<<

*1028_Hydrophobicity_Cvr. 2011_Layout 1 3/20/11 9:42 PM Page 1

Cover background photo: Fluoroalkylsilane treated multi-color red granite is both hydrophobic and oleophobic.

The Stenocara beetle, an African desert species, harvests that adsorbs on superhydrophilic bumps on its back, then transfers droplets into superhydrophobic channels that lead to its mouth.

GGeelleesstt IInncc.. 1111 EEaasstt SStteeeell RRooaadd MMoorrrriissvviillllee,, PPAA 1199006677 PPhhoonnee ((221155)) 554477--11001155 FFaaxx:: ((221155)) 554477--22448844 wwwwww..ggeelleesstt..ccoomm *1028_Hydrophobicity_Cvr. 2011_Layout 1 3/20/11 9:43 PM Page 2

Gelest, Inc. Gelest, Inc. Additional Product Information on & Telephone: General 215-547-1015 Order Entry 888-734-8344 For Material Science:

Technical Service: 215-547-1016 5 H 2 H 5 Hydrophobicity, OC C 2 Micro-Particle Coupling SiO CH 2 H 5 2 OC 2 FAX: 215-547-2484 CH Enabling Your Technology Hydrophilicity H 2 Surface Modification Agents NC H 2 Micro-Particle The surface properties of Surface Internet: www.gelest.com and Silane Silane coupling Silane Coupling Agents Modification Connecting Across Boundaries P CH CH micro-particles can be Surface 2 2Si(OC agents enhance 2H ) e-mail: [email protected] 5 3 altered to match the 3 Enhance Adhesion Modification adhesion, increase H Si(OEt) CH2 CH2C 2 HOCH 2 NCH 2 Increase Mechanical Properties requirements of various CH2 Correspondence: 11 East Steel Rd. OCH 2 Improve Dispersion Organosilanes are mechanical prop- H OC 2H5 OC H Provide Crosslinking applications. Surface 2 5 Innovating Particle C2H O SiC erties of compos- 5 H2CH Si OC Immobilize Catalysts used extensively 2 2H5 Functionalization Morrisville, PA 19067 Bind Biomaterials treatment services pro- © 2009 Gelest, Inc. OC2H O 5 C2H5 ites, improve Gelest provides chemistries and deposition technologies for micro-particle for modification of Version 2.0: vided on a custom basis New Coupling Agents modifications that dramatically enhance: N for Metal Substrates ! CH3 New Coupling Agents for Vapor Phase • Color • Rheological Behavior dispersion of pig- Deposition ! Si • Polarity • Photo, Chemical, Thermal Stability surface properties. New Coupling Agents at Gelest are described. OCH 3 for Proteins ! • Adhesion • Moisture & Corrosion Resistance For further information consult our web site at: www.gelest.com CH3O Dispersion Mechanical & Electrical Properties This 80-page ments and fillers This brochure reviews • • and immobilize catalysts and biomaterials. In Europe: For research quantities in Europe: brochure describes silane deposition technologies and silane chemistries This 48 page brochure describes chem- provided by Gelest that allow end-users to modify their surface modification with an emphasis on For commercial and istry, techniques, applications and physical micro-particles to achieve optimum surface properties Gelest Inc. making surfaces hydrophobic or hydrophilic properties of silane coupling agents. for composite, separation, dispersion and other bulk quantities contact: Stroofstrasse 27 Geb.2901 applications. 65933 Frankfurt am Main, Gelest Ltd. Germany 46 Pickering Street Fluids- Reactive Tel: +49-(0)-69-3800-2150 Stable, Inert Silicones - Compounds: REACTIVE SILICONES: Maidstone Media Forging New FORGING NEW POLYMER LINKS Silanes and Fax: +49-(0)-69-3800-2300 MATERIALS FOR: Adhesives Kent ME15 9RR Binders Design and Polymer Links Ceramic Coatings Silicones SILICON COMPOUNDS: Dielectric Coatings e-mail: [email protected] Encapsulants SILANES & SILICONES Gels Engineering prop- The 48 page Membranes Detailed chemical United Kingdom Optical Coatings Photolithography Polymer Synthesis Internet: www.gelestde.com erties for conven- brochure Sealants properties and Gel est Tel: +44(0)-1622-741115 tional silicone describes reactive reference articles SILICON CHEMICALS FOR: • SURFACE MODIFICATION Fax: +44(0)-8701-308421 • ORGANIC SYNTHESIS Exclusive for the United Kingdom fluids as well as silicones that can New! for over 1600 • OPTICAL COATINGS Expanded Silicone • POLYMER SYNTHESIS Macromers • SELF-ASSEMBLED MONOLAYERS • CATALYSIS e-mail: [email protected] thermal, fluorosil- be formulated into compounds. The • COMPOSITES and Ireland: • NANOFABRICATION icone, hydrophilic coatings, mem- Enabling your technology 590 page catalog Fluorochem Ltd. and low tempera- branes, cured of silane and sili- Unit 14 Graphite Way ture grades are presented in a 24 page rubbers and adhesives for mechanical, cone chemistry includes scholarly reviews selection guide. The brochure provides optical, electronic and ceramic applica- as well as detailed information on various Rossington Park, Hadfield, data on thermal, rheological, electrical, tions. Information on reactions and cures applications. Derbyshire, SK13 1QH, United Kingdom mechanical and optical properties for of silicones as well as physical properties Tel: +44-(0)-1457-860111 silicones. Silicone fluids are available shortens product development time for in viscosities ranging from 0.65 to chemists and engineers. Fax: +44-(0)-1457-858912 2,500,000 cSt. internet: www.fluorochem.net

In Japan: In South-East Asia: For Synthesis: For commercial and For commercial and research quantities contact: research quantities contact: Silicon-Based Silicon-Based Silicon-Based Blocking Reducing Agents Cross-Coupling These silicon- Gulf Chemical Agents Reagents AZmax Co. Ltd. Tokyo Office These silicon based reagents A variety of Matsuda Yaesudori, Bldg F8 39 Jalan Pemimpin reagents are are employed organosilanes 1-10-7 Hatchoubori, Chuo-Ku Tai Lee Industrial Building #04-03 used for func- in the reduction have been shown Tokyo 104-0032 Singapore 577182 tional group of various organic to enter into and inorganic Pd Tel: 65-6358-3185 protection, syn- cross-coupling Tel: 81-3-5543-1630 thesis and systems. The 24 protocols. This Fax: 65-6353-2542 page brochure Reagents For: Fax: 81-3-5543-0312 derivatization. 36 page brochure Carbon-Carbon Bond Formation, Introduction of Aryl, Vinyl and Ethynyl Groups e-mail: [email protected] e-mail: [email protected] The 28 page presents informa- with 105 refer- tion complete with literature references for on-line catalog: www.azmax.co.jp brochure presents detailed application ences reviews selected information on silylation reagents for a variety of reductions using organosilanes. approaches and some of the key aspects of pharmaceutical synthesis and analysis. the organosilane approach to cross-coupling Front Cover Photos: Water rolls off a duck’s back. Lotus leaves exhibit superhydrophobicity. Biological systems Detailed descriptions are presented on chemistry. An emphasis is placed on the are dependent on water, but at the same time must control the interaction. In a sense, all living organisms exhibit selectivity for reactions, resistance to more practical reactions. behaviors that can be described as both hydrophobic and hydrophilic. chemical transformations and selective deblocking conditions. Over 300 refer- ences are provided. Sales of all products listed are subject to the published terms and conditions of Gelest, Inc. *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:49 PM Page 1

Gelest, Inc. Hydrophobicity, Hydrophilicity and Silane Surface Modification by Barry Arkles TABLE OF CONTENTS

Silanes and Surface Modification ...... 2 Water, Hydrophobicity and Hydrophilicity ...... 3 Wettability and Contact Angle ...... 4 Critical Surface Tension and Adhesion ...... 5 How does a Silane Modify a Surface? ...... 6 Selecting a Silane for Surface Modification ...... 7 Hydrophobic Surface Treatments ...... 8 Superhydrophobicity and Oleophobicity ...... 9 Hydrophilic Surface Treatments ...... 10 Range of Water Interaction with Surfaces ...... 11 Reacting with the Substrate ...... 12 Special Topics: Dipodal Silanes ...... 13 Linker Length...... 14 Embedded/Tipped Polarity ...... 15 Partition, Orientation and Self-Assembly in Bonded Phases ...... 16 Modification of Metal Substrates ...... 17 Difficult Substrates ...... 18 Applying a Silane Surface Treatment ...... 19 Biomimetic Silane Surface Treatments ...... 21 Alkylphosphonic Acid Surface Treatments ...... 21 Hydrophobic Silane Selection Guide...... 22 Silane Properties: Hydrophobic Silanes ...... 30 Hydrophobic Silanes - Dipodal ...... 60 Hydrophobic Silanes - Polymeric ...... 63 Hydrophilic Silanes - Polar ...... 64 Hydrophilic Silanes - Bonding ...... 66 Hydrophilic Silanes - Hydroxylic ...... 71 Hydrophilic Silanes - Ionic / Charge Inducible...... 72 Hydrophilic Silanes - Polymeric ...... 74 Hydrophilic Silanes - Epoxy / Masked ...... 76 Silyl Hydrides ...... 77 UV Active and Fluorescent Silanes ...... 78 References ...... 80 Hydrophobicity, Hydrophilicity and Silane Surface Modification Barry Arkles ©2011 Gelest, Inc.

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 1 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:49 PM Page 2

Gelest, Inc.

Silanes and Surface Modification Silanes are silicon chemicals that possess a hydrolytically sensitive center that can react with inorganic substrates such as glass to form stable covalent bonds and possess an organic substitution that alters the physical interactions of treated substrates.

OCH2CH3

CH3CH2CH2CH2CH2CH2CH2CH2— Si— OCH2CH3

OCH2CH3

organic substitution allows permanent property modification

hydrolyzable alkoxy (alcohol) groups

Property modifications include: Applications include: Hydrophobicity Architectural Coatings Adhesion Water-Repellents Release Anti-stiction Coatings for MEMs Dielectric Mineral Surface Treatments Absorption Fillers for Composites Orientation Pigment Dispersants Hydrophilicity Dielectric Coatings Charge Conduction Anti-fog Coatings Release Coatings Optical (LCD) Coatings Bonded Phases Self-Assembled Monolayers (SAMs) Crosslinkers for Silicones Nanoparticle Synthesis Anti-Corrosion Coatings

In contrast with silanes utilized as coupling agents in adhesive applications, silanes used to modify the surface energy or wettability of substrates under normal conditions do not impart chemical reactivity to the substrate. They are often referred to as non-functional silanes. The main classes of silanes utilized to effect surface energy modification without imparting reactivity are:

Hydrophobic Silanes Hydrophilic Silanes Methyl Polar Linear Alkyl Hydroxylic Branched Alkyl Ionic Fluorinated Alkyl Charge inducible /charge switchable Aryl Embedded Hydrophilicity Dipodal Masked

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 2 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:49 PM Page 3

Gelest, Inc.

Water, Hydrophobicity and Hydrophilicity Hydrogen Hydrophobic and Hydrophilic are frequently used descriptors of surfaces. A surface is hydrophobic if it tends not to adsorb water or be wetted by water. A surface is hydrophilic if it tends to adsorb water or be wetted by water. More particularly, the terms describe the interaction of the water boundary layer of a solid phase with liquid or vapor water. Silanes can be used to modify the interaction of boundary layers of solids with water with a high degree of control, effecting variable degrees of hydrophobicity or hydrophilicity. Since the interaction of water with surfaces is frequently used to define surface properties, a brief review of its structure and properties can be help- ful. Although the structure of water is a subject of early discussion in the study of physical sciences, it is interesting to note that the structure of liquid water is still not solved and, even so, most technologists lose appre- ciation of what is known about its structure and properties. The quantum calculation of the structure of an isolated H2O molecule of water showing has evolved to the currently accepted model which demonstrates a strong dipole, but no lone electron pairs associated with sp3 hybridized orbitals of oxygen. This model of isolated H2O conforms most closely to the vapor state and extrapolation often leads to the conclusion that water is a collec- tion of individual which associate with each other primarily through dipole interactions. The polar nature of water, with its partial pos- itive and partial negative dipole, explains why bulk water readily dissolves many ionic species and interacts with ionic surfaces. The difference between isolated vapor phase water and bulk liquid water is much more extreme than can be accounted for by a model relying only on dipole inter- actions. The properties of bulk liquid water are strongly influenced by hydrogen bond interactions. In the liquid state, despite 80% of the elec- 2 molecules showing hydrogen bond trons being concerned with bonding, the three atoms of a water molecule do not stay together as discrete molecules. The hydrogen atoms are con- stantly exchanging between water molecules in a -deprotona- tion process. Both acids and bases catalyze hydrogen exchange and, even when at its slowest rate of exchange (at pH 7), the average residence time of a hydrogen atom is only about a millisecond. In the liquid state, water molecules are bound to each other by an average of three hydrogen bonds. Hydrogen bonds arise when a hydrogen that is covalently bound to an oxy- gen in one molecule of water nears another oxygen from another water molecule. The electrophilic oxygen atom “pulls” the hydrogen closer to itself. The end result is that the hydrogen is now shared (unequally) between the oxygen to which it is covalently bound and the electrophilic oxygen to which it is attracted (O-H...O). Each hydrogen bond has an average energy of 20 kJ/mol. This is much less than an O-H covalent bond, which is 460 kJ/mol. Even though an individual hydrogen bond is rela- tively weak, the large number of hydrogen bonds that exist in water which ice - molecules of water with 4 hydrogen bonds pull the molecules together have a significant role in giving water its spe- cial bulk properties. In ice, water molecules are highly organized with four hydrogen bonds. Liquid water is thought to be a combination of domains of molecules with 3-4 hydrogen bonds separated by domains with 2-3 hydrogen bonds, subject to constant turnover - the flickering cluster model. This brief description of water is provided in order to give the insight that whenever a solid surface interacts with bulk water it is inter- acting with a soft matter structure, not simply a collection of individual molecules. Surface interactions with water must compete with a variety of internal interactions of liquid phase water: van der Waals forces, liquid water - flickering cluster model dipole interactions, hydrogen bonding and proton exchange. regions of molecules with 3-4 hydrogen bonds separated by regions with 2-3 hydrogen bonds (not shown: out of plane hydrogen bonds) 3 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:49 PM Page 4

Gelest, Inc.

Wettability and Contact Angle Contact Angle Defines Wettability A surface is said to be wetted if a liquid spreads over the surface evenly without the formation of droplets. When the liquid is water and it spreads over the surface without the formation of droplets, the surface is said to be hydrophilic. In terms of energetics, this implies that the forces associated with the interaction of water with the surface are greater than the cohesive forces associated with bulk liquid water. Water droplets form on hydrophobic surfaces, implying that the cohesive forces associated with bulk water are greater than Contact Angle of Water on the forces associated with the interaction of water with the Smooth Surfaces surface. Practically, hydrophobicity and hydrophilicity are ⍜ relative terms. A simple quantitative method for defining heptadecafluorodecyltrimethoxysilane* 115° the relative degree of interaction of a liquid with a solid (heptafluoroisopropoxy)propyl- surface is the contact angle of a liquid droplet on a solid * 109-111° substrate. If the contact angle of water is less than 30°, the poly(tetrafluoroethylene) 108-112° poly(propylene) 108° surface is designated hydrophilic since the forces of interac- octadecyldimethylchlorosilane* 110° tion between water and the surface nearly equal the cohe- octadecyltrichlorosilane* 102-109° sive forces of bulk water and water does not cleanly drain tris(trimethylsiloxy)- from the surface. If water spreads over a surface and the silylethyldimethylchlorosilane 104° octyldimethylchlorosilane* 104° contact angle at the spreading front edge of the water is less * 95-105° than 10°, the surface is often designated as superhy- butyldimethylchlorosilane* 100° drophilic (provided that the surface is not absorbing the trimethylchlorosilane* 90-100° water, dissolving in the water or reacting with the water). poly() 88-103° On a hydrophobic surface, water forms distinct droplets. poly(styrene) 94° As the hydrophobicity increases, the contact angle of the poly(chlorotrifluoroethylene) 90° human skin 75-90° droplets with the surface increases. Surfaces with contact diamond 87° angles greater than 90° are designated as hydrophobic. The graphite 86° theoretical maximum contact angle for water on a smooth silicon (etched) 86-88° surface is 120°. Micro-textured or micro-patterned surfaces talc 50-55° with hydrophobic asperities can exhibit apparent contact chitosan 80-81° angles exceeding 150° and are associated with superhy- steel 70-75° drophobicity and the “lotus effect”. methacryloxypropyltrimethoxysilane 70° gold, typical (see gold, clean) 66° Ordinary Surface- triethoxysilylpropoxy(triethylenoxy)- “typical wetting” dodecanoate* 61-2° intestinal mucosa 50-60° glycidoxypropyltrimethoxysilane* 49° kaolin 42-46° platinum 40° Hydrophobic- Hydrophilic- silicon nitride 28-30° “poor wetting” “good wetting” silver iodide 17° methoxy(polyethyleneoxy)propyl- trimethoxysilane* 15.5° soda-lime glass <15° gold, clean <10° *Note: Contact angles for silanes refer to smooth treated surfaces.

PLEASE INQUIRE ABOUT BULK QUANTITIES 4 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 3/20/11 9:27 PM Page 5

Gelest, Inc.

Critical Surface Tension and Adhesion Critical surface tensions While the contact angle of water on a substrate is a good ␥ indicator of the relative hydrophobicity or hydrophilicity of a c substrate, it is not a good indicator for the wettability of the mN/m substrate by other liquids. The contact angle is given by heneicosafluorododecyltrichlorosilane 6-7 Young’s equation: heptadecafluorodecyltrichlorosilane 12.0 ␥sv – ␥sl = ␥lv • cos⍜e poly(tetrafluoroethylene) 18.5 where ␥sl = interfacial surface tension, ␥lv = surface tension octadecyltrichlorosilane 20-24 of liquid. methyltrimethoxysilane 22.5 Critical surface tension is associated with the wettability or nonafluorohexyltrimethoxysilane 23.0 release properties of a solid. It serves as a better predictor of vinyltriethoxysilane 25 the behavior of a solid with a range of liquids. paraffin wax 25.5 ethyltrimethoxysilane 27.0 Liquids with a surface tension below the critical surface propyltrimethoxysilane 28.5 tension (␥c) of a substrate will wet the surface, i.e., show a glass, soda-lime (wet) 30.0 contact angle of 0 (cos⍜e = 1). The critical surface tension is poly(chlorotrifluoroethylene) 31.0 unique for any solid and is determined by plotting the cosine poly(propylene) 31.0 of the contact angles of liquids of different surface tensions poly(propylene oxide) 32 and extrapolating to 1. polyethylene 33.0 trifluoropropyltrimethoxysilane 33.5 Hydrophilic behavior is generally observed by surfaces 3-(2-aminoethyl)-aminopropyltrimethoxysilane 33.5 with critical surface tensions greater than 45 dynes/cm. As poly(styrene) 34 the critical surface tension increases, the expected decrease p-tolyltrimethoxysilane 34 in contact angle is accompanied with stronger adsorptive cyanoethyltrimethoxysilane 34 behavior and with increased exotherms. aminopropyltriethoxysilane 35 Hydrophobic behavior is generally observed by surfaces acetoxypropyltrimethoxylsilane 37.5 with critical surface tensions less than 35 dynes/cm. At first, polymethylmethacrylate 39 the decrease in critical surface tension is associated with polyvinylchloride 39 oleophilic behavior, i.e. the wetting of the surfaces by hydro- phenyltrimethoxysilane 40.0 carbon oils. As the critical surface tensions decrease below chloropropyltrimethoxysilane 40.5 20 dynes/cm, the surfaces resist wetting by oils mercaptopropyltrimethoxysilane 41 and are considered oleophobic as well as hydrophobic. glycidoxypropyltrimethoxysilane 42.5 poly(ethyleneterephthalate) 43 In the reinforcement of thermosets and thermoplastics poly() 43-45 with glass fibers, one approach for optimizing reinforcement copper (dry) 44 is to match the critical surface tension of the silylated glass aluminum (dry) 45 surface to the surface tension of the polymer in its melt or iron (dry) 46 uncured condition. This has been most helpful in resins with nylon 6/6 45-6 no obvious functionality such as polyethylene and poly- glass, soda-lime (dry) 47 styrene. Silane treatment has allowed control of thixotropic silica, fused 78 activity of silica and clays in paint and coating applications. (anatase) 91 Immobilization of cellular organelles, including mitochondria, ferric oxide 107 chloroplasts, and microsomes, has been effected by treating tin oxide 111

silica with alkylsilanes of C8 or greater substitution. Note: Critical surface tensions for silanes refer to smooth treated surfaces.

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 5 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:49 PM Page 6

Gelest, Inc.

How does a Silane Modify a Surface? Hydrolytic Deposition of Silanes Most of the widely used organosilanes have one organic and three hydrolyzable . In the vast majority of surface treatment applications, the alkoxy groups of the trialkoxysilanes are hydrolyzed to form silanol-containing species. Reaction of these silanes involves four steps. Initially, hydrolysis of the three labile groups occurs. Condensation to oligomers follows. The oligomers then hydrogen bond with OH groups of the substrate. Finally, during drying or curing, a covalent linkage is formed with the substrate with concomitant loss of water. Although described sequentially, these reactions can occur simultaneously after the initial hydrolysis step. At the interface, there is usually only one bond from each silicon of the organosilane to the substrate surface. The two remaining silanol groups are present either in condensed or free form. The R group remains available for covalent reaction or physi- cal interaction with other phases. Silanes can modify surfaces under anhydrous conditions consistent with monolayer and vapor phase deposition require- ments. Extended reaction times (4-12 hours) at elevated tem- peratures (50°-120°C) are typical. Of the alkoxysilanes, only methoxysilanes are effective without catalysis. The most effec- tive silanes for vapor phase deposition are cyclic azasilanes. Hydrolysis Considerations Water for hydrolysis may come from several sources. It may be added, it may be present on the substrate surface, or it may come from the atmosphere. The degree of polymer- ization of the silanes is determined by the amount of water available and the organic substituent. If the silane is added to water and has low , a high degree of polymerization is favored. Multiple organic substitution, particularly if phenyl or tertiary butyl groups are involved, favors formation of stable B. Arkles, CHEMTECH, 7, 766, 1977 monomeric silanols. The thickness of a polysiloxane layer is also determined by Anhydrous Deposition of Silanes the concentration of the solution. Although a monolay- R er is generally desired, multilayer adsorption results from solu- C SiH CH tions customarily used. It has been calculated that deposition 3 3 OCH from a 0.25% silane solution onto glass could result in three to 3 eight molecular layers. These multilayers could be either inter- + connected through a loose network structure, or intermixed, OH or both, and are, in fact, formed by most deposition techniques. The orientation of functional groups is generally horizontal,

but not necessarily planar, on the surface of the substrate. Δ - CH3OH The formation of covalent bonds to the surface proceeds with a certain amount of reversibility. As water is removed, R

generally by heating to 120°C for 30 to 90 minutes or evacuation H3C Si CH3 for 2 to 6 hours, bonds may form, break, and reform to relieve internal stress. O

PLEASE INQUIRE ABOUT BULK QUANTITIES 6 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:49 PM Page 7

Gelest, Inc.

