50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1759.pdf HIRISE DIGITAL ELEVATION MODEL OF PHOBOS: IMPLICATIONS FOR MORPHOLOGICAL ANALYSIS OF GROOVES. R. Hemmi1 and H. Miyamoto2, 1The University Museum, The University of Tokyo (7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan,
[email protected]), 2Depatment of Systems Inno- vation, School of Engineering, The University of Tokyo Introduction: Linear narrow depressions common- ly known as “grooves,” can be observed on a variety of small bodies including Phobos, Gaspra, Ida, Eros, and small saturnian satellites [1]. Characteristics of grooves may reflect geological events, inherent in individual bodies. The surface of Phobos is mostly covered by grooves many of which are less than ~1 km wide. It remains controversial whether their morphologies rep- resent past internal (e.g., tidal disruption [2]) or exter- nal processes (e.g., crater chains [3,4], rolling boulders [5], etc.). The presence of raised rims on grooves is an important diagnostic of impact cratering processes as opposed to extensional stress which would form rim- less depressions [6]. Groove rims were previously identified from images [6–8]; however, their detailed topographies have not been well investigated. This is primarily due to limited spatial resolutions of previous digital terrain models (up to 100 meters) which are similar to the widths of target features (a few hundreds Fig. 1. HiRISE stereo pair images of Phobos (upper of meters). In this study, we produce a digital elevation images) and a part of HRSC global orthomosaic (lower model (DEM) from Mars Reconnaissance Orbiter’s image) with ground control points (magenta crosses).