After the designer announces their choice of mechanism, the agents face a game of incomplete information.
    [Show full text]
  • Dynamic Reserve Prices for Repeated Auctions: Learning from Bids?
    Dynamic Reserve Prices for Repeated Auctions: Learning from Bids? Yash Kanoria Hamid Nazerzadeh Columbia University University of Southern California July 2014 Abstract. A large fraction of online advertisement is sold via repeated second price auctions. In these auctions, the reserve price is the main tool for the auctioneer to boost revenues. In this work, we investigate the following question: Can changing the reserve prices based on the previous bids improve the revenue of the auction, taking into account the long-term incentives and strategic behavior of the bidders? We show that if the distribution of the valuations is known and satisfies the stan- dard regularity assumptions, then the optimal mechanism has a constant reserve. However, when there is uncertainty in the distribution of the valuations, previous bids can be used to learn the distribution of the valuations and to update the reserve price. We present a simple, ap- proximately incentive-compatible, and asymptotically optimal dynamic reserve mechanism that can significantly improve the revenue over the best static reserve. 1 Introduction Advertising is the main component of monetization strategies of most Internet companies. A large fraction of online advertisements are sold via advertisement exchanges platforms such as Google's Doubleclick (Adx) and Yahoo!'s Right Me- dia.1 Using these platforms, online publishers such as the New York Times and the Wall Street Journal sell the advertisement space on their webpages to adver- tisers. The advertisement space is allocated using auctions where advertisers bid in real time for a chance to show their ads to the users. Every day, tens of billions of online ads are sold via these exchanges [Muthukrishnan, 2009, McAfee, 2011, arXiv:2002.07331v1 [cs.GT] 18 Feb 2020 Balseiro et al., 2011, Celis et al., 2014].
    [Show full text]
  • The Implementation of Social Choice Rules: Some General Results on Incentive Compatibility
    The Implementation of Social Choice Rules: Some General Results on Incentive Compatibility Partha Dasgupta; Peter Hammond; Eric Maskin The Review of Economic Studies, Vol. 46, No. 2. (Apr., 1979), pp. 185-216. Stable URL: http://links.jstor.org/sici?sici=0034-6527%28197904%2946%3A2%3C185%3ATIOSCR%3E2.0.CO%3B2-E The Review of Economic Studies is currently published by The Review of Economic Studies Ltd.. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/resl.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected].
    [Show full text]
  • Ambiguity Aversion Solves the Conflict Between Efficiency and Incentive
    Ambiguity aversion solves the conflict between efficiency and incentive compatibility∗ Luciano De Castroy Nicholas C. Yannelisz First Version: December 2008 This Version: November 2010 Abstract The conflict between Pareto optimality and incentive compatibility, that is, the fact that some Pareto optimal (efficient) allocations are not incen- tive compatible is a fundamental fact in information economics, mechanism design and general equilibrium with asymmetric information. This impor- tant result was obtained assuming that the individuals are expected utility maximizers. Although this assumption is central to Harsanyi’s approach to games with incomplete information, it is not the only one reasonable. In fact, a huge literature criticizes EU’s shortcomings and propose alternative preferences. Thus, a natural question arises: does the mentioned conflict extend to other preferences? We show that when individuals have (a special form of) maximin expected utility (MEU) preferences, then any efficient al- location is incentive compatible. Conversely, only MEU preferences have this property. We also provide applications of our results to mechanism de- sign and show that Myerson-Satterthwaite’s negative result ceases to hold in our MEU framework. Keywords: Asymmetric information, ambiguity aversion, Incentive com- patibility, mechanism design, first-best, second-best. JEL Codes: D50, D81, D82. ∗We are grateful to Marialaura Pesce, Marciano Siniscalchi and Costis Skiadas for helpful conversations. y Department of Managerial Economics and Decision Sciences, Kellogg School of Manage- ment, Northwestern University, Evanston IL 60208. zDepartment of Economics, University of Illinois at Urbana-Champaign and Economics- School of Social Sciences, The University of Manchester. E-mail: [email protected]. 1 Contents 1 Introduction3 2 Preliminaries6 2.1 Goods and allocations........................6 2.2 Allocations and endowments....................9 2.3 Incentive compatibility......................
    [Show full text]
  • Information Revelation in Competing Mechanism Games
    Information Revelation in Competing Mechanism Games Andrea Attar¤ Eloisa Campioni† Gwenaël Piaser‡ November 22, 2011 Abstract We consider multiple-principal multiple-agent games of incomplete information. In this context, we identify a class of direct and incentive compatible mechanisms: each principal privately recommends to each agent to reveal her private information to the other principals, and each agent behaves truthfully. We show that there is a rationale in restricting attention to this class of mechanisms: If all principals use direct incentive compatible mechanisms that induce agents to behave truthfully and obediently in every continuation equilibrium, there are no incentives to unilaterally deviate towards more sophisticated mechanisms. We develop examples to show that private recommendations are a key element of our construc- tion, and that the restriction to direct incentive compatible mechanisms is not sufficient to provide a complete characterization of all pure strategy equilibria. Key words: Incomplete information, competing mechanisms, information revelation. JEL Classification: D82. ¤University of Rome II, Tor Vergata and Toulouse School of Economics (IDEI-PWRI); [email protected]. †University of Rome II, Tor Vergata; [email protected]. ‡IPAG Business School, Paris; [email protected]. 1 Introduction This paper contributes to the analysis of competing mechanism games with incomplete infor- mation. Specifically, we consider a scenario in which several principals simultaneously design incentive contracts in
    [Show full text]