OH H Selecting A Silane for Surface Modification - O H Inorganic Substrate Perspective O O H Factors influencing silane surface modification selection include: H H O OH OH Concentration of surface hydroxyl groups Type of surface hydroxyl groups Hydrolytic Stability of the bond formed Physical dimensions of the substrate or substrate features

Surface modification is maximized when silanes react with the substrate surface and present the maximum number of accessible sites with appropriate surface energies. An additional considera- tion is the physical and chemical properties of the interphase region. The interphase can promote or detract from total system properties depending on its physical properties such as modulus or Water droplets on a (heptadecafluoro-1,1,2,2-tetrahy- drodecyl)trimethoxysilane-treated silicon wafer chemical properties such as water/hydroxyl content. exhibit high contact angles, indicative of the low Hydroxyl-containing substrates vary widely in concentration surface energy. Surfaces are both hydrophobic and resist wetting by hydrocarbon oils. (water droplets and type of hydroxyl groups present. Freshly fused substrates contain dye for photographic purposes). stored under neutral conditions have a minimum number of hydroxyls. Hydrolytically derived oxides aged in moist air have Silane Effectiveness on Inorganics significant amounts of physically adsorbed water which can SUBSTRATES interfere with coupling. Hydrogen bonded vicinal silanols react EXCELLENT Silica more readily with silane coupling agents, while isolated or free Quartz hydroxyls react reluctantly. Glass Aluminum (AlO(OH)) Silanes with three alkoxy groups are the usual starting point Alumino-silicates (e.g. clays) for substrate modification. These materials tend to deposit as poly- Silicon GOOD Copper meric films, effecting total coverage and maximizing the introduc- Tin (SnO) tion of organic functionality. They are the primary materials uti- Talc lized in composites, adhesives, sealants, and coatings. Limitations Inorganic Oxides (e.g. Fe2O3, TiO2, Cr2O3) Steel, Iron intrinsic in the utilization of a polylayer deposition are significant Asbestos for nano-particles or nano-composites where the interphase dimen- Nickel Zinc sions generated by polylayer deposition may approach those of the Lead SLIGHT substrate. Residual (non-condensed) hydroxyl groups from Marble, Chalk (CaCO3) alkoxysilanes can also interfere in activity. Monoalkoxy-silanes Gypsum (CaSO4) Barytes (BaSO ) provide a frequently used alternative for nano-featured substrates 4 POOR Graphite since deposition is limited to a monolayer. Carbon Black If the hydrolytic stability of the oxane bond between the silane and the substrate is poor or the application is in an aggressive Estimates for Silane Loading on Siliceous Fillers

aqueous environment, dipodal silanes often exhibit substantial per- Average Particle Size Amount of Silane formance improvements. These materials form tighter networks (minimum of monolayer coverage) <1 micron 1.5% and may offer up to 105x greater hydrolysis resistance making 1-10 microns 1.0% 10-20 microns 0.75% them particularly appropriate for primer applications. >100 microns 0.1% or less

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 7 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/24/11 11:19 AM Page 8

Gelest, Inc. Hydrophobic Silane Surface Treatments Factors which contribute to the ability of an organosilane to generate a hydrophobic surface are its organic substitution, the extent of surface coverage, residual unreacted groups (both from the silane and the surface) and the distribution of the silane on the surface. Aliphatic hydrocarbon substituents or fluorinated hydrocarbon sub- stituents are the hydrophobic entities which enable silanes to induce sur- face hydrophobicity. Beyond the simple attribute that in order to generate a hydrophobic surface the organic substitution of the silane must be non- polar, more subtle distinctions can be made. The hydrophobic effect of the organic substitution can be related to the free energy of transfer of hydrocarbon molecules from an aqueous phase to a homogeneous hydro- carbon phase. For non-polar entities, van der Waals interactions are pre- complete coverage dominant factors in interactions with water and such interactions compete with hydrogen bonding in ordering of water molecules. Van der Waals interactions for solid surfaces are primarily related to the instantaneous polarizability of the solid which is proportional to the dielectric constant or permittivity at the primary UV absorption frequency and the of the solid. Entities which present sterically closed structures that minimize van der Waals contact are more hydrophobic than open struc- tures that allow van der Waals contact. Thus, in comparison to polyethylene, both polypropylene and polytetrafluoroethylene are more hydrophobic. Similarly methyl-substituted alkylsilanes and fluorinated alkylsilanes pro- vide better hydrophobic surface treatments than linear alkyl silanes. Surfaces to be rendered hydrophobic usually are polar with a distrib- incomplete hydroxyl reaction ution of hydrogen bonding sites. A successful hydrophobic coating must eliminate or mitigate hydrogen bonding and shield polar surfaces from interaction with water by creating a non-polar interphase. Hydroxyl groups are the most common sites for hydrogen bonding. The of hydroxyl groups can be eliminated by oxane bond formation with an organosilane. The effectiveness of a silane in reacting with hydroxyls impacts hydrophobic behavior not only by eliminating the hydroxyls as water adsorbing sites, but also by providing anchor points for the non- polar organic substitution of the silane which shields the polar substrates from further interaction with water. Strategies for silane surface treatment depend on the population of hydroxyl groups and their accessibility for bonding. A simple conceptual few bonding opportunities case is the reaction of organosilanes to form a monolayer. If all hydroxyl = (CH3)3Si = trimethylsilyl groups are capped by the silanes and the surface is effectively shielded, a hydrophobic surface is achieved. Practically, not all of the hydroxyl Hypothetical groups may react leaving residual sites for hydrogen bonding. Further, Trimethylsilylated there may not be enough anchor points on the surface to allow the organ- Surfaces ic substituents to effectively shield the substrate. Thus the substrate reac- Pyrogenic silica has 4.4- tive groups of the silane, the conditions of deposition, the ability of the 4.6 OH/nm2. Typically silane to form monomeric or polymeric layers and the nature of the organ- less than 50% are reacted. ic substitution all play a role in rendering a surface hydrophobic. The Other substrates have fewer minimum requirements for hydrophobicity with the economic restrictions opportunities for reaction. for various applications further complicate selection.

PLEASE INQUIRE ABOUT BULK QUANTITIES 8 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:50 PM Page 9

Gelest, Inc. Superhydrophobicity and Oleophobicity Hydrophobicity is frequently associated with oleophilicity, the affinity of a substance for oils, since non- Hydrophobicity vs Water Permeability polar organic substitution is often hydrocarbon in nature Although silane and silicone derived coatings are in and shares structural similarities with many oils. The general the most hydrophobic, they maintain a high degree of permeability to water vapor. This allows hydrophobic and oleophilic effect can be differentiated and coatings to breathe and reduce deterioration at the controlled. At critical surface tensions of 20-30 mN/m, sur- coating interface associated with entrapped water. faces are wetted by hydrocarbon oils and are water repellent. Since are not transported through non-polar At critical surface tensions below 20, hydrocarbon oils no silane and silicone coatings, they offer protection to composite structures ranging from pigmented coat- longer spread and the surfaces are both hydrophobic and ings to rebar reinforced concrete. oleophobic. The most oleophobic silane surface treatments have fluorinated long-chain alkyl silanes and methylated medium chain alkyl silanes. Superhydrophobic surfaces are those surfaces that pre- Superhydrophobic Surface: sent apparent contact angles that exceed the theoretical limit for smooth surfaces, i.e. >120°. The most common examples Cassie State of superhydrophobicity are associated with surfaces that are rough on a sub-micron scale and contact angle measurements are composites of solid surface asperities and air; denoted as the Cassie state. Perfectly hydrophobic surfaces (contact angles of 180°) have been prepared by hydrolytic deposition of methylchlorosilanes as microfibrillar structures. Perfect Hydrophobicity-180°

1) CH3SiCl3 2) toluene extraction trace H20

toluene-swollen crosslinked covalently attached methylsilicone

The methylsilicone phase separates in ethanol to form a covalently attached fibrillar network. Automotive side windows are treated with fluoroalkylsilanes to provide Fiber diameter is self-cleaning properties. Water beads remove soil as they are blown ~20 nm. Ellipsometry over the glass substrate during acceleration. indicates a film thick- SEM image ness of ~20 nm.

T. McCarthy, J. Am. Chem. Soc., 2006, 128, 9052.

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 9 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:50 PM Page 10

Gelest, Inc. Hydrophilic Silane Surface Treatments The vast majority of surfaces are hydrophilic. Water is omnipresent in the environment, yet the precise nature Anti-fog coatings applied to one side of interaction of water with specific surfaces is largely of a visor can be unknown. Water adsorption may be uniform or in isolat- prepared from ed patches. It may be driven by a number of different combinations of physical and chemical processes. The adsorption of water polyalkylene oxide by a surface may be assisted or retarded by other adsor- functional silanes bents present in the environment. The purpose of apply- and film-forming ing a hydrophilic surface treatment is to control both the hydrophilic nature and extent of interaction of water with a surface. silanes. The controlled interaction of water with substrates can offer various degrees of hydrophilicity ranging from physi-sorption to chemi-sorption and centers for - interaction. The utility of hydrophilic surfaces varies Heats of Immersion in Water, mJ/m2 widely. Anti-fog coatings exploit high surface energies titanium dioxide 225-250 to flatten water droplets rather than allowing them to talc 220-260 form light-scattering droplets. In biological systems aminopropyltriethoxysilane* 230-270 hydrophilic surfaces can reduce nonspecific bonding of silicon dioxide 210-225 proteins. Hydrophilic coatings with hydrogen bonding glass 200-205 sites allow formation of tightly adherent layers of water vinyltris(methoxyethoxy)silane* 110-190 mercaptopropyltrimethoxysilane* 80-170 with high lubricity in biological systems and the ability graphite 32-35 to resist oil adsorption in anti-graffiti coatings. They polytetrafluoroethylene 24-25 can also be used to disperse particles in aqueous coat- ings and oil-in-water emulsions. Hydrophilic coatings *Data for silane treated surfaces in this table is primarily with ionic sites form antistatic coatings, dye receptive from B. Marciniec et al, Colloid & Polymer Science, 261, surfaces and can generate conductive or electrophoretic 1435, 1983 recalculated for surface area. pathways. Thick films can behave as polymeric elec- trolytes in battery and ion conduction applications. Water Interaction with PEGylated Silanes The most common strategy for non-hydroxylic polar modifica- In general, surfaces become more hydrophilic in the tion of organic molecules is the incorporation of poleyethylene series: non-polar < polar, no hydrogen-bonding < polar, oxide units (PEG). The interaction of water with one, two and hydrogen-bonding < hydroxylic < ionic. The number of three PEG units incorporated into a silane is depicted. sites and the structure and density of the interphase area also have significant influence on hydrophilicity. Much of the discussion of hydrophobicity centers around high contact angles and their measurement. As a corollary, low or 0° contact angles of water are asso- ciated with hydrophilicity, but practically the collection of consistent data is more difficult. Discriminating between surfaces with a 0° contact angle is impossible. The use of heat of immersion is a method that generates more consistent data for solid surfaces, provided the surface does not react with, dissolve or absorb the test- ed liquid. Another important consideraton is whether 1 water molecule 1 water molecule 1.5 water molecules the water adsorbed is “free” or “bound.” Free water is (single bridge bonded, (double bridge bonded, per EG unit water that is readily desorbed under conditions of less ≈ 20 kJ/) ≈ 34 kJ/mole) (per molecule 34 kJ/mole) than 100% relative humidity. If water remains bound to a substrate under conditions of less than 100% relative humidity, the surface is considered hygroscopic. Another description of hygroscopic water is a boundary layer of water adsorbed on a surface less than 200nm thick that cannot be removed without heating. A measure of the relative hygroscopic nature of surfaces is given by the water activity, the ratio of the fugacity, or escaping tendency, of water from a surface compared to the fugacity of pure water. The hydrophilicity of a surface as measured or determined by contact angle is subject to inter- ference by loosely bound oils and other contaminants. Heats of immersion and water activity measurements are less subject to this interference. Measurements of silane-modified surfaces demonstrate true modification of the intrinsic surface properties of substrates. If the immobilized hydrophilic layer is in fact a thin hydrogel film, then swelling ratios at equilibrium water absorbtion can provide useful comparative data.

PLEASE INQUIRE ABOUT BULK QUANTITIES 10 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:51 PM Page 11

Gelest, Inc.

Hydrophilic Silane Surface Treatments (continued) Controlling hydrophilic interaction with silane surface treatments is accomplished by the selection of a silane with the appropriate hydrophilic substitution. The classes of substi- tution are: • Polar, Non-Hydrogen Bonding Aortic stents are coated to promote hydrophilicity, • Polar, Hydrogen-Bonding coupling to polymers and • Hydroxylic drug delivery systems. • Ionic-Charged The selection of the class of hydrophilic subsitution is dependent on the application. If it is sufficient for water to spread evenly over a surface to form a thin film that washes away and dries off quickly without leaving 'drying spots', then a polar aprotic silane is preferred. If a coating is desired that reduces non-specific binding of proteins or other biofoulants, then a polar hydrogen- bonding material such as a polyether functional silane is preferred. A very different application for polar non-hydroxylic materials is thin film proton conduction electrolytes. Lubricious coatings are usually hydroxylic since they require a restrained adsorbed phase of water. Antistatic coatings are usually charged or charge-inducible as are ion-conductive coatings used in the construction of thin-film batteries. A combination of hydrophilicity and hydrophobicity may be a requirement in coatings which are used as primers or in selective adsorption applica- tions such as chromatography. Formulation limitations may require that hydrophilicity is latent and becomes unmasked after application. Factors affecting the intrinsic hydrolytic stability of silane treated surfaces are magnified when the water is drawn directly into the interface. Even pure silicon dioxide is ultimately soluble in water (at a level of 2-6ppm), but the kinetics, low concentration for satura- tion and phase separation, make this a negligible consideration in most applications. The equi- librium constant for the rupture of a Si-O-Si bond by water to two Si-OH bonds is estimated at 10-3. Since at minimum 3 Si-O-Si bonds must be simultaneously broken under equilibrium con- ditions to dissociate an organosilane from a surface, in hydrophobic environments the long-term stability is a minor consideration. Depending on the conditions of exposure to water of a hydrophilic coating, the long-term stability can be an important consideration. Selection of a dipodal, polypodal or other network forming silane as the basis for inducing hydrophilicity or as a component in the hydrophilic surface treatment is often obligatory. Range of Water Interaction with Surfaces interaction description surface measurement - example parameter

low superhydrophobic contact angle oleophobic fluorocarbon lipophobic oleophilic water-sliding angle lipophilic hydrocarbon critical surface tension hydrophobic moderate polar polymer heat of immersion hydrophilic oxide surface hygroscopic polyhydroxylic water activity strong hydrogel film equilibrium water absorption swell

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 11 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:51 PM Page 12

Gelest, Inc. Reacting with the Substrate Leaving Groups Bond Dissociation Energies The reaction of an organofunctional silane with a surface bear- ing hydroxyl group results in a substitution reaction at silicon and Bond Dissociation Energy the formation of the silylated surface where the silicon is cova- (kcal/mole) lently attached to the surface via an oxygen linkage. This con- nection may be formed directly or in the presence of water Me3Si-NMe2 98 through a reactive silanol intermediate. In general the reactivity of Me3Si-N(SiMe3)2 109 hydroxylated surfaces with organo-functional silanes decreases in Me3Si-Cl 117 the order: Si-NR2 > Si-Cl > Si-NH-Si > Si-O2CCH3 > Si-OCH3 Me3Si-OMe 123 > Si-OCH CH . An analysis of the relevant bond energies indi- 2 3 Me3Si-OEt 122 cates that the formation of the Si-O-surface bond is the driving Me Si-OSiMe 136 force for the reaction under dry and aprotic conditions. Secondary 3 3 factors contributing to the reactivity of organofunctional silanes with a surface are the volatility of the byproducts, the ability of the byproduct to hydrogen bond with the hydroxyls on the surface, the ability of the byproduct to catalyze further reactions, e.g. HCl or Common Leaving Groups , and the steric bulk of the groups on the silicon atom. Type Advantage Disadvantage Although they are not the most reactive organosilanes, the methoxy and ethoxysilanes are the most widely used dimethylamine reactive, toxic organofunctional silanes for surface modification. The reasons for volatile byproduct this include the fact that they are easily handled and the alcohol reactive, corrosive byproducts are non-corrosive and volatile. The methoxysilanes volatile byproduct are capable of reacting with substrates under dry, aprotic condi- tions, while the less reactive ethoxysilanes require catalysis for silazane (NH3) volatile limited availability suitable reactivity. The low toxicity of ethanol as a byproduct of methoxy moderate reactivity, moderate toxicity the reaction favors the ethoxysilanes in many commercial appli- neutral byproduct cations. The vast majority of organofunctional silane surface treat- ments are performed under conditions in which water is a part of ethoxy low toxicity lower reactivity the reaction medium, either directly added or contributed by adsorbed water on the substrate or by atmospheric moisture. Surface Area of Common Substrates Silane Requirements for Surface Coverage Hydrolytic Deposition – creating a minimum uniform coverage Type m2/g

The majority of surface modifications are affected by the hydrolytic E-Glass 0.10-0.12 deposition of trialkoxysilanes. Specific Wetting Surface (SWS) is a value determined empirically for the amount of silane required to obtain Silica, ground 1-2 minimum uniform multilayer coverage on a substrate. Silica, diatomaceous 1-3.5 Calcium silicate 2.6 Clay, kaolin 7

amount of silane (g) = amount of substrate (g) x surface area of filler (m2/g) Talc 7 specific wetting surface Silica, fumed 150-250

Specific Wetting Surface (SWS) numbers are found throughout this brochure.

Monolayer Deposition Monolayer deposition is a widely used term, but the definition of a monolayer is usually contextual. The simplest definition is that there is an attachment of a surface treatment molecule to every surface atom. However, coverage of this type is probably never the case. In general, monolayer coverage refers to the reaction of the sur- face treatment molecule with available hydroxyl groups on the surface, but this is also almost never achieved. For example, hydrated fumed silica has 4.4-4.6 –OH/nm2. A high surface fumed silica has a surface area of 3.25 x 1020 nm2/gram and thus 1.5 x 1021 hydroxyls. If this is divided by Avogadro’s number, 6.02 x 1023, 2.4 x10-3 moles of silane are required to provide coverage on 1 gram of fumed silica. Monolayer bonding of a silane with a molecu- lar weight of 200 would deposit 0.5 g silane per gram of silica. In fact, most monolayer depositions of silanes result in about 10% of the calculated requirement, i.e. 0.5g silane per gram of fumed silica.

PLEASE INQUIRE ABOUT BULK QUANTITIES 12 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:51 PM Page 13

Gelest, Inc. Special Topics Dipodal Silanes Dipodal silanes are silanes employed in surface modifi- cation that possess two silicon atoms capable of bonding to surfaces through oxane bonds. Functional dipodal silanes and combinations of non-functional dipodal silanes with functional silanes have significant impact on substrate bonding, hydrolytic stability and mechanical strength of Multilayer printed circuit boards use dipodal many composites systems. They possess enabling activity silanes to maintain the integrity of the bond in many coatings, particularly primer systems and aqueous between metal and resins by reducing immersion applications. The effect is thought to be a result interfacial water adsorption. of both the increased crosslink density of the interphase and a consequence of the fact that the resistance to hydrolysis of dipodal materials (with the ability to form six bonds to a substrate) is estimated at close to 100,000 times greater than conventional coupling agents (with the ability to form only three bonds to a substrate).

Dipodal vs Conventional Silanes in acidic aqueous environments

Hydrophobic Dipodal Silanes Chemical resistance test in 6N HCl

120.0 (C2H5O)3Si CH2CH2 Si(OC2H5)3 SIB1817.0

100.0

(C2H5O)3Si CH2CH2CH2CH2CH2CH2CH2CH2 Si(OC2H5)3 80.0 SIB1824.0

(CH O) Si CH CH Si(OCH3)3 60.0 3 3 2 2 CH CH Si(OCH ) 2 2 3 3 Si(OCH3)3

SIB1831.0 SIB1829.0 40.0 SIB1824.0 a t e r c o n g l

W SIO6715.0 20.0 SIB1829.0 SID4632.0 Hydrophilic Dipodal Silanes 0.0 H H H 0 h r

2 4 h r 7 2 h r 5 2 h r N N CH CH N

1 6 8 h r 3 6 h r 5 0 4 h r 8 4 0 h r 2 2 1 7 6 h r 1 6 8 0 h r 2 3 5 h r 3 0 2 4 h r 3 6 9 h r 4 3 6 8 h r 5 0 4 h r 5 7 1 2 h r 6 7 8 0 6 4 h r 8 7 3 6 h r 9 4 0 8 h r CH CH 1 0 8 h r 1 0 7 5 2 h r 1 5 9 2 h r CH2 CH2 2 2 CH CH CH2 CH2 2 2 Glass surfaces treated with: bridged dipodal silane SIB1824.0 1,8-bis CH CH CH2 CH2 2 2 (triethoxysilyl)octane; conventional silane SIO6715.0 n-octyltriethoxysilane; (CH O) Si Si(OCH ) (CH3O)3Si Si(OCH3)3 3 3 3 3 pendant dipodal silane SIB1829.0 1,2-bis(trimethoxysilyl)decane; SIB1833.0 SIB1834.0 conventional silane, SID4632.0 n-decyltriethoxysilane. (CH3O)3SiCH2CH2CH2 O S S O NCH CH OH C O (CH CH O) C (C2H5O)3Si 2 2 CH 2 2 CnH H H H N 2 2 N CH2 CH CH2 CC 2 CH CH2 2 CH Hydrophobic coatings applied to antennas H CH2 CH2 2 Si(OC H ) CH CH CH inhibit the formation of adsorbed water 2 5 3 CH2 2 2 2 NCH2CH2OH Si(OC H ) layers which become dielectric layers that (C2H5O)(3CSi H O) Si Si(OC H ) 2 5 3 (CH3O)3SiCH2CH2CH2 2 5 3 2 5 3 absorb signals and cause high losses. If the water is in beads, the energy will be SBS1I8B2101..402.0 SSIBIB11882244.8.62 slightly diffracted because the water droplets have dimensions much less than a wave- length at these frequencies.

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 13 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/24/11 11:19 AM Page 14

Gelest, Inc. Linker Length An important factor in controlling the effec- tiveness and properties of a coupled system is the linker between the organic functionality and the silicon atom. The linker length imposes a number of physical property and reactivity limitations. The desirability of maintaining the reactive cen- ters close to the substrate is most important in sensor applications, in heterogeneous catalysis, in fluor- escent materials and in composite systems where the interfacing components are closely matched in Effect of linker length on the separation of modulus and coefficient of thermal expansion. aromatic On the other hand, inorganic surfaces can impose enormous steric constraints on the accessibility of organic functional groups in close proximity. If the linker length is long the has greater mobility and can extend further from the inorganic substrate. This has important conse- quences if the functional group is expected to react with a single component in a multi-compo- nent organic or aqueous phase as found in homoge- neous and phase transfer catalysis, biological diagnostics or liquid chromatography. Extended linker length is also important in oriented applica- tions such as self-assembled monolayers (SAMs). The typical linker length is three carbon atoms, a consequence of the fact that the propyl group is both synthetically accessible and has good thermal stability. T. Den et al, in “Silanes, Surfaces, Interfaces” D. Leyden ed., 1986 p403.

Silanes with short linker length Silanes with extended linker length

OCH3 CH3 Cl CH3CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2 Si OCH3 H3C Si OSiCl SIT8572.6 OCH SIH5925.0 3 CH3 Cl Cl OCH2CH3 CN CH CH CH CH CH CH CH CH CH CH CH Si Cl NCCHCH Si OCH CH 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 SIC2445.0 Cl SIC2456.3 OCH2CH3

Cl OC2H5 SIH6175.0 CH2CH2CH2CH2 Si Cl HOCH2 Si OC2H5 Cl OC2H5 SIP6724.9

O OCH3 Cl CH OCH CH O CH CH CH CH CH CH CH CH CH CH CH Si Cl CH3COCH2Si OCH3 SIA0055.0 3 2 2 2 2 2 2 2 2 2 2 2 2 2 OCH Cl 3 SIM6491.5

PLEASE INQUIRE ABOUT BULK QUANTITIES 14 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/24/11 10:23 PM Page 15

Gelest, Inc.

Combining Polarity and Non-Polarity in Silane Contact Angles of Water and Hexadecane Surface Treatments on Silane Layers with Tipped and Embedded Polar Groups It may be desirable for a surface treatment to possess both polar groups and non-polar groups. The polarity may either Silane Contact angle (degrees) embedded below a hydrocarbon tail (i.e. proximal to the surface) Hydrophobic control Water Hexadecane or tipped at the end of the hydrocarbon (i.e. proximal to the Dodecyltriethoxysilane (SID4632.0) 100 21 contacting phase). Hydrophilic tipped silanes Tipped (Methoxytriethyleneoxy)- trimethoxysilylundecanoate (SIM6493.7) 74 7 Methoxyethoxyundecyltrichlorosilane (SIM6491.5) 73 5 Embedded Hydrophilic embedded silanes Triethoxysilylpropoxy(triethyleneoxy)- octadecanoate 68 28 Triethoxysilylpropoxy(triethyleneoxy)- Silane surface treatments with either tipped or embedded dodecanoate (SIT8186.3) 62 6 polarity provide an avenue to overcome traditional limitations Triethoxysilylpropoxy(hexaethyleneoxy)- octadecanoate 42 28 imposed by surface energetics. They allow formation of surfaces Triethoxysilylpropoxy(hexaethyleneoxy)- that respond to solvent, electrical potential and thermal transi- dodecanoate 35 3 tions by dramatically varying wettability. Silane treated sub- Hydrophilic control strates associated with a variety of multiphasic applications, Methoxy(polyethyleneoxy)6-9- including particle dispersion, reversed-phase HPLC and diagnos- propyltrimethoxysilane (SIM6492.7) 16 17

tic assays can also take advantage of surfaces which combine B. Arkles et al in “Silanes & Other Coupling Agents Vol 5, K. Mittal Ed. p.51 polarity with non-polarity. VSP (Brill) 2009. Comparative contact angle data of various silanes with polar substitution having degrees of hydrogen bonding and in which Silane Surface Treated Particles – Effect on Rheology the polar groups are either embedded or are tipped along with 45 wgt% TiO2 in Mineral Oil hydrophobic and hydrophilic controls demonstrate interesting 60000.0 trends. Tipped polar silanes show higher contact angles with 51500.0 water than the embedded polar silanes, regardless of opportuni- 50000.0 ties for hydrogen-bonding. The number of PEG units has rela- 41500.0 40000.0 tively small impact on contact angle of the tipped silanes 33625.0 although an increase in number of PEG units does correlate to 30000.0

decreased water contact angle. PEG units embedded in silanes V i s c o t y ( p ) have a stronger effect on contact angle than PEG units in the 20000.0 tipped analogs. Hexadecane contact angle seems to be con- trolled by the number of carbon atoms in the carbon chain, 10000.0 1850.0 although a step-change increase in contact angle is observed 0.0 with C18-PEG silanes. C12PEG3Si C8Si C12Si C18Si Polarity is generally associated with hydrophilicity. Non- (SIT8163.3) (SIO6715.0) (SID4632.0)) (SIO6645.0)) polarity is generally associated with hydrophobicity. In the case Dispersion viscosity of different silane treated titanium dioxide pigment at 65% of surface treatments, it may be that the term hydrophobic loading in mineral oil. DodecanoylPEG3silane (SIT8186.3) with embedded (“water-hating” or “water fearing”) suggests a too simplistic polarity provides lower viscosity than octyl-, dodecyl- and octadecylsilanes. explanation. It appears not so much that hydrocarbons hate 65 wgt% red iron oxide in Ethylhexylpalmitate water, but that water hates hydrocarbons. Hydrocarbons appear 600000.0 indifferent to water. In the case of alkylsilanes tipped with polar 500000.0 groups, water molecular interaction proceeds until interaction 460000.0 with the hydrocarbon. In the cases of alkylsilanes in which polar groups are embedded near the surface, the hydrocarbon poses 400000.0 only a small barrier to the access of water to the polar groups. 300000.0 V i s c o t y ( p ) Particle Dispersion Utilizing Silanes with 200000.0 193000.0 155000.0 147500.0 136000.0 Embedded Polarity 105250.0 The incorporation of polar functionality into hydrocarbon 100000.0 26125.0 substituted silanes can have dramatic effects on the dispersion 0.0 C12PEG3Si (SIO6715.0) (SID4632.0) (SIO6 PEG6-9C3Si SIA0610.0 Untreated of particles. Depending on the media, the appropriate mixed (SIT8163.3) C8Si C12Si C18Si (SIM6492.7) polarity surface treatment can improve dispersion, reduce 645.0) viscosity or increase loading. Dispersion viscosity of different silane treated iron oxide pigments at 65% loading in 2-ethylhexylpalmitate. DodecanoylPEG3silane (SIT8186.3) with embedded polarity provides lower viscosity than alkyl, polyethyleneoxide, and aminopropyl substituted silanes. 15 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/24/11 11:19 AM Page 16

Gelest, Inc.

Partition, Orientation and Normal Phase HPLC of Carboxylic Acids with a Self-Assembly in Bonded Phases C23-Silane Bonded Phase Chromatography Octadecyl, cyanopropyl and branched tricocyl silanes provide bonded phases for liquid chromatography. Reverse-phase thin-layer chromatography can be accom- plished by treating plates with dodecyltrichlorosilane.

Liquid Crystal Displays The interphase can also impose orientation of the bulk phase. In liquid crystal displays, clarity and permanence H3CSi CH3 of image are enhanced if the display can be oriented paral- Cl lel or perpendicular to the substrate. The use of surfaces treated with octadecyl(3-(trimethoxysilyl)propyl) ammoni- um chloride (perpendicular) or methylaminopropyl- trimethoxysilane (parallel) has eliminated micromachining operations. The oriented crystalline domains often observed in reinforced nylons have also been attributed to orientation effects of the silane in the interphase. Orientation effects of silanes for passive LCDs OCTADECYLDIMETHYL(3-TRIMETHOXYSILYLPROPYL) Self-Assembled Monolayers (SAMs) CHLORIDE (SIO6620.0) A Self-Assembled Monolayer (SAM) is a one mole- cule thick layer of material that bonds to a surface in an ordered way as a result of physical or chemical forces dur- ing deposition. Silanes can form SAMs by solution or vapor phase deposition processes. Most commonly, or alkoxysilanes are used and once deposi- tion occurs a chemical (oxane) bond forms with the sur- face rendering a permanent modification of the substrate. Applications for SAMs include micro-contact printing, soft lithography, dip-pen nanolithography, anti-stiction N-METHYLAMINOPROPYLTRIMETHOXYSILANE (SIM6500.0) coatings and orientation layers involved in nanofabrication of MEMs, fluidic microassemblies, semiconductor sensors and memory devices. Common long chain alkyl silanes used in the forma- tion of SAMs are simple hydrocarbon, fluoroalkyl and end-group substituted silanes. Silanes with one hydrolyzable group maintain interphase structure after

deposition by forming a single oxane bond with the sub- F. Kahn., Appl. Phys. Lett. 22, 386, 1973 strate. Silanes with three hydrolyzable groups form siloxane (silsesquioxane) polymers after Micro-Contact Printing Using SAMs deposition, bonding both with each other as well as the substrate. For non-oxide metal spin casting of sol-gel precursor and soft bake substrates, silyl hydrides may be used, react- PDMS

ing with the substrate by a dehydrogenative “inked” with solution amorphous oxide of C18-Silane in hexane coupling. Substrate Substrate The perpendicular orientation of silanes microcontact printing of C18-Silane with C10 or greater length can be utilized in polishing and crystallization micro-contact printing and other soft lithog- SAMs of C18-Silane crystallization oxide raphy methods. Here the silane may effect a Substrate (2-3nm) simple differential adsorption, or if function- Substrate alized have a direct sensor effect.

PLEASE INQUIRE ABOUT BULK QUANTITIES 16 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:51 PM Page 17

Gelest, Inc.

Modification of Metal Substrates The optimum performance of silanes is associated with siliceous substrates. While the use of silanes has been extended to metal substrates, both the effective- ness and strategies for bonding to these less-reactive substrates vary. Four approaches of bonding to metals have been used with differing degrees of success. In all cases, selecting a dipodal or polymeric silane is preferable to a conventional trialkoxy silane. Octysilane adsorbed on gold figure courtesy of M. Banaszak-Holl Metals that form hydrolytically stable surface oxides, e.g. aluminum, tin, titanium. These oxidized Metals that form stable hydrides, e.g. titanium, surfaces tend to have sufficient hydroxyl functionality zirconium, nickel. In a significant departure from tra- to allow coupling under the same conditions applied to ditional silane coupling agent chemistry, the ability of the siliceous substrates discussed earlier. certain metals to form so-called amorphous alloys with hydrogen is exploited in an analogous chemistry in Metals that form hydrolytically or mechanically which hydride functional silanes adsorb and then coor- unstable surface oxides, e.g. iron, copper, zinc. dinate with the surface of the metal. Most silanes of These oxidized surfaces tend to dissolve in water lead- this class possess only simple hydrocarbon substitution ing to progressive corrosion of the substrate or form a such as octylsilane. However they do offer organic passivating oxide layer without mechanical strength. compatibility and serve to markedly change wet-out The successful strategies for coupling to these sub- of the substrate. Both hydride functional silanes and strates typically involve two or more silanes. One treated metal substrates will liberate hydrogen in the silane is a chelating agent such as a diamine, presence of base or with certain precious metals such polyamine or polycarboxylic acid. A second silane is as platinum and associated precautions must be taken. selected which has a reactivity with the organic com- (see p77.) H ponent and reacts with the first silane by co-condensa- H2C CH(CH2)8CH2Si H tion. If a functional dipodal or polymeric silane is not SIU9048.0 H selected, 10-20% of a non-functional dipodal silane typically improves bond strength. Coupling Agents for Metals*

Metals that do not readily form oxides, e.g. Metal Class Screening Candidates nickel, gold and other precious metals. Bonding to these substrates requires coordinative bonding, typical- Copper Amine SSP-060 SIT8398.0 ly a , sulfur (mercapto), or amine functional silane. A second silane is selected which has a reac- Gold Sulfur SIT7908.0 SIP6926.2 tivity with the organic component. If a functional Phosphorus SID4558.0 SIB1091.0 dipodal or polymeric silane is not selected, 10-20% of a non-functional dipodal silane typically improves Iron Amine SIB1834.0 WSA-7011 bond strength. Sulfur SIB1824.6 SIM6476.0 Tin Amine SIB1835.5

OCH3 Titanium Epoxy SIG5840.0 SIE6668.0 Hydride SIU9048.0 CH CH SCH CH CH Si OCH N 2 2 2 2 2 3 Zinc Amine SSP-060 SIT8398.0 OCH3 SIP6926.2 Carboxylate SIT8402.0 SIT8192.6 *These coupling agents are almost always used in conjunction with a second silane with organic reactivity or a dipodal silane.

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 17 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:51 PM Page 18

Gelest, Inc.

- + OH O Na Difficult Substrates - + Silane coupling agents are generally recommended for applica- O Ca tions in which an inorganic surface has hydroxyl groups and the Substrates with low concentrations of non-hydrogen bonded hydroxyl groups can be converted to stable oxane bonds by reac- hydroxyl groups, high concentrations of calcium, alkali metals tion with the silane. Substrates such as calcium carbonate, copper or phosphates pose challenges for silane coupling agents. and ferrous alloys, and high phosphate and sodium glasses are not Removing Surface Impurities recommended substrates for silane coupling agents. In cases Eliminating non-bonding metal ions such as sodium, where a more appropriate technology is not available a number of potassium and calcium from the surface of sub- strategies have been devised which exploit the organic functionali- strates can be critical for stable bonds. Substrate selection can be essential. Colloidal silicas derived ty, film-forming and crosslinking properties of silane coupling from tetraethoxysilane or sols perform far agents as the primary mechanism for substrate bonding in place of better than those derived from sodium sols. Bulk glass tends to concentrate impurities on the surface bonding through the silicon atom. These approaches frequently during fabrication. Although sodium concentrations involve two or more coupling agents. derived from bulk analysis may seem acceptable, the Calcium carbonate fillers and marble substrates do not form surface concentration is frequently orders of magni- tude higher. Surface impurities may be reduced by stable bonds with silane coupling agents. Applications of mixed immersion in 5% for 4 hours, fol- silane systems containing a dipodal silane or tetraethoxysilane in lowed by a deionized water rinse, and then immer- sion in deionized water overnight followed by drying. combination with an organofunctional silane frequently increases Oxides with high isoelectric points can adsorb car- adhesion. The adhesive mechanism is thought to be due to the low bon dioxide, forming carbonates. These can usually molecular weight and low surface energy of the silanes which be removed by a high temperature vacuum bake. allows them initially to spread to thin films and penetrate porous structures followed by the crosslinking which results in the forma- Increasing Hydroxyl Concentration tion of a silica-rich encapsulating network. The silica-rich encap- Hydroxyl functionalization of bulk silica and glass may be increased by immersion in a 1:1 mixture of 50% sulating network is then susceptible to coupling chemistry compa- aqueous sulfuric acid : 30% for 30 rable to siliceous substrates. Marble and calciferous substrates can minutes followed by rinses in D.I. water and also benefit from the inclusion of anhydride-functional silanes and then air drying. Alternately, if sodium ion contamina- tion is not critical, boiling with 5% aqueous sodium per- which, under reaction conditions, form dicarboxylates that can oxodisulfate followed by rinse is recommended1. form salts with calcium ions. 1. K. Shirai et al, J. Biomed. Mater. Res. 53, 204, 2000. Metals and many metal oxides can strongly adsorb silanes if a chelating functionality such as diamine or dicarboxylate is present. Catalyzing Reactions in Water-Free Environments A second organofunctional silane with reactivity appropriate to the Hydroxyl groups without hydrogen bonding react slowly organic component must be present. Precious metals such as gold with methoxy silanes at room temperature. Ethoxy silanes are essentially unreactive. The methods for enhancing and rhodium form weak coordination bonds with phosphine and reactivity include transesterification catalysts and agents mercaptan functional silanes. which increase the acidity of hydroxyl groups on the sub- strate by hydrogen bonding. Transesterification catalysts High phosphate and sodium content glasses are frequently the include tin compounds such as dibutyldiacetoxytin and most frustrating substrates. The primary inorganic constituent is titanates such as titanium isopropoxide. Incorporation of transesterification catalysts at 2-3 weight % of the silane silica and would be expected to react readily with silane coupling effectively promotes reaction and deposition in many agents. However alkali metals and phosphates not only do not instances. Alternatively, amines can be premixed with sol- form hydrolytically stable bonds with silicon, but, even worse, cat- vents at 0.01-0.5 weight % based on substrate prior or concurrent to silane addition. Volatile primary amines such alyze the rupture and redistribution of silicon-oxygen bonds. The as butylamine can be used, but are not as effective as ter- first step in coupling with these substrates is the removal of ions tiary amines such as benzyldimethylamine or diamines such as ethylenediamine. The more effective amines, from the surface by extraction with deionized water. Hydrophobic however, are more difficult to remove after reaction1. dipodal or multipodal silanes are usually used in combination with 1. S. Kanan et al, Langmuir, 18, 6623, 2002.

organofunctional silanes. In some cases polymeric silanes with Hydroxylation by Water Plasma & Steam Oxidation multiple sites for interaction with the substrate are used. Some of Various metals and metal oxides including silicon and these, such as the polyethylenimine functional silanes can couple silicon dioxide can achieve high surface concentrations to high sodium glasses in an aqueous environment. of hydroxyl groups after exposure to H2O/O2 in high energy environments including steam at 1050° and water plasma1. 1. N. Alcanter et al, in “Fundamental & Applied Aspects of Chemically Modified Surfaces” ed. J. Blitz et al, 1999, Roy. Soc. Chem., p212. PLEASE INQUIRE ABOUT BULK QUANTITIES 18 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:51 PM Page 19

Gelest, Inc. Applying Silanes

Deposition from aqueous alcohol solutions is the most facile method for Fig. 1 Reactor for slurry preparing silylated surfaces. A 95% ethanol-5% water solution is adjusted to treatment of powders. pH 4.5-5.5 with acetic acid. Silane is added with stirring to yield a 2% final Separate filtration and concentration. Five minutes should be allowed for hydrolysis and silanol for- drying steps are required. mation. Large objects, e.g. glass plates, are dipped into the solution, agitated gently, and removed after 1-2 minutes. They are rinsed free of excess materials by dipping briefly in ethanol. Particles, e.g. fillers and supports, are silylated by stirring them in solution for 2-3 minutes and then decanting the solution. The particles are usually rinsed twice briefly with ethanol. Cure of the silane layer is for 5-10 mins at 110°C or 24 hours at room temperature (<60% relative humidity).

Deposition from aqueous solution is employed for most commercial fiberglass systems. The alkoxysilane is dissolved at 0.5-2.0% concentration in water. For less soluble silanes, 0.1% of a non- ionic surfactant is added prior to the silane and an emulsion rather than a solution is prepared. The solution is adjusted to pH 5.5 with acetic acid. The solution is either sprayed onto the substrate or employed as a dip bath. Cure is at 110-120°C for 20-30 minutes. Stability of aqueous silane solutions varies from 2-12 hours for the simple alkyl silanes. Poor solubility parameters limit the use of long chain alkyl and aromatic silanes by this method. Distilled water is not necessary, but water containing fluoride ions must be avoided.

Bulk deposition onto powders, e.g. filler treatment, is usually accomplished by a spray-on method. It assumes that the total Fig. 2 Vacuum tumble amount of silane necessary is known and that sufficient adsorbed dryers can be used for moisture is present on the filler to cause hydrolysis of the silane. slurry treatment of The silane is prepared as a 25% solution in alcohol. The powder is powders. placed in a high intensity solid mixer, e.g. twin cone mixer with intensifier. The methods are most effective. If the filler is dried in trays, care must be taken to avoid wicking or skinning of the top layer of treated material by adjusting heat and air flow.

Integral blend methods are used in composite formulations. In this method the silane is used as a simple additive. Composites can be prepared by the addition of alkoxysilanes to dry-blends of polymer and filler prior to compounding. Generally 0.2 to 1.0 weight percent of silane (of the total mix) is dispersed by spraying the silane in an alcohol carrier onto a pre- blend. The addition of the silane to non-dispersed filler is not desirable in this technique since it can lead to agglomeration. The mix is dry-blended briefly and then melt compounded. Vacuum devolatization of byproducts of silane reaction during melt compounding is neces- sary to achieve optimum properties. Properties are sometimes enhanced by adding 0.5-1.0% of tetrabutyl titanate or benzyldimethylamine to the silane prior to dispersal.

Anhydrous liquid phase deposition of chlorosilanes, methoxysilanes, aminosilanes and cyclic azasilanes is preferred for small particles and nano-featured substrates. Toluene, tetrahy- drofuran or hydrocarbon solutions are prepared containing 5% silane. The mixture is refluxed for 12-24 hours with the substrate to be treated. It is washed with the solvent. The solvent is then removed by air or explosion-proof oven drying. No further cure is necessary. This reac- tion involves a direct nucleophilic displacement of the silane chlorines by the surface silanol. If monolayer deposition is desired, substrates should be predried at 150°C for 4 hours. Bulk deposition results if adsorbed water is present on the substrate. This method is cumbersome for large scale preparations and rigorous controls must be established to ensure reproducible results. More reproducible coverage is obtained with monochlorosilanes.

Chlorosilanes can also be deposited from alcohol solution. Anhydrous alcohols, particularly ethanol or isopropanol are preferred. The is added to the alcohol to yield a 2-5% solution. The chlorosilane reacts with the alcohol producing an alkoxysilane and HCl. Progress of the reaction is observed by halt of HCl evolution. Mild warming of the solution (30-40°C) Fig. 3 Twin-cone blenders with promotes completion of the reaction. Part of the HCl reacts with the alcohol to produce small intensive mixing bars are used quantities of alkyl halide and water. The water causes formation of silanols from alkoxysilanes. for bulk deposition of silanes The silanols condense on the substrate. Treated substrates are cured for 5-10 mins. at 110°C or onto powders. allowed to stand 24 hours at room temperature.

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 19 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:51 PM Page 20

Gelest, Inc.

Figure 4. Applying Silanes Apparatus for vapor phase silylation.

Vapor Phase Deposition Silanes can be applied to substrates under dry aprotic conditions by chemical vapor deposition methods. These methods favor mono- layer deposition. Although under proper conditions almost all silanes can be applied to substrates in the vapor phase, those with vapor pres- sures >5 torr at 100°C have achieved the greatest number of commer- cial applications. In closed chamber designs, substrates are supported above or adjacent to a silane reservoir and the reservoir is heated to sufficient temperature to achieve 5mm . Alternatively, vacuum can be applied until silane evaporation is observed. In still another variation the silane can be prepared as a solution in toluene, and the toluene brought to reflux allowing sufficient silane to enter the vapor phase through partial pressure contribution. In general, substrate temperature should be maintained above 50° and below 120° to promote reaction. Cyclic azasilanes deposit the quickest- Figure 5. usually less than 5 minutes. Amine functional silanes usually deposit Spin-coater rapidly (within 30 minutes) without a catalyst. The reaction of other for deposition silanes requires extended reaction times, usually 4-24 hours. The on wafers. reaction can be promoted by addition of catalytic amounts of amines.

Spin-On Spin-On applications can be made under hydrolytic conditions which favor maximum functionalization and polylayer deposition or dry conditions which favor monolayer deposition. For hydrolytic deposition 2-5% solutions are prepared (see deposition from aqueous alcohol). Spin speed is low, typically 500 rpm. Following spin-depo- sition a hold period of 3-15 minutes is required before rinse solvent. Figure 6. Dry deposition employs solvent solutions such as methoxypropanol Spray or ethyleneglycol monoacetate (EGMA). Aprotic systems utilize application of silanes toluene or THF. Silane solutions are applied at low speed under a on large purge. If strict monolayer deposition is preferred, the sub- structures. strate should be heated to 50°. In some protocols, limited polylayer formation is induced by spinning under an atmospheric ambient with 55% relative humidity.

Spray application Formulations for spray applications vary widely depending on end-use. They involve alcohol solutions and continuously hydrolyzed aqueous solutions employed in architectural and masonry applica- Figure 7. tions. The continuous hydrolysis is effected by feeding mixtures of Spray & silane containing an acid catalyst such as acetic acid into a water contact roller stream by means of a venturi (aspirator). Stable aqueous solutions application of (see water-borne silanes), mixtures of silanes with limited stability silanes on (4-8 hours) and emulsions are utilized in textile and fiberglass appli- fiberglass. cations. Complex mixtures with polyvinyl acetates or polyesters enter into the latter applications as sizing formulations.

PLEASE INQUIRE ABOUT BULK QUANTITIES 20 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:52 PM Page 21

Gelest, Inc.

Biomimetic Silane Surface Treatments In addition to the direct metabolic and structural roles played by many biomolecules, they can also be involved in control of in vivo hydrophilic-lipophilic balance and specific adsorptive interactions with other biomolecules. Biomimetic silanes offer an opportunity to modify surfaces to impart a desired level of hydrophilicity and control biomolecule adsorption.

SIA0126.0 SIA0120.2 SIA0123.0 acetylhydroxyprolyl acetylglycinamide acetylglycyl

CH3 OCH2CH3

OCH2CH2CH2Si OCH2CH3

H3C OCH2CH3

CH3(CHCH2CH2CH2)3 O CH3

CH3 CH3 SIT8012.0 tocophoryl Alkylphosphonic Acids Alkylphosphonic acids are utilized as hydrophobic coatings for a variety of non-siliceous, native oxide surfaces of metals such as iron, steel, tin, aluminum and copper. Alkylphosphonic acids can react under ambient conditions to form adherent, chain ordered films. They have advantages over alkylsilanes when a metal-oxide substrate does not form a hydrolytically stable silicon-oxygen- metal bond. Alkylphosphonic acids are generally deposited from dilute solutions (0.25-0.50 wgt %) in moderately polar solvents such as toluene, tetrahydrofuran and ethanol. The deposition results in self-assembled monolayers (SAMs) in which it is generally considered that two direct bonds are formed with the surface through oxygen-metal linkages and the third remaining oxygen is coordinated to the surface.

OMPH062 octadecylphosphonic acid

OMPH058 dodecylphosphonic acid P O O O

Metal Oxide Substrate OMPH061 octylphosphonic acid For further information on alkylphosphonic acids, see Gelest Metal-Organics Catalog.

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 21 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:52 PM Page 22

Gelest, Inc.

Hydrophobic Silane Selection Guide Hydrophobic silanes employed in surface moodification form the following major categories:

Methyl-Silanes...... 22 Linear Alkyl-Silanes ...... 24 Branched Alkyl-Silanes...... 26 Aromatic-Silanes...... 28 Fluorinated Alkyl-Silanes ...... 30 Dialkyl-Silanes ...... 30

Methyl-Silanes very hydrophobic, hydrolysates stable to 425°C, acceptable performance to 600°C reported, volatile 3 Hydrolyzable Groups

Hydrolyzable Groups Product Code Product Name chloro SIM6520.0 methoxy SIM6560.0 methyltrimethoxysilane ethoxy SIM6555.0 methyltriethoxysilane propoxy SIM6579.0 methyltri-n-propoxysilane methoxyalkoxy SIM6585.0 methyltris(methoxyethoxy)silane acetoxy SIM6519.0 methyltriacetoxysilane dimethylamine SIT8712.0 tris(dimethylamino)methylsilane other amine SIT8710.0 tris(cyclohexylamino)methylsilane silazane (NH) oxime SIM6590.0 methyltris(methylethylketoximino)silane

Methyl-SiloxanylSilanes 3 or more Hydrolyzable Groups

Hydrolyzable Groups Product Code Product Name 2 silicon atom compounds chloro SIT8572.6 trimethylsiloxytrichlorosilane ethoxy SIT7095.0 tetraethoxy-1,3-dimethyldisiloxane acetoxy 3 silicon atom compounds chloro methoxy ethoxy chloro oligomeric polysiloxanes chloro methoxy ethoxy amine/silazane silanol selected specialties

SID4236.0 dimethyltetramethoxydisiloxane

PLEASE INQUIRE ABOUT BULK QUANTITIES 22 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:52 PM Page 23

Gelest, Inc.

Fumed silica treated with hexamethyldisilazane floats on water.

2 Hydrolyzable Groups 1 Hydrolyzable Group

Product Code Product Name Product Code Product Name SID4120.0 dimethyldichlorosilane SIT8510.0 trimethylchlorosilane SID4123.0 dimethyldimethoxysilane SIT8566.0 trimethylmethoxysilane SID4121.0 dimethyldiethoxysilane SIT8515.0 trimethylethoxysilane SIT8568.0 trimethyl-n-propoxysilane SIM6492.8 methoxypropoxytrimethylsilane SID4076.0 dimethyldiacetoxysilane SIA0110.0 acetoxytrimethylsilane SIB1072.0 bis(dimethylamino)dimethylsilane SID3605.0 dimethylaminotrimethylsilane SIB1068.0 bis(diethylamino)dimethylsilane SID3398.0 diethylaminotrimethylsilane SIH6102.0 hexamethylcyclotrisilazane SIH6110.0 hexamethyldisilazane

2 Hydrolyzable Groups 1 Hydrolyzable Group

Product Code Product Name Product Code Product Name

SID3372.0 dichlorotetramethyldisiloxane SIT7534.0 tetramethyldiethoxydisiloxane SIP6717.0 pentamethylacetoxydisiloxane

SID3360.0 dichlorohexamethyltrisiloxane SIB1843.0 bis(trimethylsiloxy)methylmethoxysilane SID3394.0 1,5-diethoxyhexamethyltrisiloxane SIB1837.0 bis(trimethylsiloxy) Space Shuttle tiles are treated with DMS-K05 chlorine terminated dimethylethoxysilane to DMS-XM11 methoxy terminated polydimethylsiloxane reduce water absorption. DMS-XE11 ethoxy terminated polydimethylsiloxane DMS-N05 dimethylamine terminated polydimethylsiloxane DMS-S12 silanol terminated polydimethylsiloxane SID4125.0 dimethylethoxysilane SIT8719.5 [tris(trimethylsiloxy)silylethyl]dimethylchlorosilane

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 23 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:52 PM Page 24

Gelest, Inc. Hydrophobic Silane Selection Guide Linear Alkyl-Silanes 3 Hydrolyzable Groups Hydrolyzable Groups Product Code Product Name

C2 hydrophobic, treatment for microporous mineral powders used as fillers for plastics chloro SIE4901.0 ethyltrichlorosilane methoxy SIE4901.4 ethyltrimethoxysilane ethoxy SIE4901.2 ethyltriethoxysilane acetoxy SIE4899.0 ethyltriacetoxysilane C3 hydrophobic, treatment for microporous mineral powders used as fillers for plastics chloro SIP6915.0 propyltrichlorosilane methoxy SIP6918.0 propyltrimethoxysilane ethoxy SIP6917.0 propyltriethoxysilane amine/silazane C4 moderate hydrophobicity, penetrates microporous structures, minimal organic compatibility chloro SIB1982.0 n-butyltrichlorosilane methoxy SIB1988.0 n-butyltrimethoxysilane ethoxy SIB1986.0 n-butyltriethoxysilane amine/silazane C5 moderate hydrophobicity with minimal organic compatibility chloro SIP6720.0 pentyltrichlorosilane ethoxy SIP6720.2 pentyltriethoxysilane C6 moderate hydrophobicity with moderate organic compatibility chloro SIH6167.0 hexyltrichlorosilane methoxy SIH6168.5 hexyltrimethoxysilane ethoxy SIH6167.5 hexyltriethoxysilane C7 moderate hydrophobicity with moderate organic compatibility chloro SIH5846.0 heptyltrichlorosilane C8 hydrophobic with moderate organic compatibility - generally most economical chloro SIO6713.0 octyltrichlorosilane methoxy SIO6715.5 octyltrimethoxysilane ethoxy SIO6715.0 octyltriethoxysilane amine silazane (NH) C10 hydrophobic, concentrates on surface of microporous structures chloro SID2663.0 decyltrichlorosilane ethoxy SID2665.0 decyltriethoxysilane C11 hydrophobic, concentrates on surface of microporous structures, forms SAMs chloro SIU9050.0 undecyltrichlorosilane C12 hydrophobic, concentrates on surface of microporous structures, forms SAMs chloro SID4630.0 dodecyltrichlorosilane ethoxy SID4632.0 dodecyltriethoxysilane C14 hydrophobic, concentrates on surface of microporous structures, forms SAMs chloro SIT7093.0 tetradecyltrichlorosilane C16 forms hydrophobic and oleophilic coatings, liquid a room temperature, forms SAMs chloro SIH5920.0 hexadecyltrichlorosilane methoxy SIH5925.0 hexadecyltrimethoxysilane ethoxy SIH5922.0 hexadecyltriethoxysilane C18 forms hydrophobic and oleophilic coatings allowing full miscibility with parafinic materials, forms SAMs chloro SIO6640.0 octadecyltrichlorosilane methoxy SIO6645.0 octadecyltrimethoxysilane ethoxy SIO6642.0 octadecyltriethoxysilane amine proprietary SIS6952.0/PPI-GC18 Siliclad®/Glassclad® 18 C20 forms hydrophobic and oleophilic coatings, solid at room temperature chloro SIE4661.0 eicosyltrichlorosilane C20-24 forms hydrophobic and oleophilic coatings, solid at room temperature chloro SID4621.0 docosyltrichlorosilane blend ethoxy SID4622.09 docosyltriethoxysilane blend C26-C34 forms hydrophobic and oleophilic coatings, solid at room temperature chloro SIT8048.0 triacontyltrichlorosilane blend

24 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:52 PM Page 25

Gelest, Inc.

2 Hydrolyzable Groups 1 Hydrolyzable Group Product Code Product Name Product Code Product Name

SIE4896.0 ethylmethyldichlorosilane SIE4892.0 ethyldimethylchlorosilane

SIP6912.0 propylmethyldichlorosilane SIP6910.0 propyldimethylchlorosilane SIP6914.0 propylmethyldimethoxysilane SIP6911.0 propyldimethylmethoxysilane

SID4591.0 dipropyltetramethyldisilazane

SIB1934.0 n-butyldimethylchlorosilane

Long chain alkylsilanes are SIB1937.0 n-butyldimethyl(dimethylamino)silane processing additives for crosslinked polyethylene (XLPE) used in wire and cable.

SIH6165.6 hexylmethyldichlorosilane

SIH5845.0 heptylmethyldichlorosilane

SIO6712.0 octylmethyldichlorosilane SIO6711.0 octyldimethylchlorosilane SIO6711.1 octyldimethylmethoxysilane SIO6712.2 octylmethyldiethoxysilane SIO6711.3 octyldimethyl(dimethylamino)silane SID4404.0 dioctyltetramethyldisilazane

SID2662.0 decylmethyldichlorosilane SID2660.0 decyldimethylchlorosilane Surface conductivity of glass substrates is reduced by application of hydropho- bic coatings. Surface arc-tracking is eliminated SID4628.0 dodecylmethyldichlorosilane SID4627.0 dodecyldimethylchlorosilane on fluorescent light SID4629.0 dodecylmethyldiethoxysilane bulbs. Control Glassclad

SIO6625.0 octadecylmethyldichlorosilane SIO6615.0 octadecyldimethylchlorosilane ® 18 SIO6629.0 octadecylmethyldimethoxysilane SIO6618.0 octadecyldimethylmethoxysilane SIO6627.0 octadecylmethyldiethoxysilane SIO6617.0 octadecyldimethyl(dimethylamino)silane

SID4620.0 docosylmethyldichlorosilane blend

SIT8045.0 triacontyldimethylchlorosilane blend

25 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:52 PM Page 26

Gelest, Inc.

Hydrophobic Silane Selection Guide Branched and Cyclic Alkyl-Silanes 3 Hydrolyzable Groups Hydrolyzable Groups Product Code Product Name

C3 chloro

C4 chloro SII6453.0 isobutyltrichlorosilane methoxy SII6453.7 isobutyltrimethoxysilane ethoxy SII6453.5 isobutyltriethoxysilane chloro SIB1985.0 t-butyltrichlorosilane

C5 chloro SIC2555.0 cyclopentyltrichlorosilane methoxy SIC2557.0 cyclopentyltrimethoxysilane

C6 chloro SID4069.0 (3,3-dimethylbutyl)trichlorosilane chloro SIT7906.6 thexyltrichlorosilane chloro SIC2480.0 cyclohexyltrichlorosilane methoxy SIC2482.0 cyclohexyltrimethoxysilane

C7 norbornene chloro SIB0997.0 bicycloheptyltrichlorosilane chloro SIC2470.0 (cyclohexylmethyl)trichlorosilane

C8 chloro SII6457.0 isooctyltrichlorosilane methoxy SII6458.0 isooctyltrimethoxysilane ethoxy SII6453.5 isooctyltriethoxysilane chloro SIC2490.0 cyclooctyltrichlorosilane

C10

C12 SIA0325.0 adamantylethyltrichlorosilane C16 SIT8162.4 7-(trichlorosilylmethyl)pentadecane

C18 silahydrocarbon chloro SID4401.5 (di-n-octylmethylsilyl)ethyltrichlorosilane

C24 chloro

C28 chloro SIT8162.0 13-(trichlorosilylmethyl)heptacosane

PLEASE INQUIRE ABOUT BULK QUANTITIES 26 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:52 PM Page 27

Gelest, Inc.

2 Hydrolyzable Groups 1 Hydrolyzable Group Isobutyltriethoxysilane Product Code Product Name Product Code Product Name solutions in ethanol are applied by spray to protect architecture. SII6463.0 isopropylmethyldichlorosilane SII6462.0 isopropyldimethylchlorosilane

SII6452.5 isobutyldimethylchlorosilane SII6452.8 isobutylmethyldimethoxysilane

SIB1972.2 t-butylmethyldichlorosilane SIB1935.0 t-butyldimethylchlorosilane

SID4065.0 (3,3-dimethylbutyl)dimethylchlorosilane SIT7906.0 thexyldimethylchlorosilane SIC2468.0 cyclohexylmethyldichlorosilane SIC2465.0 cyclohexyldimethylchlorosilane SIC2469.0 cyclohexylmethyldimethoxysilane

SIB0994.0 bicycloheptyldimethylchlorosilane

SII6456.6 isooctyldimethylchlorosilane

SID4074.0 (dimethylchlorosilyl)methylpinane

SID4401.0 (di-n-octylmethylsilyl)ethyldimethylchlorosilane

SIC2266.5 11-(chlorodimethylsilylmethyl)tricosane

SIC2266.0 13-(chlorodimethylsilylmethyl)heptacosane

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 27 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:52 PM Page 28

Gelest, Inc. Hydrophobic Silane Selection Guide Phenyl- and Phenylalkyl-Silanes 3 Hydrolyzable Groups Hydrolyzable Groups Product Code Product Name

spacer atoms = 0 Moderate hydrophobicity, hydrolysates stable to 325° C; UV, radiation resistant chloro SIP6810.0 phenyltrichlorosilane methoxy SIP6822.0 phenyltrimethoxysilane ethoxy SIP6821.0 phenyltriethoxysilane acetoxy SIP6790.0 phenyltriacetoxysilane oxime/amine SIP6826.5 phenyltris(methylethylketoximino)silane spacer atoms = 1 chloro SIB0970.0 benzyltrichlorosilane ethoxy SIB0971.0 benzyltriethoxysilane chloro SIP6813.0 1-phenyl-1-trichlorosilylbutane spacer atoms = 2 More hydrophobic, acid resistant than phenyl chloro SIP6722.0 phenethyltrichlorosilane methoxy SIP6722.6 phenethyltrimethoxysilane amine/silazane spacer atoms = 3 chloro SIP6744.6 (3-phenylpropyl)trichlorosilane spacer atoms = 4 chloro SIP6724.9 4-phenylbutyltrichlorosilane chloro SIP6723.3 phenoxypropyltrichlorosilane spacer atoms > 4 chloro SIP6736.4 phenoxyundecyltrichlorosilane chloro SIP6723.4 phenylhexyltrichlorosilane Substituted Phenyl- and Phenylalkyl-Silanes

spacer atoms = 0 More hydrophobic than phenyl, peroxide crosslinkable chloro SIT8040.0 p-tolyltrichlorosilane methoxy SIT8042.0 p-tolyltrimethoxysilane spacer atoms = 2 Greater compatibility with styrenics, acrylics methyl/chloro ethyl/methoxy SIE4897.5 ethylphenethyltrimethoxysilane t-butyl/chloro SIB1973.0 p-(t-butyl)phenethyltrichlorosilane spacer atoms = 3 chloro SIM6492.5 3-(p-methoxyphenyl)propyltrichlorosilane

Napthyl-Silanes Form high refractive index coatings

methoxy SIN6597.0 1-napthyltrimethoxysilane chloro SIN6596.0 (1-napthylmethyl)trichlorosilane Specialty Aromatic- Silanes

spacer atoms = 0 chloro spacer atoms = 4 chloro

PLEASE INQUIRE ABOUT BULK QUANTITIES 28 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:52 PM Page 29

Gelest, Inc.

2 Hydrolyzable Groups 1 Hydrolyzable Group Product Code Product Name Product Code Product Name

SIP6738.0 phenylmethyldichlorosilane SIP6728.0 phenyldimethylchlorosilane SIP6740.0 phenylmethyldimethoxysilane SIP6739.0 phenylmethyldiethoxysilane SIP6728.4 phenyldimethylethoxysilane

SIP6736.8 phenylmethylbis(dimethylamino)silane

SIP6738.5 1-phenyl-1-methyldichlorosilylbutane SIB0962.0 benzyldimethylchlorosilane

SIP6721.5 phenethylmethyldichlorosilane SP6721.0 phenethyldimethylchlorosilane

SIM6512.5 (2-methyl-2-phenethyl) methydlichlorosilane SIP6721.2 phenethyldimethyl(dimethylamino)silane

SIP6744.0 (3-phenylpropyl)methyldichlorosilane SIP6743.0 (3-phenylpropyl)dimethylchlorosilane

SIP6724.8 4-phenylbutylmethyldichlorosilane SIP6724.7 4-phenylbutyldimethylchlorosilane SIP6723.25 phenoxypropylmethyldichlorosilane SIP6723.2 phenoxypropyldimethylchlorosilane

SIP6736.3 (6-phenylhexyl)dimethylchlorosilane

SIT8035.0 p-tolylmethydichlorosilane SIT8030.0 p-tolyldimethylchlorosilane

SIM6511.0 (p-methylphenethyl)methyldichlorosilane

SIB1972.5 p-(t-butyl)phenethyldimethylchlorosilane

SIM6492.4 3-(p-methoxyphenyl)propylmethyldichlorosilane

SIP6723.0 m-phenoxyphenyldimethylchlorosilane

SIN6598.0 p-nonylphenoxypropyldimethylchlorosilane

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 29 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:52 PM Page 30

Gelest, Inc. Hydrophobic Silane Selection Guide Fluorinated Alkyl-Silanes - linear 3 Hydrolyzable Groups Hydrolyzable Groups Product Code Product Name

C3 Moderately polar hydrophobic coating chloro SIT8371.0 (3,3,3-trifluoropropyl)trichlorosilane methoxy SIT8372.0 (3,3,3-trifluoropropyl)trimethoxysilane amine/silazane C6 Hydrophobic films chloro SIN6597.6 nonafluorohexyltrichlorosilane methoxy SIN6597.7 nonafluorohexyltrimethoxysilane ethoxy SIN6597.65 nonafluorohexyltriethoxysilane amino/silazane SIN6597.4 nonafluorohexyltris(dimethylamino)silane C8 Hydrophobic, oleophobic films chloro SIT8174.0 (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane methoxy SIT8176.0 (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane ethoxy SIT8175.0 (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane C10 Forms oleophobic films with extremely low surface energy chloro SIH5841.0 (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorosilane methoxy SIH5841.5 (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane ethoxy SIH5841.2 (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxysilane C12 chloro SIH5840.25 heneicocyl-1,1,2,2-tetrahydrodecyltrichlorosilane

Fluorinated Alkyl-Silanes - branched 1 x 3 fluorinated carbons chloro SIH5842.0 heptafluoroisopropoxytrichlorosilane methoxy SIH5842.2 heptafluoroisopropoxytrimethoxysilane 2 x 4 fluorinated carbons chloro SIB1706.0 bis(nonafluorohexyldimethylsiloxy)methyl- silylethyldimethylchlorosilane 2 x 6 fluorinated carbons chloro SIT8176.3 tridecafluoro-2-(tridecafluorohexyl)decyltrichlorosilane DiAlkyl Silanes 2 Hydrolyzable Groups Highest Carbon # Next Carbon # Hydrolyzable Groups Product Code Product Name C2 C2 chloro SID3402.0 diethyldichlorosilane ethoxy SID3404.0 diethyldiethoxysilane C3 C3 chloro SID3537.0 diisopropyldichlorosilane methoxy SID3538,0 diisopropyldimethoxysilane C4 C4 chloro SID3203.0 di-n-butyldichlorosilane methoxy SID3214.0 di-n-butyldimethoxysilane methoxy SID3530.0 diisobutyldimethoxysilane ethoxy SID3528.0 diisobutyldiethoxysilane C4 C3 methoxy SII6452.6 isobutylisopropyldimethoxysilane C5 C5 chloro SID3390.0 dicyclopentyldichlorosilane methoxy SID3391.0 dicyclopentyldimethoxysilane C6 C6 chloro SID3510.0 di-n-hexyldichlorosilane chloro SID3382.0 dicyclohexyldichlorosilane C8 C8 chloro SID4400.0 di-n-octyldichlorosilane methoxy SID4400.4 di-n-octyldimethoxysilane 30 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:53 PM Page 31

Gelest, Inc.

2 Hydrolyzable Groups 1 Hydrolyzable Group Product Code Product Name Product Code Product Name

SIT8369.0 (3,3,3-trifluoropropyl)methyldichlorosilane SIT8364.0 (3,3,3-trifluoropropyl)dimethylchlorosilane SIT8370.0 (3,3,3-trifluoropropyl)methyldimethoxysilane SIB1828.4 bis(trifluoropropyl)tetramethyldisilazane

SIN6597.5 nonafluorohexylmethyldichlorosilane SIN6597.3 nonafluorohexyldimethylchlorosilane

SIN6597.4

SIT8172.0 (tridecafluoro-1,1,2,2-tetrahydrooctyl)methyldichlorosilane SIT8170.0 (tridecafluoro-1,1,2,2-tetrahydrooctyl)dimethylchlorosilane

SH5840.6 (heptadecafluoro-1,1,2,2-tetrahydrodecyl)methyldichlorosilane SIH5840.4 (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethylchlorosilane

Pigments treated with hydrophobic silanes resist agglomeration in highly polar vehicle and film-forming compositions such as those used in nail polish.

31 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:53 PM Page 32

Gelest, Inc. Hydrophobic Silane Properties Conventional Surface Bonding

name MW bp/mm (mp) D 20 n 20 4 D E6( (02FBPQFD6@2F5Q9E69(A2   AC "# "#        264'0$6&A)5')A) "$6 6$ 3fUsbpicht$„0A#„3C

05BEc HUpirprYssurY‰$gg 5Q1DB9QF60E2AE6F6H6FQ$$hirYUWtcihwctbwUtYruhXYrhYutrUfWihXctcihs S!!T FE0( 20 5@6E$P a 1 a 1# ea 1# E6( (1(@(AFQ92F5Q9FD6059BDBE69(A2 #!!  A !C  

05#0fEc 0ihtUchsUpprixcgUtYfy5csigYr 3fUsbpicht$„0A„3C 3irgsscfcWUVihXYXpbUsYs`irrYvYrsYpbUsYWbrigUtiarUpby QUhaEEUhX4cfpchD8 UCS "PGT! 5Q1DB9QF60E2AE6F6H6FQ$"$rYUWtsrUpcXfywctbgicsturYwUtYrpritcWsifvYhts S!"T FE0( 20 "! 5@6E$P a 1! a 1# E6)#  )2ARQ916@2F5Q9059BDBE69(A2 "! !  ## 

0#50fEc 3fUsbpicht$!„0A „3C 5Q1DB9QF60E2AE6F6H6FQ$"$rYUWtsrUpcXfywctbgicsturYwUtYrpritcWsifvYhts S"T FE0( 5@6E$P a 1  a 1" E6)#! )2ARQ9FD6059BDBE69(A2 "  "" !

0!5!0fEc 3fUsbpicht$"!„0A"#„3C 1cpifYgigYht$!" FBP606FQ$irUfrUt91$"gaea 5Q1DB9QF60E2AE6F6H6FQ$"$rYUWtsrUpcXfywctbgicsturYwUtYrpritcWsifvYhts S!!T FE0( 20# 5@6E$P a 1 a 1  E6)#! )2ARQ9FD62F5BPQE69(A2  " #"  " 

05BEc 3fUsbpicht$!„0A „3C 5Q1DB9QF60E2AE6F6H6FQ$!$rYUWtssfiwfywctbgicsturYwUtYr S###!T FE0( 20#" 5@6E$P a 1 a 1 " E6)## A)60Q09B52CFQ9C16@2F5Q9059BDBE69(A2 ""!!  ##

0#5!0fEc 3fUsbpicht$"!„0A"#„3C 5Q1DB9QF60E2AE6F6H6FQ$"$rYUWtsrUpcXfywctbgicsturYwUtYrpritcWsifvYhts S! T 5@6E$P a 1! a 1 E6)##! A)60Q09B52CFQ9CFD6059BDBE69(A2 #    !" ##

0!50fEc 3fUsbpicht$"„0A"„3C 5Q1DB9QF60E2AE6F6H6FQ$"$rYUWtsrUpcXfywctbgicsturYwUtYrpritcWsifvYhts S"##T FE0( 20 5@6E$P a 1 a 1  E6) " )6EA162F5Q9(@6ABC16@2F5Q9E69(A2  # " 

05 AEc 3fUsbpicht$„0A#„3C EcfyfUtYsXcUgchYstiWyWfcWXcUgchiscfUhYs EWbwUrt€2YtUf( 2YI "PGT # EYYUfsiE61 5Q1DB9QF60E2AE6F6H6FQ$"$rYUWtsrUpcXfywctbgicsturYwUtYrpritcWsifvYhts S ##T FE0( 20  5@6E$P a 1  E6)! )6EA16@2F5Q9(@6ABC16@2F5Q9E69(A2   "# A#"C "  # 

0 5"AEc 3fUsbpicht$„0A!„3C 0iupfYsscfUhiftYrgchUtYXscfixUhYs EYYUfsiE6)" 5Q1DB9QF60E2AE6F6H6FQ$"$rYUWtsrUpcXfywctbgicsturYwUtYrpritcWsifvYhts S! ""#T FE0( 20 5@6E$P a 1 a 1! E6)!  S)6EAABA(39GBDB52PQ916@2F5Q9E69BPQC@2F5Q9T "! "   !  E69Q92F5Q916@2F5Q9059BDBE69(A2#5

050f3"BEc 3irgssYf`WfYUhchasur`UWYs 5Q1DB9QF60E2AE6F6H6FQ$!$rYUWtssfiwfywctbgicsturYwUtYr 5@6E$P a 1

PLEASE INQUIRE ABOUT BULK QUANTITIES 32 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:53 PM Page 33

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D       5 ! ; $      !" &+69=(%*,4 5># 5>

#$ %

&'()%*+,-. /&(01%*2 +2-*, H Y D R O P B I C #  34 54 )-+0,6 6&(7&8 7%,9 :(%6,')-;7+,-) G !  5 H # #  5$ ! 4    < $2 D $$  5$  <#  55 5 5   $$5  !       

##&% 3+=() =)-66')- 5>4  :: ,-)%0+&&8 9%*.-)-. =)(,-0,%*2 2)('= ?() .%(&6 #  34 4 )-+0,6 )+=%.&8 7%,9 :(%6,')- 7+,-) =)(,%0 6(&@-*,6 G5$ !H 4   < 2 D!$$  $  <<    ; 5 $           

#  % #  34 4 *( 6%2*%?%0+*, )-+0,%(* 7%,9 +A'-('6 686,-:6 G55 ! H 4   < 2 D$$  $

  # $  5 ;    $            &+69=(%*,4 ># $>

# % <#4 ()+& )+, $4  $ :2;12 3-)6+,%&- /&(01%*2 +2-*, B4 3(&  = C 3(&  = C 3(& $ = $C 3(&  =  #  34 54 )-+0,6 6&(7&8 7%,9 :(%6,')-;7+,-) G$  ! H # #  ! 5 4   < 2 D$$ $$2 D$$ 12 D$$$ 5$

 # 5 $  $ ;  $ $!!   $         &+69=(%*,4  ># 5>

# % %&8&+,%(* )-+2-*, ?() =)-=+)%*2 .-)%@+,%@-6 (? +:%*( +0%.6  ,+&&%*2  -, +&   ! !  "  #  34 4 )-+0,6 )+=%.&8 7%,9 :(%6,')- 7+,-) =)(,%0 6(&@-*,6 G $ H # #  5 $ ! 4  < 2 D$$ $$2 D!$$ 12 D $$$ !   # <  $   $  ;  $! <  #(*,+%*6 %6(:-)6

#5% 9+6- 0(&&+=6- )-6%6,+*, /(*.-. =9+6- #  34 54 )-+0,6 6&(7&8 7%,9 :(%6,')-;7+,-) 4    < $2 D!$$ ! $ * #  $5   $5  $

##&% &+69=(%*,4 !># $> ():6 /(*.-. =9+6-6 ?() # #  34 4 )-+0,6 )+=%.&8 7%,9 :(%6,')- 7+,-) =)(,%0 6(&@-*,6 G$$$ $ H # 4   < 2 D $$ $$2 D $$$ ! $ , #  $5   5 !$ $ $

##&% &+69=(%*,4 ># 5>        ',(%2*%,%(* ,-:=-)+,')-4 $E# 3+=() =)-66')- $$>4 5 :: %&8&+,%(* )-+2-*, .-)%@+,%@-6 )-6%6,+*, ,( F)%2*+).6 +&18& &%,9%': 0(:=('*.6 -,0 &(01%*2 +2-*, 7%.-&8 '6-. %* =)(6,+2&+*.%* 68*,9-6%6 B4 3(& = 5 = 5C 3(&  = 5 C 3(&  = 5C 3(&  = C 3(& ! = 55C 3(& $ = C 3(&  = C 3(&  =   #  34 4 )-+0,6 )+=%.&8 7%,9 :(%6,')- 7+,-) =)(,%0 6(&@-*,6 G  H # #   $  4  < 2 D $$ $$2 D5$$ 12 D5$$$ ! 5$ *     !  5 ! ;  $55  

# % &+69=(%*,4 ># 5!> %29&8 )-+0,%@- )-+2-*, ?() /(*.-. =9+6-6 7%,9(', +0%.%0 /8=)(.'0, #  34 54 )-+0,6 6&(7&8 7%,9 :(%6,')-;7+,-) G  5 H # 4  < $2 D $$ $2 D$$ !5$ , <  !$  5 ; $ $5  !

#!% #  34 54 )-+0,6 6&(7&8 7%,9 :(%6,')-;7+,-) G$! ! H 4   < $2 D$$

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 33 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:53 PM Page 34

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D E6)#! h)GFQ9@2F5Q916059BDBE69(A2 ! "  

050fEc 3fUsbpicht$ „0 6" „37 5Q1DB9QF60 E2AE6F6H6FQ$ "$ rYUWts rUpcXfy wctb gicsturY wUtYr pritcW sifvYhts S"!T FE0( 20  5@6E$ P a @" E6)#! t)GFQ9@2F5Q916059BDBE69(A2 !  6""#7

050fEc 3fUsbpicht$  „0 6!#„37 5Q1DB9QF60 E2AE6F6H6FQ$ "$ rYUWts rUpcXfy wctb gicsturY wUtYr pritcW sifvYhts S"!"!T FE0( 20  5@6E$ P a @"# E6)#! p6t)GFQ97C52A2F5Q916@2F5Q9059BDBE69(A2 "!    #

050fEc 0ihtUchs : gYtU csigYr 5Q1DB9QF60 E2AE6F6H6FQ$ "$ rYUWts rUpcXfy wctb gicsturY wUtYr pritcW sifvYhts S#!T 5@6E$ P a @" E6)#! p6t)GFQ97C52A2F5Q9FD6059BDBE69(A2 #! #   

05!0fEc @cxYX  csigYrs 3fUsbpicht$ "„0 6 „37 3ir VihXYX pbUsY 5C90 5Q1DB9QF60 E2AE6F6H6FQ$ "$ rYUWts rUpcXfy wctb gicsturY wUtYr pritcW sifvYhts S#T 5@6E$ P a @!" E6)#! )GFQ9CB9Q616@2F5Q9E69BP(AQ972F5Q9 " #  FD62F5BPQE69(A2 tYWb#

" @YEcB ariups WihtUchs csigYrs

5Q1DB9QF60 E2AE6F6H6FQ$ !$ rYUWts sfiwfy wctb gicsturYwUtYr 5@6E$ P a @" E6)#" h)GFQ9FD6059BDBE69(A2 #   "  

05#0fEc 3fUsbpicht$ „0 6„37 HUpir prYssurY „$  gg 5Q1DB9QF60 E2AE6F6H6FQ$ "$ rYUWts rUpcXfy wctb gicsturY wUtYr pritcW sifvYhts S!"T FE0( 20 " 5@6E$ P a @! a @ E6)#" t)GFQ9FD6059BDBE69(A2 #  6#!7  " 

05#0fEc 3fUsbpicht$ „0 6„37 3irgs scfUhYtrcif 5Q1DB9QF60 E2AE6F6H6FQ$ "$ rYUWts rUpcXfy wctb gicsturY wUtYr pritcW sifvYhts S"!!#T FE0( 20 #! 5@6E$ P a @ a @  E6)#"  h)GFQ9FD62F5BPQE69(A2 " # """ 

05BEc 5Q1DB9QF60 E2AE6F6H6FQ$ !$ rYUWts sfiwfy wctb gicsturYwUtYr S!"##T 5@6E$ P a @  E6)#"" h)GFQ9FD6@2F5BPQE69(A2 !"   # #!#

0!5"BEc 3fUsbpicht$ #„0 6„37 5Q1DB9QF60 E2AE6F6H6FQ$ !$ rYUWts sfiwfy wctb gicsturYwUtYr S !!"T FE0( 20 #  5@6E$ P a @ a @  E6)#"# t)GFQ9FD6@2F5BPQE69(A2 !"  # #

0!5"BEc 5Q1DB9QF60 E2AE6F6H6FQ$ !$ rYUWts sfiwfy wctb gicsturYwUtYr S"##T 5@6E$ P a @ E60  6059BDB16@2F5Q9E69Q9@2F5Q9752CF( "!!    ""    0BE(A2 #:

05 0fEc 3irgs byXripbiVcW VihXYX pbUsYs 5Q1DB9QF60 E2AE6F6H6FQ$ "$ rYUWts rUpcXfy wctb gicsturY wUtYr pritcW sifvYhts S#T FE0( 5@6E$ P a @!

PLEASE INQUIRE ABOUT BULK QUANTITIES 34 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:53 PM Page 35

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D E60   059BDB16@2F5Q9E69Q9@2F5Q9FD60BE(A2 ! !%%! ""! ! 

0 50fEc tYWb#%WihtUchs%+%csigYrs 3irgs%sYf`UssYgVfYX%ifYipbcfcW%gihifUyYrs

2gpfiyYX%Us%VihXYX%pbUsY%ch%5C90 H Y D R O P B I C EYY%Ufsi%E61 5Q1DB9QF60%E2AE6F6H6FQ$%!$%rYUWts%sfiwfy%wctb%gicsturYwUtYr 5@6E$%P a ? E60  0Q09B52PQ916@2F5Q9059BDBE69(A2 ! ! %% #  

0"5!0fEc 3fUsbpicht$% „0% „3 EcfUhY%VfiWecha%UaYht%wctb%aiiX%rYscstUhWY%ti%4rcahUrX%rYUaYhts 5Q1DB9QF60%E2AE6F6H6FQ$%"$%rYUWts%rUpcXfy%wctb%gicsturY%wUtYr%pritcW%sifvYhts S!" ! T 5@6E$%P a ?  a ?#

E60 "        0Q09B52PQ9@2F5Q916059BDBE69(A2 #!" "%% # !

0!50fEc 3fUsbpicht$% „0% „3 5Q1DB9QF60%E2AE6F6H6FQ$%"$%rYUWts%rUpcXfy%wctb%gicsturY%wUtYr%pritcW%sifvYhts S!"!T FE0( 20% #  5@6E$%P a ? ea ? E60 # 0Q09B52PQ9@2F5Q916@2F5BPQE69(A2 "" # #!        

0#5BEc 3fUsbpicht$% „0% „3 HUpir%prYssurY%„$%%gg FBP606FQ$%%irUf%rUt%91$%gaea 1ihir%`ir%pifyifY`ch%pifygYrc€Utcih 5Q1DB9QF60%E2AE6F6H6FQ$%!$%rYUWts%sfiwfy%wctb%gicsturYwUtYr S!"  T FE0( 5@6E$%P a ? a ?! ea ?#  E60! 0Q09B52PQ9@2F5Q9FD6059BDBE69(A2   #"%%

0!50fEc 5Q1DB9QF60%E2AE6F6H6FQ$%"$%rYUWts%rUpcXfy%wctb%gicsturY%wUtYr%pritcW%sifvYhts S""" T FE0( 20% ! 5@6E$%P a ? E60" 0Q09B52PQ9FD6059BDBE69(A2 !  #%%  !!

0 50fEc 3fUsbpicht$%#„0% # „3 6htYrgYXcUtY%`ir%gYftpriWYssUVfY%scfsYsqucixUhYscfixUhYs 2gpfiyYX%ch%sifcXpbUsY%YxtrUWtcih%Wifughs %9cWbtYhbUh%7%Yt%Uf%0CEYVTVSGEbSG`%%% %Fcppchs%)%1CabYG%%%! 5Q1DB9QF60%E2AE6F6H6FQ$%"$%rYUWts%rUpcXfy%wctb%gicsturY%wUtYr%pritcW%sifvYhts S#"T FE0( 20% # 5@6E$%P a ? a ? E60" 0Q09B52PQ9FD6@2F5BPQE69(A2  !#

0#5BEc 5Q1DB9QF60%E2AE6F6H6FQ$%!$%rYUWts%sfiwfy%wctb%gicsturYwUtYr S!" T 5@6E$%P a ? a ?  E60# 0Q09BB0FQ9FD6059BDBE69(A2%#+   "#%% #

0"50fEc 5Q1DB9QF60%E2AE6F6H6FQ$%"$%rYUWts%rUpcXfy%wctb%gicsturY%wUtYr%pritcW%sifvYhts S"##T 5@6E$%P a ? a ?  E60 0Q09BC2AFQ9FD6059BDBE69(A2 ! !"#  !

05#0fEc 3fUsbpicht$%!!„0% !„3 5Q1DB9QF60%E2AE6F6H6FQ$%"$%rYUWts%rUpcXfy%wctb%gicsturY%wUtYr%pritcW%sifvYhts S!#T FE0( 20%"  5@6E$%P a ? a ?  E60! 0Q09BC2AFQ9FD6@2F5BPQE69(A2 # !%% ##   

0"5"BEc 3fUsbpicht$%„0% #„3 5Q1DB9QF60%E2AE6F6H6FQ$%!$%rYUWts%sfiwfy%wctb%gicsturYwUtYr S"!!T 5@6E$%P a ? a ?  E61  h120Q916@2F5Q9059BDBE69(A2 "" #"%% " 

05!0fEc 3fUsbpicht$%!„0% !#„3 5Q1DB9QF60%E2AE6F6H6FQ$%"$%rYUWts%rUpcXfy%wctb%gicsturY%wUtYr%pritcW%sifvYhts S"!#T FE0( 20%! " 5@6E$%P a ?" a ? E61  h120Q9@2F5Q916059BDBE69(A2  %% #  #

050fEc 3fUsbpicht$%„0% "„3 5Q1DB9QF60%E2AE6F6H6FQ$%"$%rYUWts%rUpcXfy%wctb%gicsturY%wUtYr%pritcW%sifvYhts S"""T FE0( 20%#  5@6E$%P a ?

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 35 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:53 PM Page 36

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D

      5   

   B"%*&, $ E : CE :BD      !"#$% "&'()$*+,%$- !.)"$! .& ,$#%,/! $% @4  A      0    1 2 34  2 3    1    5 4 

      !"#$%%,)()$*+,%$- !5)"$! @4  4A  4  0   1 2 3  2 3    67    44 

  B"%*&, $ : C:BD      !"#$% "&'()$*+,%$- !.)"$! .& ,$#%,/! $% @4  A   0    1  2 3  2 3   670 1  4 5 

  B"%*&, $  : C:BD      !"#$%%,)()$*+,%$- !5)"$! @  A   0    1 2 3 4 .  67 0 8  5  

 B"%*&, $ : C:BD      !"#$%%,)()$*+,%$- !5)"$! @  A 0    1 2 3   2 3    .   10 1 .$!#* 4   C D    

  B"%*&, $ : C4:BD /"& 9#"5+,! "&, & !%%- !. : ++      !"#$% "&'()$*+,%$- !.)"$! .& ,$#%,/! $% @  A       0    1 2 3   2 3    ;   .4<      

  %,+! #+=$- ! B"%*&, $  : C :BD "&, & !%%- !. : ++ 0, ,+! >, *2* !> "#$/! '!= !% %      !"#$% "&'()$*+,%$- !.)"$! .& ,$#%,/! $% @  A      0    1 2 34  .   0 1    C D  4         

  B"%*&, $ : C4:BD "&, & !%%- !.: ++ ,& ,$!#$,  !"2! $      !"#$% "&'()$*+,%$- !.)"$! .& ,$#%,/! $% @   A   4   0    1 2 3  2 3 92 34      1   5   

  B"%*&, $ 4: C :BD      !"#$% "&'()$*+,%$- !.)"$! .& ,$#%,/! $% @   A 0    1 2 3 4    ;      5 

   B"%*&, $ : C:BD      !"#$% "&'()$*+,%$- !.)"$! .& ,$#%,/! $% @4  A 0    1  2 34  2 3 4   ; 0 1   5  

 B"%*&, $  : C:BD +&,(!' & ,&(! !&,(+! ?"$,      !"#$%%,)()$*+,%$- !5)"$! @44  A   0    1  2 3  2 34 4 .  1 10 1 44  5  4 4

       !"#$%%,)()$*+,%$- !5)"$! @4  A 0    1 2 3

PLEASE INQUIRE ABOUT BULK QUANTITIES 36 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:53 PM Page 37

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D 

     $ $             /('573 -,"# ?#  ?/

    !"##$#%&'()! (*

(+(', -# *'.*-, H Y D R O P B I C /0/"#1 (#2#3#4#1 (#2#3#4#1 (#2#3#4#1 (#2#3#  #  1 "#"# *'&,5#5( 6(+#6,7#! 5,8 *)6',* G$ $H  #$$ "#$$$9 . :  . :  %. :         $     

  ( /('573 -,"#?# ?/ 7* !'(#& -;8&,<,+"## #=)!> 9 "## '(# ',2# "#2 #!.)%. 3 (*#! !*-,"## 1'3 #3 *558 *"#"# #!! 8 '&*#,*-5 -"## #!)!  <'3"##  #%&'()! (*  #  1 "#"# *'&,5# '3;(+#6,7#! 5,8 *2#6',* 2#3 , (<*-,5 G$$H  #$ $ "#$$$9 . :  . :     9     

   /('573 -,"#?#  ?/ 1'3 #3 *558 *2#?"# #!!  #  1 "#"# *'&,5#5( 6(+#6,7#! 5,8 *)6',* G $$H  #$ $ "#$$$9  . :  . :   $-$ 9   $#)#  

 ( /('573 -,"#?#  ?/  #  1 "#"# *'&,5# '3;(+#6,7#! 5,8 *2#6',* 2#3 , (<*-,5 G $$H  #$ $ "#$$$9  . :  . :  @A    $  

 ( /('573 -,"#?#  ?/  #  1 "#"# *'&,5# '3;(+#6,7#! 5,8 *2#6',* 2#3 , (<*-,5 G$$H "#$$$9 . :  @A  9    

   #  1 "#"# *'&,5#5( 6(+#6,7#! 5,8 *)6',* G$$H "#$$$9  . :   @A  9    #)#  

  /('573 -,"# ?# ?/ -,* !*;',*# #;5 B8,+(5('-*; (2#'#(C8;#& +5,'( !3( +*;#-#3 (+ (*-#3 (+!* D', -  #  1 "#"# *'&,5#5( 6(+#6,7#! 5,8 *)6',* G $$H  "#$$$9  . :   . :   EE   $#)#   

 ( /('573 -,"#?#  ?/        / !5#B5 B( &%*;# #,*,7* *;#'(& 7 (52 A5*;#'5#,*,7* #-# -.$&( 5-.$!*,',7*55# # *'&, - #@ '; ;2##*,#'(#   ##2# # 8,&7-5 -2#F#*,#'(#   ##2# # <'-52#E##*,#'(# #2#2#   #  1 "#"# *'&,5# '3;(+#6,7#! 5,8 *2#6',* 2#3 , (<*-,5 G$$H "#$$$9  . :  . : %. :2 

EE 9  $#)#         

   /('573 -,"#?#  ?/  &','(+5,# #$ (*-#3 (+!* D', - #**2##*,#'(#A#E',*-,#222#  #  1 "#"# *'&,5#5( 6(+#6,7#! 5,8 *)6',* G $$ H  "#$$$9  . :  . : %. :   2$ 9E   9   $#)#   

   #  1 "#"# *'&,5#5( 6(+#6,7#! 5,8 *)6',* "#$$$9 . :

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 37 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:53 PM Page 38

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D        :      605#0 3$16 0$6&A)5') 1 0'1$ M& -1!)5+"# C# CM

   !"## #$% &'()&*        *&*%+ *&,#-&,& +*-#*./ +)0 ,20)3,()/!-#5#!0)-+ 4& 525#-,5+1*--  +0)54*0#-&,& +)5#0* 4*5+#+1 5#6#-&,& +*-# (5)# %2-   &$,& (5)+0(*+1,&-& 5*-# 0*#/-*2#5#+1*#-,5+1*--#)7#!*5+ (*+15/(#- &+-   # 5$** # #*+# & #( T"PGT5VE## #  #81&( 5 #9 #"PGT!GY## #:  #9);5*$ # #*+# & #5fUaPG`Q`# # ### # <"#"#0* %+-#-&)=&,#=+1#()-+/0*'= +*0 G:  H  #:   "#   > 4 ?:  4 ?  $4 ?    @ - @A   #B   :#'# P  :  

  M& -1!)5+"#C# CM < !)0#!0*--/0* #C"##(( >"#)0 � + #"##(4'$4 1 5#*3+*52*0#7)0#-&%)5*- /+)45+)5#+*(!*0 +/0*"##D # <"#:"#0* %+-#0 !2&,#=+1#()-+/0* #= +*0 #!0)+%#-)& *5+- G : H  #:  : "#   > 4 ?  4 ?      @A  : :   :   1$2&$@A)#'0$6&A)"&)2425') 1$ M& -1!)5+"#:C# CM

:& @&)%$54# 4*5+ # <"#:"#0* %+-#0 !2&,#=+1#()-+/0* #= +*0 #!0)+%#-)& *5+- G  H   "#   > 4 ?  4 ?      @A    :      1$2&$@A)64'"&)2425') 1$

& # <"#:"#0* %+-#0 !2&,#=+1#()-+/0* #= +*0 #!0)+%#-)& *5+- G  H "#   > 4 ?:    E    :  #'#    :

& M& -1!)5+"#C# :CM

F F F GH"##  6#IB#)!+% &#!/0+, %*+,&*5%#2*0 + *#7)0(-#%10 &#!)&,(*0#(*(J0 5*#+1 +#0*-)& *-# (5)# %2-   #)$ # #*+# & #0CRYVTVS"PGT4CWQF"VTTbU ## # # <"#:"#0* %+-#0 !2&,#=+1#()-+/0* #= +*0 #!0)+%#-)& *5+- G:  H  #:   "#   > 4 ?             K  # B#5#1*3 5*   E0( 0&,#+0(*0# 52#+*+0 (*0 M& -1!)5+"#C# CM ,20)!1)J%#-/07 %*#+0* +(*5+#7)0#-&% # <"#"#0* %+-#-&)=&,#=+1#()-+/0*'= +*0  "#   > 4 ?   $4 ?    >         

 M& -1!)5+"#C# CM * 4*5+#7)0#+1*#!0*! 0 +)5#)7#%- 2)&-# 52#%)0+%)-+*0)2-   #9*&&*, # #L #"PYVTCaVIY## # MNM"#<)& # #! # # <"#"#0* %+-#-&)=&,#=+1#()-+/0*'= +*0 G:  H  #:   "#   > 4 ?  4 ?:              

& M& -1!)5+"# C# CM <-%)-+,"## #%+ >"##1� + #"##!!(' /07 %*#+*5-)5"## #( '( /+)45+)5#+*(!*0 +/0*"##D  !"##: #$% &'()&* M& (( J&+,#&(+"##   B        %)(J"## #$% &'()&* 0+% &#+*(!*0 +/0*"## C < !)0#!0*--/0* #C"##(( 0+% &#!0*--/0*"## # +( )*77%*5+#)7#+1*0( &#*3! 5-)5"## #3#  !*%7%#1* +"# #% &'4'D     M/52 (*5+ &#()5)(*0#7)0#-&%)5*- (!&),*2#5#+1*#+*+1*054#)7#+=)#)&*75-#7)0#+1*#%0)--#(*+ +1*-- %)/!&54#-+*!#5#+1*#-,5+1*--#)7#++*5)&#   #< 5#2*#O*41* #E #*+# & #2YI)Gaa## # MNM"#<)& # #!#6#<)& # #!#: # <"#:"#0* %+-#0 !2&,#=+1#()-+/0* #= +*0 #!0)+%#-)& *5+- G : H  #   "#   > 4 ?  $4 ?:  :$4 ? F -g#4/5/0VYg"A)/5/0EVUaCQUGYYGXbQYGF/UVaQUESbFGF

PLEASE INQUIRE ABOUT BULK QUANTITIES 38 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:53 PM Page 39

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D  

      3 C3D           

  E("-*/ 2#%3:C:ED  ! "#  !

     H Y D R O P B I C    $ %&%' ()#"'(* !+, #-./ "#0' ,(# '*'/# )"/1 2#" F3&3G  33 %3334 5 6  5 6&  &95 6 7              4 & & 3 C3D  &  &    E("- / 2#%: :E    * C D        $ ")/" #+% )# 4 %/'('(#/%.5895 $(*/'*' ""0' :%..  ;/'.%9)(8./  */ ./. 2#%   1(*% &9)(8./ / ;; ) 2#/;#- '.( <*(2" /2% <3  )/.=%39)(8./ +!'/*-/= )"0';() #' (#. 2#(2!'  (" (5 2#    $ %%' ()#""/,+, #-./ "#0' 8,(# ' F&33G  33 %3334 5 6  95 6  95 6      4    & C3&D  &  &    /2#( 2". #-(2/ E("- / 2#%3&: &:E    * C D        $ ")/" #+>% )# 4 %/'('(#%?.5895 $(*/'*' ""0' :%.. 0#/ 52 # /2# .* '(#0' %> / ;; ) 2#/;#- '.( <*(2" /2% <3  )/.=%&9)(8./  */ ./. 2#% ! =+  ;/'.%9)(8./ @'/1 ! "-+!'/*-/= )"0';() #' (#. 2#" 21(*/'*-(" (** )(# /2"    $ %%' ()#""/,+, #-./ "#0' 8,(# ' F33G  3&3 %3334 5 6  95 6  95 6      4    & C3&D  &  &     $ %%' ()#""/,+, #-./ "#0' 8,(# ' F33G  3&3 %3334 5 6&      4   3    &

  E("-*/ 2#%:C:ED 4 %/'('(#%.5895 A2! '5/ "-+!'/" +(# /2' ()# /2" $(*/'*' ""0' :%&.. B(# '*'//; 25(5 2#;/'"*() "-0## #- '.(#  "    B  #(     !" #$&    $ %%' ()#""/,+, #-./ "#0' 8,(# ' F&33G  &33 %3334 5 6  5 6      4          &

  E("-*/ 2#%3:C:ED    $ %&%' ()#"'(* !+, #-./ "#0' ,(# '*'/# )"/1 2#" F&3&3G  %3334 5 6  5 6    3   44   &     &

 &  E("-*/ 2#%:C&:ED    $ %%' ()#""/,+, #-./ "#0' 8,(# ' F&&33G  33& %3334 5 6  5 6&    323     8   

     $ %&%' ()#"'(* !+, #-./ "#0' ,(# '*'/# )"/1 2#" F&33G %3334 5 6  5 6    323  4   38   &  &&

&  +!'/*-/= )"0';() #' (#. 2#    $ %%' ()#""/,+, #-./ "#0' 8,(# ' F3&3G %3334 5 6    C323  D   3   38   & 

   E/'."=/2! !*-(" ";/'' 1 '" *-(" )-'/.(#/5'(*-+  ("/     $ %&%' ()#"'(* !+, #-./ "#0' ,(# '*'/# )"/1 2#" F33G %3334 5 6 

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 39 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:53 PM Page 40

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D        0$;$ 

 !"#$% &'&$()*#'#$+ !$!','!#'$()*#'$-  $./$0/$!'*12#$!*(&3$42)$" #25!'6$4*2'!6$(! 21$# ,' 2# G:   H /$   7  8 @  6  9  :::  $;$ 0  

: *#)(  2/$IA$ IA   $./$:/$!'*12#$# 43$42)$" #25!';4*2'! G   H /$   7 8 @   -  6$ <       0

 *#)(  2/$ :A$ A  .#1 #236$ =/$$12  7/$$(!$" 5#'6$ /$0$"8;>8        ( '$" "' 2/$$$&'%3' .*( !$(!'##5!'/$ /$""  '++1' 2$ +$2)'!"*$'?(* # /$$:$?$  ,*(/$$ $>1*;" ' ('1+1$)'*2/$$$1*;8;= 1 '$" "'! !"#$& $ $1 2*12$42)$4*2'! ''$*# $ 00  $./$0/$!'*12#$!*(&3$42)$" #25!'6$4*2'!6$(! 21$# ,' 2# G0  H  $    /$   7 8 @ >8 @0 >8 @:          -  6$<       0

 *#)(  2/$ :A$ A   7/$$(!$" 5#'6$ /$0$"8;>8  $./$0/$!'*12#$!*(&3$42)$" #25!'6$4*2'!6$(! 21$# ,' 2# G0  H  $    /$   7  8 @ 8 @ >8 @    - 7 : :$;$          

  *#)(  2/$: A$ :A  .*( !$(!'##5!'6$ A/$$"" -! ,&'#$)3&! () %1$1 *2 8#$42)$8 &$2)'!"*$* &$B.$!'##2* 1'  $./$:/$!'*12#$# 43$42)$" #25!';4*2'! G   :H  $ 0 /$   7  8 @0 8 @ 0 >8 @     - 7  $;$ ::  :       

  *#)(  2/$A$  A  .#1 #236$ =/$0$12  2'!"'&*2'$+ !$)8)$2'"('!*25!'$#1 '$!'# #  $./$:/$!'*12#$# 43$42)$" #25!';4*2'! G0  H  $   /$   7 8 @ >8 @   -   :0   0  :

 *#)(  2/$A$ 0A  .#1 #23/$$ $12 .*( !$(!'##5!'6$ A/$$""        5!+*1'$2' # /$$$";" ,*(/$$$>1*;" ' )'!"*$1 &512,23/$$$C;"=  #3*2'#$'#2'!#6$*12 '#D$(!'15!# !#$2 $#3$' *2'# $*!# 6$E$'2$*$( T"PGT5VE$$6$0 F /$. $6$($D$. $6$($D$. $6$($:  $./$0/$!'*12#$!*(&3$42)$" #25!'6$4*2'!6$(! 21$# ,' 2# G : H  $   /$   7  8 @ 8 @0  >8 @ 0   -    0 $;$ 

   $./$:/$!'*12#$# 43$42)$" #25!';4*2'! G0:  H  /$   7  8 @0 8 @   - 7   $;$ : 0   

 0  *#)(  2/$ A$ A  .#1 #236$ =/$ $12 .*( !$(!'##5!'6$ A/$$"" ,*(/$$0$>1*;" '  $./$:/$!'*12#$# 43$42)$" #25!';4*2'! G0  0H $: 0 /$   7 8 @ 8 @  0 6 -9 0    $;$ 0  0

 *#)(  2/$A$ A   $./$:/$!'*12#$# 43$42)$" #25!';4*2'! G  H  $ : /$   7 8 @  8 @

PLEASE INQUIRE ABOUT BULK QUANTITIES 40 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 41

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D         0    

   :)%(-4* '" 6@ 3@:5  !" " #$%&'( ()*+), + '- .* ('/#$0+%'$#

A  B "   1 2 = H Y D R O P B I C  34 55 '$&-   6  6 0     6

) *'% (  7 8 .$'-,)9 4-$,) :*#.( 4*),.$#( + '- ) ;/ 8 &#,('%) 9$-%< *#   $$  $' %) 3VSfTGY     !" " #$%&'( #%4 8), + '- .* ('/#$ +%'$# 4#*' & (*)<$'( A  B "   1  2 =  2 =6  34 51    0       

6   !" " #$%&'( ()*+), + '- .* ('/#$0+%'$# A  B "   1 2 = 6  9)$8  6   0  3 5 

 ) *'% (  '*  -*.*)*2( :)%(-4* '" @ 3 @:5  !" " #$%&'( #%4 8), + '- .* ('/#$ +%'$# 4#*' & (*)<$'( A6 6 B   6   "   1  2 = 6  9)$8    0  3 5 

)  *'% (  '*  -*.*)*2( :)%(-4* '"  @ 3 @:5  !" " #$%&'( #%4 8), + '- .* ('/#$ +%'$# 4#*' & (*)<$'( A   B       "   1 2 = 6 1 9)$8   3 5 6

6   *'% (  '*  -*.*)*2(  !" " #$%&'( ()*+), + '- .* ('/#$0+%'$# "    1 2 =6 6  6   6  

 )  !" " #$%&'( #%4 8), + '- .* ('/#$ +%'$# 4#*' & (*)<$'( A666   B  66   "   1 2 =6 6   6   0   

 ) :)%(-4* '"  @ 3@:5  !" " #$%&'( #%4 8), + '- .* ('/#$ +%'$# 4#*' & (*)<$'( A   B    6  "   1 2 = 6 1    0   

  :)%(-4* '" @ 3 @:5  !" " #$%&'( ()*+), + '- .* ('/#$0+%'$# A6   B   6   "   1 2 =

6           0 3 5    

)  :)%(-4* '" 6@ 3 @:5  !" " #$%&'( #%4 8), + '- .* ('/#$ +%'$# 4#*' & (*)<$'( A  B    6  "   1 2 = >2 =  6  1  6  0     

   :)%(-4* '" C @ 3C @:5  !" " #$%&'( ()*+), + '- .* ('/#$0+%'$# A 6  B       "   1 2 =  2 = 66  ?     0 

 )  :)%(-4* '"  @ 36@:5  !" " #$%&'( #%4 8), + '- .* ('/#$ +%'$# 4#*' & (*)<$'( A  B      "  1 2 =6    6  6   

) :)%(-4* '" @ 3@:5  !" " #$%&'( #%4 8), + '- .* ('/#$ +%'$# 4#*' & (*)<$'( A6 6 6B "   1  2 =6  2 = 

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 41 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 42

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D E62"#  2F5Q9@2F5Q916059BDBE69(A2 #    #!

05"0fEc 3fUsbpicht$ „0 6 „38 1cpifY gigYht$  XYVyY 5Q1DB9QF60 E2AE6F6H6FQ$ "$ rYUWts rUpcXfy wctb gicsturY wUtYr pritcW sifvYhts ST FE0( 20 "  5@6E$ P a 5 a 5 E62"#! 62F5Q9@2F5Q982FBP6@6AB8FD6@2F5Q9E69(A2 #9 #   ! "        

0!5!ABEc 5Q1DB9QF60 E2AE6F6H6FQ$ !$ rYUWts sfiwfy wctb gicsturYwUtYr S!"T 5@6E$ P a 5 E62"#! gp2F5Q9C52A2F5Q916@2F5Q9059BDBE69(A2  "     

05#0fEc tYWb# 5Q1DB9QF60 E2AE6F6H6FQ$ !$ rYUWts sfiwfy wctb gicsturYwUtYr S!#"""T 5@6E$ P a 5!" E62"#! gp2F5Q9C52A2F5Q9FD6@2F5BPQE69(A2 tYWb#  #   ## !! 

05BEc @cxYX csigYrs 3fUsbpicht$ „0 6 „38 0igpihYht ch iptcWUf bUrX WiUtcha rYschs 5Q1DB9QF60 E2AE6F6H6FQ$ !$ rYUWts sfiwfy wctb gicsturYwUtYr S#""# T FE0( 5@6E$ P a 5 E62"##        2F5Q9FD6(02FBPQE69(A2 " !"  " 6!#8  

0"5B Ec 3fUsbpicht$  „0 6„38 9cqucX WrissfcheYr `ir scfcWihY DFHs 5Q1DB9QF60 E2AE6F6H6FQ$ !$ rYUWts sfiwfy wctb gicsturYwUtYr S! "#!!#T FE0( 20  !! 5@6E$ P a 5 ea 5" E62# 2F5Q9FD6059BDBE69(A2    6 8 !  

050fEc 3fUsbpicht$ !„0 6"„38 HcsWiscty$ " WEt FBP606FQ$ irUf rUt 91$  gaea 1cpifY gigYht$  0rctcWUf tYgp$ "!‰        0iY``cWcYht i` tbYrgUf YxpUhscih$  x  A5WigV$   eWUfgifY HUpir prYssurY „$  gg A5`irg$  eWUfgifY HUpir prYssurY ‰$ gg A5vUp$ # eWUfgifY A5`us$ ! e7gifY 2gpfiyYX ch tbY WiVUftWUtUfy€YX 1cYfs(fXYr UppriUWb ti XcsuVstctutYX UhX trcsuVstctutYX VYh€YhYs  5cft 4% 1Uh€ @   ! 3H3$ Hif   p #" 5Q1DB9QF60 E2AE6F6H6FQ$ "$ rYUWts rUpcXfy wctb gicsturY wUtYr pritcW sifvYhts S#T FE0( 20 ! 5@6E$ P a 5 a 5# ea 5!  E62# 2F5Q9FD62F5BPQE69(A2 # "# 6!"8 "# #

0"5BEc 3fUsbpicht$ „0 6„38 HcsWiscty$ ! WEt FBP606FQ$ irUf rUt 91$ ! gaea HUpir prYssurY „$  gg (uticahctcih tYgpYrUturY$ ‰0 6‰38 0iY``cWcYht i` tbYrgUf YxpUhscih$  x  0rctcWUf tYgpYrUturY$ ‰ EpYWc`cW bYUt$  WUfa‰ A5vUp$ !" eWUfgifY W i` trYUtYX sur`UWYs$   gAg 5Q1DB9QF60 E2AE6F6H6FQ$ !$ rYUWts sfiwfy wctb gicsturYwUtYr S!"!#T FE0( 20 " 5@6E$ P a 5! a 5" B3)!        )C2H6CA37)C29GHB36%8)  Q !  

'29BY 0aQhXedYci" v' 6 v08 EYhSdhYit"  SBi 2SdbR" P `SQabdaU 2H(A96HC3' B)8B3C3E3CH" " gUQSih hadrat rYiX bdYhipgUrQiUg IQQP CB'% )' QQ! 273B" QQQG W 5 `W 5 `W 5 

PLEASE INQUIRE ABOUT BULK QUANTITIES 42 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 43

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D        !"#$% #&''#&( )#*+#,!' -" % #.(/ 0 12314         5&6'#'%7#..."6#&'08 ,$, "/ 09: H Y D R O P B I C '66 & '66 & 6'#'%7#..."6#&'0 8  #..&#% "6#&''. . ; +6'#'%."6#&'0 <  8(,. =#' % ./'. !'(+%/(! &."6#&''#,'         #// &#  6,# .'' ''.>.'8H9FHD4E68 'HF7Q6PI HF6AQH8        ?'%"&'.!%/' #%./          @'.A'#)BC4E8I )QH9468I  !EP8H9468I'+%'%B %CA'#&(0 D EB/D       )?F0G0'#&..H+H (, ."'$H#'  )I0 9 J 7  3@7  G 3@7 8DD )3 99 2) ?   ?)?4 39G DG 3 89  I))? #&@#7'%;'&//'/H%' '(#1&(&3#!" $" $% $% !!$0 3# #&(&)!#%

 )  G ' ;# * 7#7'66""./(#.'.+('. . )?F0 0'#&.#/ %+H (, ."'H#'/ &.;'. NG9E  8 DO )I08  J 37 99 37  GE )3 9E 2) ?   ?)?4 3E  9 3 G 2E G4 E8 893 I))? #&@#7'%;'&//'/H%'

 )G G )?F0 0'#&.#/ %+H (, ."'H#'/ &.;'. N8  GD O )I08  J 37 3 37   )3 9  2) ?   ?)?4 3 3E  E G8 89D ?)? #&@#7'%;'&//'/H%' '(#1&(&3#!" $" $% $% !0(! #&(&)!#%

 )98 G J0##30K3,7$@7 5&6'#'%."6#&'.0 ,$, A*.@#L'##4E@DQBH"+98EG )?F0 0'#&.#/ %+H (, ."'H#'/ &.;'. NG 3E 99 O  )I08  J 37 8D 37  3E )3 9  2) ?   ?)?4 E 8 8 E$8 9G 3 89 D ?)J #&@#7'%;'&//'/H%'

 E) D G8 )+%+. . &,! # H (/+% ,'(<+. <#'7 ;'.(#%(+%/(! &&# 7. #'#L/M@# L ED8G  DD8BA8D, 5IPH, 0 8E8 G% ''#. EG8 )?F0G0'#&..H+H (, ."'$H#' N  D9G E 9O )I08  J 37 93 37   )3 9 3 2) ?   ?)?4 3E 8 9G 39 88 3 ?I)J #&@#7'%;'&//'/H%'

 8) 8 G8 24P8H 7HFGC8PI FE IBCB6FE R498H '#'%."6#&'&#&#7'H#'0 3: PH84P87 RBPA )! ", 8SAB5BP 5&6'#'%."6#&'.0 ,$, AB@A 6FEP46P 4E@C8 ,. 7# &(+! %.H (/( %"&'#!''6#& ;' %'<'%"&   #@L '#", $4P8H, A8D, "/G8  )?F0G0'#&..H+H (, ."'$H#' N 89 E3 O   )I08  J 37 9 37  E  )3 9 28 ) ? ? J4 ? ?)? 8E 33 3 G$83 9DG 8G  

E)E8G /'& 6 &H' 7."6#&'#'#083E,$7 )?F0 0'#&.#/ %+H (, ."'H#'/ &.;'. N 338 D8 DO 8D 3 D E )I08 8 J 37 ED

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 43 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 44

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D       =5      

  !"#$%&'()*+,",#*-.*/ *#$'0 1&*,0/+")#%''$'"2. ,$1#%1#$2*'30#1'",$1"'#1'(2*#///+")#%'45 6 * 2$/* 7+ (%"./1#*/   8#9 #1   3 : ;4 4"'#%1//*,0*.0 1&<, /1+"'=0#1'" H> > I 4    52 D> 55  5 $   :   5  5     > 

* *#/&9, $14>>6 6 : ;44"'#%1/"#9 (*.0 1&<, /1+"'30#1'"39",1 %/,*?'$1/ H   I     > 4    2 D 55 > 5 $    >    5    

 *  *#/&9, $14>6  6 : ;44"'#%1/"#9 (*.0 1&<, /1+"'30#1'"39",1 %/,*?'$1/ H   5I   5 4    2 D5 55  5   3@*'$( 55   

> *  ,$1# $/  5&,<,*,2/ ( /1 **'(%+19",(+%10 1&<,"'"'9",(+% @*'('9,/ 1 ,$1&#$1" #%,$1.*/ *#$'/ : ;4 4"'#%1//*,0*.0 1&<, /1+"'=0#1'" H>55  I 4   2 D> 55  5  : ::       >  >=5 >  >>   

 * > ,"5 55 5 5 $  :  3C   5=5 5   

> *  *#/&9, $146 56 %,)1"'#1'(/+")#%'/4<=< : ;44"'#%1/"#9 (*.0 1&<, /1+"'30#1'"39",1 %/,*?'$1/ H >5 5I      4    2 D5 55 552 D> 55  5  :   3C   >5 =  5    5

  : ;4 4"'#%1//*,0*.0 1&<, /1+"'=0#1'" H>  I  5 >  4    2 D 55 552 D  55  5  :   3C > > =5   5    >          *#/&9, $146 6 ; /%,/ 1.4 %1 +1, 2$ 1 ,$1'<9'"#1+"'46 <9*,.'(#/"&',*,2.<,( ) '"),"<, /1+"'%",//* $-#@*': ,( ) '"),"<, /1+"'%",//* $-#@*'9,*.'1&.*'$'   E#1'"/%#?'$2'" : ;4 4"'#%1//*,0*.0 1&<, /1+"'=0#1'" H>  >I  5 > 4    2 D 55 -2 D5 55 >-2 D3 > 55 >5 5 33 3 33   F   >  5 5   

>  *#/&9, $14>6 6 ; /%,/ 1.35G4 %1 ),"<4 -%#*=<,*' : 9,*'<,<'$145  : '*'%1" %%,$/1#$13555B4          ,( ) '/9,/ 1 ?'"'/ /1/),"9*#/<#"'/ /1#$%'  ,*.<'" B'/1,9,*.( <'1&.*/ *#B#$',* 2,<'" $9"'/'$%',)+=  *.*#1 ,$"'#2'$1),"( ,*/  !#@ %&3 '1#*    35  !*+<3 '1#* #1'$13>3  3>A#1'$13 3 53 ! "-,)'"3 '1#*     3       !"#"##$%$&  : ;4 4"'#%1//*,0*.0 1&<, /1+"'=0#1'" H55  I   > 4    2 D 55 552 D 55 -2 D> > 55

PLEASE INQUIRE ABOUT BULK QUANTITIES 44 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 45

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D       ;    ?! ,9*2".G$.?H

    ! "#$$%&'(&

) * * +,,- +#$.$%%   * %-,+#$%&'(& H Y D R O P B I C ),/,"0/" /%1#$(/ !'%!+ +!+/" //2," 2"3 4 *(/ !%!+

*5 $$ - 6 /+"+2,2%'%         # + /"27',- 6 /+(/ !'%!+ *+/6/7+""2&,- 6 /+$% '& *!+%%+2" )+ , "!+,!0! "2 + &+2"8/ + "+,90: *91/,- 6 /+, 24+ ", /:/9! :+, 2: !/9!," %2+,2 "9 ++;/%*2+2" + /"2 <+ /",7"96 % %:+ 2:(+"2+,"6 %*0 %:2+, #;+" !     #  0 & = 2# 2:9 ( 4 "0#>5   ## ?@?)!#*8)!#*$8)!$#*8)!#*8)!#*8)!#*8)!#*8 )!#*8)!#*8)!#*8)!#* <   )  + /",,!7!07"9%,"- +'7 "+ I;;J  ;;$  ;;; $& A $(& A (& A$ 

    #B  ;          

   * %-,+#$%&'(& C$**%/9! :+ >9" +,," :9+,2* %"+ <   )  + /",,!7!07"9%,"- +'7 "+ I;;J  ;;$  ;;; $& A $(& A$ $   <   ;  

! ?! ,9*2"$.G$.?H <   )  + /", *:!07"9%,"- +#7 "+ #* "/,!4+2", I;;J  ;;  ;;; $& A    <<   ;  

! ?! ,9*2"$.G$.?H <   )  + /", *:!07"9%,"- +#7 "+ #* "/,!4+2", I;$;J  ;;  ;;; $& A & A$ $   <     $'   $

 ?! ,9*2"$.G.?H <   )  + /",,!7!07"9%,"- +'7 "+ I;;$J  ;;; $& A & A $          <    $ ;  $ 

 ?! ,9*2".G.?H

- 6 /+%:6/ "26 *&%+2",%* 4+,:,*+ ,2 <   )  + /",,!7!07"9%,"- +'7 "+ I;;J  ;;  ;;; $& A (& A C O M E R I A L $$ DE  <  $ ;   $

$! ?! ,9*2".G.?H <   )  + /", *:!07"9%,"- +#7 "+ #* "/,!4+2", I;;J ;;  ;;; & A $ DE       ' $ 

 ?! ,9*2".G.?H <   )  + /",,!7!07"9%,"- +'7 "+ I;;J ;;  ;;; $& A$ $ DE  <<  $   $

! ?! ,9*2".G.?H <   )  + /", *:!07"9%,"- +#7 "+ #* "/,!4+2", I;$;J  ;$;  ;;; $& A & A $$ DE  <     ;         

 ?! ,9*2".G$.?H    ! "#$F$#%&'(& 0: *91/,- 6 /+" + "%+2"6 %/ * -,%2+ !, <   )  + /",,!7!07"9%,"- +'7 "+ I;;J  ;;  ;;; $& A (& A (& A$

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 45 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 46

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D                 G"!-26 9#':@:GA             !" !#$%&'$()*+) ,-. -#/.#

 !"#$%&'!&'#()$#%"*$"+)!%', !# &# &# &%, !")&#!&' -! &) .%

%   ,   0!.#--" 1"/1#2( -#3 0*1!#0 E44 F  ''4' '4 4'44 ) 5 '+) 5  +) 5    %    ' 4* '

'" %   ,  0!.#- !67"/1#2( -#3 0$1!#0 $6 #.- "809#- E  44'F ' 44 444 ') 5 '         '   *          G"!-26 9#:@:GA

 " %   ,  0!.#- !67"/1#2( -#3 0$1!#0 $6 #.- "809#- E 4'4F  ''4''4 4'44 ') 5'' ) 5 '         '  ' @B4A          '  G"!-26 9#&:@&:GA ,-. -#/'.#   !" !#$%&'$()*+) ,!6 6 0--3 0$':(( 3# )9# 9#0(60 !#3 0':  .2#0.#3 !"1!#0 4 060""09# ;!#0 -.!809)0 < -0!"07"3= .!9#-/-#0(- %   ,   0!.#--" 1"/1#2( -#3 0*1!#0 E4'4F  ''44 4'44 ) 5' '+) 5        ' *          

'  G"!-26 9#':@':GA ,-. -#/'.# 3# )9# 9#0(60 !#3 0:  (6 909#99#4> !<<#. !#9)- %   ,   0!.#--" 1"/1#2( -#3 0*1!#0 E44 F  '44 4'44 ') 5' ) 5 '+) 5 '  ? ?%        

" G"!-26 9#:@:GA 00!"- % %   ,  0!.#- !67"/1#2( -#3 0$1!#0 $6 #.- "809#- E44F  444 ') 5' ) 5 ' 4@64  ?A? ? %  4 '' 4*   G"!-26 9#&:@&':GA

"'  %   ,  0!.#- !67"/1#2( -#3 0$1!#0 $6 #.- "809#- E4'4F 444 -# 0B: ') 5  ' 4@64  ?A? ?    ' '4* ''

"  G"!-26 9#&:@&':GA %   ,  0!.#- !67"/1#2( -#3 0$1!#0 $6 #.- "809#- E4 4F 444 ') 5  ' @4  4'4? ? A   ' ' @4A  

  ' G"!-26 9#':@:GA ,-. -#/'.# ,!6 6 0--3 0$:(( %   ,   0!.#--" 1"/1#2( -#3 0*1!#0 E4'4F 444 ') 5   64@ ? A %  $4 '' 4*'   ' H G"!-26 9#:@':GA        

"' C07   - (0 - D %   ,  0!.#- !67"/1#2( -#3 0$1!#0 $6 #.- "809#- E 4 4F*E'4 4F 4 444 ) 5

PLEASE INQUIRE ABOUT BULK QUANTITIES 46 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 47

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D              <7            H Y D R O P B I C        ! "#$%&'"$()*+&,-.'&/"#0+$&#"0(".&%'.1#2&' D3 ! E  3       4 5 6  5 6  7     4 078   !3 !<   3  !       

3 C$',(.2& !9 !9C $(."("#''/"#079 7-- .'&%.--.2%".'' 2:#";."%.2)#2'$&.2%/"#'%.2# '       3 "#$%&''.+*+&,-.'&/"#<+$&#" D  E    7     4 5 67  :5 6!  !:5 63       7 !   3!  3  

 C$',(.2&  9 9C '%.'&*  %& 4  ,"$&0. ((-<        $(."("#''/"#0 9 -- /&.52&.2&#-(#"$&/"# 79 /";$%#'.2  -<- "&%$&#-(#"$&/"# = .2>$&.2(.&$  # "&%$("#''/"# 7$&- .#;;%#2&.;&,#"-$#?($2'.2  ?  1$( 3 :%$<-.# (#%;%,#$&  %$<5<=       ! "#$%&'"$()*+&,-.'&/"#0+$&#"0(".&%'.1#2&' D3 37 E   7      4 5 6  5 6!  :5 6 @   !"#  $%&!#  $%&!' !      0778 7 !   3!  3  

  2%.-A2$&.2+&,;."-'A*   B.'#:0 #&$ ()"* +"+",03       ! "#$%&'"$()*+&,-.'&/"#0+$&#"0(".&%'.1#2&' D3 37 E   7      4 5 6  5 6       4 3!    !7!  !        3! C$',(.2& 9 !9C '%.'&*  %& 4  ."$"$&0 0-5<:5 $(."("#''/"#09 -- /&.52&.2&#-(#"$&/"# = 3=C (.#-.-#2&  3)#A*# .+%.'&,*)".(,.A%'/";$%#&"#$&-#2&       3 "#$%&''.+*+&,-.'&/"#<+$&#" D 3 E  3 7! 7     4 5 6  :5 6  :5 6       4     3!  7  7         C$',(.2& !9 9C '%.'&*  %& 4  ."$"$&0 0-5<:5 (.#-.-#2&  )#A*# /&.52&.2&#-(#"$&/"# 9 %.-A 0:%$<-.# 2&#"-#)$&#;."%.$&25"#'2'       3 "#$%&''.+*+&,-.'&/"#<+$&#" D!  E   !      4 5 6  :5 6  3:5 6       4 0778     3!  7  7

 C$',(.2& !9 9C '%.'&*  %& 4  ."$"$&0 0-5<:5 (.#-.-#2&  )#A*# /&.52&.2&#-(#"$&/"# 9 %.-A 0:%$<-.# 2&#"-#)$&#;."%.$&25"#'2'       3 "#$%&''.+*+&,-.'&/"#<+$&#" D!  E   !      4 5 6!  5 6  37     2 4  ! ! <  !3!  !

 C$',(.2& 9 9C       3 "#$%&''.+*+&,-.'&/"#<+$&#" D!  !E   73!      4 5 6  !      4 4 ! ! <    3!

       3 "#$%&''.+*+&,-.'&/"#<+$&#" D37!  E   7 !     4 5 63 

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 47 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 48

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D             ." ""  !"  ! "            =*)1:'%2&F#  F=

#  "$% # &'()*()+&",-./- 0()*('11*%2/(3'('2421)%'20(1%*%'21 + #  5 &$&()11*'6*76%,'%10(.6)( G""!  H # #"  &""  - 8   "/- 8 $     9   #  "$   .$  " $

# #*% + #  5 &!&()1():%4*76%,'%10(6)(:('%1'*;21 G $!H &"  - 8   $  9     " !  ."  "

#  % ,:*'74%2%-(3()%;%24<10(3),'4%3%)%'2 + #  5 &$&()11*'6*76%,'%10(.6)( G !"$ H &"  - 8 !  $  =>  + #     "  ""

#! #*=% + #  5 &!&()1():%4*76%,'%10(6)(:('%1'*;21 G !!""H &  - 8   $ =>  + +     !!. "  =*)1:'%2& "F# !F=

#  =% + #  5 &!&()1():%4*76%,'%10(6)(:('%1'*;21 &  - 8!!  $  =>   #  !  $".   "

# #*=% + #  5 &!&()1():%4*76%,'%10(6)(:('%1'*;21 G$! $ H # &"  - 8"$  - 8 !  $  =>        .  " "       

# " =% #(%%)*10(3)21%'2()410(3)&",., *':'?%74(':'?%10(3)(),2 + #  5 &$&()11*'6*76%,'%10(.6)( G "!$H # &""  "- 8  - 8 !"  $ $ =>      ! "$ !.   $

# =% ,:(';174('*7%1)?%*%7'342)*',:'1%1 %/% )*    !" + #  5 &$&()11*'6*76%,'%10(.6)( G!!$$$!H # &"  - 8"  - 8 "!  !  : 9  99 + #    ! . $   "

#" #*%  + #  5 &!&()1():%4*76%,'%10(6)(:('%1'*;21 &   - 8     " "

2# + # + #   $  . "!  ! !                =*)1:'%2&" F# F=

#" #*% #'2)%21 @# !%1',(1 ,:*'74%2?'244 9#(;(1:)11 A%1 )* 2 !"# $%&#'( %&#')742+  4 BC'(4'2DE()& !B:  + #  5 &!&()1():%4*76%,'%10(6)(:('%1'*;21 G ! !!H # #" " $"" &   "- 8"  "/- 8 "    2# + # + #  $@  $  . "!  ! " ! "         =*)1:'%2&" F# F=

#" #*% #'2)%21@# !%1',(1 + #  5 &!&()1():%4*76%,'%10(6)(:('%1'*;21 G ! !!H # #" " $"" &   "- 8  - 8  

PLEASE INQUIRE ABOUT BULK QUANTITIES 48 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 49

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D E6B         hB0F(120Q916@2F5Q9059BDBE69(A2 ! # "

!chtifuYhY 0ihtUchs0"csigYrs 3fUsbpicht$„06„37

050fEc

5Q1DB9QF60E2AE6F6H6FQ$"$rYUWtsrUpcXfywctbgicsturYwUtYrpritcWsifvYhts H Y D R O P B I C S" ""T FE0( 20! 5@6E$P a 5 ea 5 E6B ! hB0F(120Q916@2F5Q9616@2F5Q9(@6AB7E69(A2 !   "" 

05#AEc 0ihtUchs0"csigYrs 5Q1DB9QF60E2AE6F6H6FQ$!$rYUWtssfiwfywctbgicsturYwUtYr S! "!!T FE0( 5@6E$P a 5 a 5 " E6B " hB0F(120Q916@2F5Q9@2F5BPQE69(A2  " "  "  

05 BEc 0ihtUchs0"csigYrs 2gpfiyYXchE(@rYscst BbFYtUf     ! 5Q1DB9QF60E2AE6F6H6FQ$!$rYUWtssfiwfywctbgicsturYwUtYr S!""  T FE0( 20! # 5@6E$P a 5 a 5 # E6B  hB0F(120Q9@2F5BPQ16059BDBE69(A2tYWb# " ! #  

0#50fBEc 0ihtUchs0"csigYrs @UchtUchsrYUWtcvctyi`iWtUXYWyftrcWbfiriscfUhYVutwctbrYXuWYX50fVypriXuWt 5Q1DB9QF60E2AE6F6H6FQ$"$rYUWtsrUpcXfywctbgicsturYwUtYrpritcWsifvYhts S#"T 5@6E$P a 5# a 5! E6B  hB0F(120Q9@2F5Q916059BDBE69(A2  ! " 6 7 #

0#50fEc 0ihtUchs0"csigYrs 3fUsbpicht$"„06 „37 HcsWiscty$!WEt FBP606FQ$irUfrUt91$gaea (uticahctcihtYgpYrUturY$„0 5Q1DB9QF60E2AE6F6H6FQ$"$rYUWtsrUpcXfywctbgicsturYwUtYrpritcWsifvYhts S!!T FE0( 20# 5@6E$P a 5 a 5  E6B ! hB0F(120Q9@2F5Q9162F5BPQE69(A2 " ! #! " !

05BEc 0ihtUchs0"csigYrs 3fUsbpicht$'„06'„37 5Q1DB9QF60E2AE6F6H6FQ$!$rYUWtssfiwfywctbgicsturYwUtYr S !"#!T FE0( 20 ! 5@6E$P a 5" E6B # hB0F(120Q9@2F5Q916@2F5BPQE69(A2 " " # 6"7 " !

05 BEc 0ihtUchs0"csigYrs 3fUsbpicht$'„06'„37 (uticahctcihtYgpYrUturY$„0 5Q1DB9QF60E2AE6F6H6FQ$!$rYUWtssfiwfywctbgicsturYwUtYr S!"T FE0( 20!#  5@6E$P a 5 a 5 # E6B  hB0F(120Q9FD6059BDBE69(A2# "!#   67 #   

 0ihtUchs0"csigYrs 3fUsbpicht$"#„06!„37

0"5!0fEc CrivcXYsfcpipbcfcWsur`UWYWiUtchas

2gpfiyYXchpUttYrhchaUhXprchtchai`YfYWtriUWtcvYgifYWufUr`cfgs        6ggiVcfc€YspbyscifiacWUffyUWtcvYWYffiraUhYffYs FrYUtYXsuVstrUtYschWrYUsYYfYWtrihtrUhspirti`pYhtUWYhY`cfgs 5uUhRYtUf   ! 7Yih7YtUf   " (refYs)YtUf!" #$""  EeUheUr8YtUf! %   & EYYUfsiE6B  5Q1DB9QF60E2AE6F6H6FQ$"$rYUWtsrUpcXfywctbgicsturYwUtYrpritcWsifvYhts S#T FE0( 20#! 5@6E$P a 5 ea 5# ea 5#  E6B  hB0F(120Q9FD6059BDBE69(A2 "!#   67 #   

0"5!0fEc 0ihtUchs&0"csigYrs 5cabYstWihWYhtrUtcihi`tYrgchUfscfUhYsuVstctutcih 5Q1DB9QF60E2AE6F6H6FQ$"$rYUWtsrUpcXfywctbgicsturYwUtYrpritcWsifvYhts S#T FE0( 20#! 5@6E$P a 5 a 5! E6B  hB0F(120Q9FD62F5BPQE69(A2#  !  # 67 "! "

05BEc 0ihtUchs0"csigYrs 3fUsbpicht$'„06'„37 3irgsbyXripbiVcWifYipbcfcWWiUtchas 5Q1DB9QF60E2AE6F6H6FQ$!$rYUWtssfiwfywctbgicsturYwUtYr S!##T 20### 5@6E$P a 5 a 5# 

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 49 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 50

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D         -  B  C  

! " #$! %  !%"&'(% /*$%03"! #)  E B E/C   )"($*($# )+ &,-.,        /"(&%012("30"4!5"*'"30!*!55"$#! ,% /"(&%5*'$("(2'('26!*&%7-#'#($&'#0"81%!*$ ' 9 2'(,"'%"%5!**$#"(1$2%"(3#!" #"6"(&% 0!&:!&$'#$*      0"&%' '#$*     ''$*%"     ; ))('$5#%%*"7*17!#0&"!%#<('-7$#'( F   G      )  , =  ., =         >    BC      ! "#$ $%! ! & %! /*$%03"! #)E B  E/C

 ! 6"(&) .5$*-&"*' /"(&% !41$&&" !$#0'(&$*%1 #0'%!% 50$!4*''#$*'' ()        ; ))('$5#%%*"7*17!#0&"!%#<('-7$#'( F  G         )  , = , =     ??     -   

 *! /*$%03"! #)+ E B+  E/C '$,' #6"(3('3$($#!" "6? %#$#!" $(130$%'%7-0!,0%#$4!*!#1$ 2'66!5!' 51 @!(.*$ 2A'#$*  )      ; ))('$5#%%*"7*17!#0&"!%#<('-7$#'( F   G )  , =    ??B C   -   

!    ; ))('$5#%%*"7*17!#0&"!%#<('-7$#'( F     G   )  , =              

  *! /*$%03"! #)E B E/C    ; ))('$5#%($3!2*17!#0&"!%#<('7$#'(3("#!5%"*D' #% F    G        )  , =  , =            

 ! /*$%03"! #) E B  E/C    ; ))('$5#%%*"7*17!#0&"!%#<('-7$#'( F   G       )  , =     B C   -   

 ! /*$%03"! #)E B E/C    ; ))('$5#%%*"7*17!#0&"!%#<('-7$#'( F   G )  , =         -  

 * ! /*$%03"! #)E B E/C    ; ))('$5#%($3!2*17!#0&"!%#<('7$#'(3("#!5%"*D' #% F   G       )  , =   , =          -   

  ! /*$%03"! #)+ E B+  E/C    ; ))('$5#%%*"7*17!#0&"!%#<('-7$#'( F   G )  , =  , =         -   

  ! /*$%03"! #)E B E/C    ; ))('$5#%%*"7*17!#0&"!%#<('-7$#'( F  G      )  , =  , =                 BH  C   

  *! /*$%03"! #)E B E/C ;$3"(3('%%<(' E) &&    ; ))('$5#%($3!2*17!#0&"!%#<('7$#'(3("#!5%"*D' #% F   G      )  , =  ., =  

PLEASE INQUIRE ABOUT BULK QUANTITIES 50 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 51

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D E6B ! hB0FQ9FD62F5BPQE69(A2 ! " #"### E&G "!          05BEc 3fUsbpicht$##„0#E"„3G HcsWiscty$####WEt FBP606FQ$##irUf#rUt#91$#'#gaea

IcXYfy#usYX#ch#UrWbctYWturUf#byXripbiVUtcih H Y D R O P B I C @Uy#VY#`irgufUtYX#ti#stUVfY#wUtYr#Ygufscihs #1YpUsquUfY#D#Yt#Uf#GE#CUtYht# "###"! 5Q1DB9QF60#E2AE6F6H6FQ$#!$#rYUWts#sfiwfy#wctb#gicsturYwUtYr S#!T FE0( 20## 5@6E$#P a < ea < ea <" E6B ! B0FQ9FD62F5BPQE69(A2#ifcaigYrcW#byXrifysUtY #!# HcsWiscty$## #WEt DYUWtcvY#byXripbiVcW#sur`UWY#trYUtgYht#wctb#rYXuWYX#vifUtcfY#VypriXuWts 5Q1DB9QF60#E2AE6F6H6FQ$#!$#rYUWts#sfiwfy#wctb#gicsturYwUtYr 5@6E$#P a <" E6B !

hB0FQ9FD6@2F5BPQE69(A2  # #! !       

05 BEc 3fUsbpicht$# "„0#E„3G HUpir#prYssurY#!„$##gg HcsWiscty$###WEt FrYUtgYht#`ir#pUrtcWfYs#usYX#ch#hihUquYius#fcqucX#XcspYrscihs EYY#Ufsi#E66 "#6EB0FQ9FD6@2F5BPQE69(A2 5Q1DB9QF60#E2AE6F6H6FQ$#!$#rYUWts#sfiwfy#wctb#gicsturYwUtYr S #!T FE0( 20#"! 5@6E$#P a < ea <# E6C !  C2AF(39GBDBC52ABPQGA120Q9FD6@2F5BPQ " E69(A2

053BEc 3ir#hihWivUfYht#cggiVcfc€Utcih#i`#pritYchs 5Q1DB9QF60#E2AE6F6H6FQ$#!$#rYUWts#sfiwfy#wctb#gicsturYwUtYr S#!!T 5@6E$#P a < E6C !  C2AF(39GBDBC52AQ9CDBCQ9FD6059BDBE69(A2 " ####! E!G #  

0#5 0f3Ec 5Q1DB9QF60#E2AE6F6H6FQ$#"$#rYUWts#rUpcXfy#wctb#gicsturY#wUtYr#pritcW#sifvYhts S!"#T 5@6E$#P a <  E6C !  C2AF(39GBDBC52AQ9CDBCQ9FD6@2F5BPQE69(A2  #!##! !

053BEc 5Q1DB9QF60#E2AE6F6H6FQ$#!$#rYUWts#sfiwfy#wctb#gicsturYwUtYr S#  T 5@6E$#P a

0!5"BEc 3fUsbpicht$#„0#E„3G 5Q1DB9QF60#E2AE6F6H6FQ$#!$#rYUWts#sfiwfy#wctb#gicsturYwUtYr S! #!#T FE0( 20#!! !! 5@6E$#P a <  a < E6C ! C2AFQ9FD6059BDBE69(A2 ## !   0A)64'"&)2425') 1$ 3fUsbpicht$#„0#E" „3G

050fEc @cxYX#csigYrs EpYWc`cW#bYUt$##WUfa‰ EYY#Ufsi#E66  HcsWiscty$##WEt 5Q1DB9QF60#E2AE6F6H6FQ$#"$#rYUWts#rUpcXfy#wctb#gicsturY#wUtYr#pritcW#sifvYhts S!!T FE0( 20# 5@6E$#P a < E6C ! C2AFQ9FD62F5BPQE69(A2  # ## "# # 0A)64'$6&2@A5') 1$ 3fUsbpicht$# "„0#E„3G

05 BEc @cxYX#csigYrs HcsWiscty$###WEt 5Q1DB9QF60#E2AE6F6H6FQ$#!$#rYUWts#sfiwfy#wctb#gicsturYwUtYr S! T FE0( 20### 5@6E$#P a <" E6C ! C2D39GBDB1B120Q95555FD62F5BPQ !" !#"## E!"G E69(A2##C2D39GBDBF2FD(120Q95555FD62F5BPQE69(A2#@6PFGD2#"C 0ihtUchs##C#E65"#VUfUhWY#bcabYr#bigifias 3ir#tbY#prYpUrUtcih#i`#fiw#sur`UWY#YhYray#suVstrUtYs EYY#Ufsi#E65" 5Q1DB9QF60#E2AE6F6H6FQ$#!$#rYUWts#sfiwfy#wctb#gicsturYwUtYr 5@6E$#P a <

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 51 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/25/11 9:34 PM Page 52

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D            <':' 

   %$( C+ .)6', -' ,-  !"#$%%&'()$*%!')+',- +.)$/)'$.0%!')"!$)!1'0%$(('(2"3$/!4'5$)!"6'' - '7+.1+4' ''  4'4' 4'  8 ' 96'6'"!$/)('(%+5%&'5 ) '#+ ()2"!:5$)!" ;6'< < < 0     =      >; < 4<4    ;  4'?' .'3%2+" .$)!1' &1"+/$"*+. +.)$/)'$.0%!4'5$)!"6 @ 8 ' 96'6'"!$/)('(%+5%&'5 ) '#+ ()2"!:5$)!" =<<>  ;6'<< < 0        8     <':'   

 % ; A!1'<4'B< (+#!"( 8 ' 96'6'"!$/)('"$C 1%&'5 ) '#+ ()2"!4'5$)!"4'C"+) /'(+%D!.)( =   <<>  ;6'<< < 0        8;     ':'     

  % +.)$ .('<4'B< (+#!"( %$( C+ .)6'-' - !!'$%(+'  8 ' 96'6'"!$/)('"$C 1%&'5 ) '#+ ()2"!4'5$)!"4'C"+) /'(+%D!.)( =  <<>  ' << ;6'<< < 0        8;  8; ;   ':'   

   +.)$ .(' < ?'< (+#!" 8 ' 96'6'"!$/)('(%+5%&'5 ) '#+ ()2"!:5$)!" =   <<>  ;6'<< < 0        ; 8     ':'     %$( C+ .)6'-' -

 % +.)$ .('<4'B< (+#!"( 8 ' 96'6'"!$/)('"$C 1%&'5 ) '#+ ()2"!4'5$)!"4'C"+) /'(+%D!.)( =<<>  ' << ;6'<< < 0   0             <':'   

% +.)$ .('<4'B< (+#!"( %$( C+ .)6' -' - 6''+"$%'"$)4'86'4'#0:E0 8 ' 96'6'"!$/)('"$C 1%&'5 ) '#+ ()2"!4'5$)!"4'C"+) /'(+%D!.)( =< <>  ' < < ;6'<< < 0   0    

   ;    <':'         

   +.)$ .('<4'B< (+#!"( %$( C+ .)6' -' - +#C+.!.)' .'+C) /$%'/+$) .0'"!( .( .'/+#* .$) +.'5 ) ' '3+"#(' &*" 1'( % /$% )!< '#+%!/2%$"'( !D!( '!+.04' '!)'$% ' !"# $%&' (4' 8 ' 96'6'"!$/)('(%+5%&'5 ) '#+ ()2"!:5$)!" =<<>  '<< ;6'< < < 0   0    E0     #<  8;   4'?   <':'   

  % +.)$ .('+) !"' (+#!"( .1 ;6'<< < 0     <  8;     <':'   

  % 8 ' 96'6'"!$/)('"$C 1%&'5 ) '#+ ()2"!4'5$)!"4'C"+) /'(+%D!.)( =<<> ;6'<< < 0   0      <  ; 8    ':'   

  % 8 ' 96'6'"!$/)('"$C 1%&'5 ) '#+ ()2"!4'5$)!"4'C"+) /'(+%D!.)( =<<> ;6'<< < 0     <       ':'    

 % %$( C+ .)6', -' ,- 8 ' 96'6'"!$/)('"$C 1%&'5 ) '#+ ()2"!4'5$)!"4'C"+) /'(+%D!.)( =<<> ;6'< < < 0   0   

PLEASE INQUIRE ABOUT BULK QUANTITIES 52 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 53

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D        %;%   

   !"#$%&$%'()'%!" *+'%,*+')-*.*+* %/0%0%"*).'$%"), -1%2 '(%#! $'3"*4%2)'*"4%,"!' .%$!5*+'$ H Y D R O P B I C C  D &0%  6 :      7&      %;%      

   )$(,! +'0%E =%AE= B %/0%0%"*).'$%"), -1%2 '(%#! $'3"*4%2)'*"4%,"!' .%$!5*+'$ C  D &0%  6 :      7&       %;%   

  )$(,! +'0%E =%AE= B %/0%0%"*).'$%"), -1%2 '(%#! $'3"*4%2)'*"4%,"!' .%$!5*+'$ C   D &0%  6 :      7    %;%   

   )$(,! +'0%E =%AE= B #,!1*-%)$%8!+-*-%,()$*% +% %$*,)")' !+%!9%)"!#)' .$ %/0%0%"*).'$%"), -1%2 '(%#! $'3"*4%2)'*"4%,"!' .%$!5*+'$ C   D   &0%  6 :  6 :     &     %;%  

   )$(,! +'0%=%A = B %/0%0%"*).'$%$!21%2 '(%#! $'3"*;2)'*" C   D  %   &0%   6 :     &        

  )$(,! +'0% =%A = B        / $.!$ '10% %.'  5),0%% %<.);#!* /),!"%,"*$$3"*4%=0% %## !"#$%.3,")'* % *# +64% %)+-%*""*''4% %> %6GaYCPGFYVU )Gaa %4%  ? 0%/! %4%,% @%/! %4%,% @%/! % 4%,%@%/! % 4%,%  %/0%0%"*).'$%"), -1%2 '(%#! $'3"*4%2)'*"4%,"!' .%$!5*+'$ C  D  %    &0%   6 :  6 :  <6 :    &     %;%   

   )$(,! +'0% =%A = B / $.!$ '10% %.' 0%%!")%")'4%0%4 %#6;<6  ,!*%#!#*+'0%%  +' *, *,' .%).' 5 '1% +%,*' '%#)%$1+-"!#* %/0%0%"*).'$%$!21%2 '(%#! $'3"*;2)'*" C   D  %   &0%   6 :  6 :      &      %;%    

  %/0%0%"*).'$%$!21%2 '(%#! $'3"*;2)'*" &0%   6 :              

  )$(,! +'0%=%A = B /),!"%,"*$$3"*4% =0% %##  5),0%% %<.);#!* %/0%0%"*).'$%"), -1%2 '(%#! $'3"*4%2)'*"4%,"!' .%$!5*+'$ C   D  %   &0%   6 :           %;% 

   %/0%0%"*).'$%"), -1%2 '(%#! $'3"*4%2)'*"4%,"!' .%$!5*+'$ C   D &0%  6 :     & 7A& &B    %;% 

  )$(,! +'0%=%A = B %/0%0%"*).'$%"), -1%2 '(%#! $'3"*4%2)'*"4%,"!' .%$!5*+'$ C  D &0%   6 : 

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 53 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 54

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D E6C !" C52AQ9@2F5Q916059BDBE69(A2 #  >? "! "

0!5"0fEc 3fUsbpicht$""„0">"„3? HUpir"prYssurY""„$""gg FBP606FQ$""cpr"giusY"91$""gaea 5vUp$"""eWUfgifY (uticahctcih"tYgpYrUturY$""'‰0 363$"Hif""p"#%"Hif""p"!%"Hif""p" 5Q1DB9QF60"E2AE6F6H6FQ$""$"rYUWts"rUpcXfy"wctb"gicsturY"wUtYr"pritcW"sifvYhts S#! T FE0( 20"!  5@6E$"P a = a =  E6C !" C52AQ9>@2F5Q916059BDBE69Q9?)GF(A2 ! "!#""  

05 0fEc 3fUsbpicht$"'„0">'„3? 5Q1DB9QF60"E2AE6F6H6FQ$""$"rYUWts"rUpcXfy"wctb"gicsturY"wUtYr"pritcW"sifvYhts 5@6E$"P a = E6C !# C52AQ9@2F5Q9162F5BPQE69(A2  !""" #   #

05"BEc 3fUsbpicht$""#„0">#„3? 1cpifY"gigYht$"" 5Q1DB9QF60"E2AE6F6H6FQ$"!$"rYUWts"sfiwfy"wctb"gicsturYwUtYr S!! T FE0( 20"! 5@6E$"P a = a =!" E6C ! C52AQ9@2F5Q916@2F5BPQE69(A2 "# ## ##  #       

0#5BEc 3fUsbpicht$"! „0"> #„3? HcsWiscty"„$" "WEt FBP606FQ$""irUf"rUt"91$""#"gaea (XXctcvY"ti"Wiupfcha"UaYht"systYgs"chWrYUscha"chtYr`UWY"`fYxcVcfcty"GH"stUVcfcty 5Q1DB9QF60"E2AE6F6H6FQ$"!$"rYUWts"sfiwfy"wctb"gicsturYwUtYr S!T FE0( 20"# 5@6E$"P a = a = ea = E6C ! >C52AQ9CDBCQ9?16@2F5Q9059BDBE69(A2 !" !"" # 

05!0fEc 3fUsbpicht$"„0">!„3? EYY"Ufsi"E6C !! 5Q1DB9QF60"E2AE6F6H6FQ$""$"rYUWts"rUpcXfy"wctb"gicsturY"wUtYr"pritcW"sifvYhts S! #!T FE0( 20"" 5@6E$"P a =! a =# E6C ! >C52AQ9CDBCQ9?@2F5Q916059BDBE69(A2  # """ "  # 

050fEc 5Q1DB9QF60"E2AE6F6H6FQ$""$"rYUWts"rUpcXfy"wctb"gicsturY"wUtYr"pritcW"sifvYhts S!!!  "T FE0( 5@6E$"P a ="! E6C !# C52AQ9FD6(02FBPQE69(A2"tYWb# "  "" > !? ## !"

05B Ec 3fUsbpicht$"„0"> „3? 5Q1DB9QF60"E2AE6F6H6FQ$"!$"rYUWts"sfiwfy"wctb"gicsturYwUtYr S"T FE0( 20"## 5@6E$"P a =  a =" E6C " C52AQ9FD6059BDBE69(A2   >?  ! 0 5 0f Ec 3fUsb icht$"#„0" # „3   p > ?        HcsWiscty$""""WEt FBP606FQ$""irUf"rUt"91$""gaea HUpir"prYssurY"!„$""gg 0rctcWUf"tYgpYrUturY$"""‰ 1cpifY"gigYht$"" 5vUp$"""eWUfgifY Eur`UWY"tYhscih$""!#"gAg EpYWc`cW"bYUt$"""WUfa‰ 0iY``cWcYht"i`"tbYrgUf"YxpUhscih$"""x" 5Q1DB9QF60"E2AE6F6H6FQ$""$"rYUWts"rUpcXfy"wctb"gicsturY"wUtYr"pritcW"sifvYhts S#"T FE0( 20" " 5@6E$"P a = ea =!  "ea =!  E6C " C52AQ9FD6059BDBE69Q9)GF(A2  !  !"""""  "

050fEc 3fUsbpicht$"'„0">'„3? 5Q1DB9QF60"E2AE6F6H6FQ$""$"rYUWts"rUpcXfy"wctb"gicsturY"wUtYr"pritcW"sifvYhts 5@6E$"P a =

PLEASE INQUIRE ABOUT BULK QUANTITIES 54 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 55

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D        8","   

   @('6.2 %"1"B #1@C  !"#$%" " %""&'("&' !")# %"! "*+,-+

'.&".&/0&/!"#1%""** 0 +2 2" /*./&' 0&/%""#$ H Y D R O P B I C

).(/"**/2 %"" #"3/4 / /55/2 "5" 6/&*'("/7.'22%"" "7" 8        )/(/ &"2 '2 %""  0&5'/" /22%"""* ,* (/ &2"32&"*.2/2 "5".( (/52".( */&9' 2"' '(  "*.(/7/ *.&:/".6 &/ "'36/2" "(2"2 &3/ 55/ :/" &/' */2 "5&"&+'28+&'5 /3"('   6/2 (' /"'(( ("4/29' /   "'2&'3!"; "/ "'( "  "" !"  "&&/'!" "'23")/62+!" " ""!"# )" %"%"&/' "(<( "< 6"* 0&/,<' /& E 88F  "8 #8 =%"888  + > -+ > -+ >#   =      B8#C    

  @('6.2 %"1"B1@C  !"#$%" " %"":2"*0/!")# %" "*+,-+ '.&".&/0&/!" 1%" "** )/(/ &"2 '2 %""  ).(/"**/2 %""  2 /&*/3' /"5&"6+6" /*./&' 0&/"(2/"&/2        3&.64"'33 :/" " 6/&"('2/"< 6"/7/((/2 " 6/&*'(" '4( &"0.(/"< 6"'& ("6'(3/  6/2 (' /"6/ /&'&*' "'&47'*3/  )&/ ( "0.(/"<,""'(- ("4&*3/"'23"33/   "= -+ > -+ >#  #  B=    ; = C  #  8#"," #

   #D @('6.2 %"G1"BG1@C )" %"%"&/' "(<( "< 6"* 0&/,<' /& E 8 8F  =%"888 # + > # + >  28)=      8   

# ( @('6.2 %" 1"B# 1@C )" %"%"&/' "&'.3( "< 6"* 0&/!"<' /&!".& "(:/2  E88F  "88 =%"888 #+ >  + >#  28)=  =     8    #

  )" %"%"&/' "(<( "< 6"* 0&/,<' /& E88F =%"888  + >  28=  )  #  #    #

  ( @('6.2 %"1"B1@C  !" 1%" " )" %"%"&/' "&'.3( "< 6"* 0&/!"<' /&!".& "(:/2  E#88F  "88 =%"888 #+ >  + >  28=  )=        

  )" %"%"&/' "(<( "< 6"* 0&/,<' /& E88F =%"888 #+ > #        28   # 8  #  

 ( @('6.2 %"#1"B#1@C '.&".&/0&/!"1%" "**  :'.%"" "-'(,*(/ )" %"%"&/' "&'.3( "< 6"* 0&/!"<' /&!".& "(:/2  E8#8F  " #88 =%"888 #+ >  #-+ >         28      8   #

  @('6.2 %"#1"B#1@C &6 / 0&'("*'2& "<' /&"&/./(('2 )" %"%"&/' "(<( "< 6"* 0&/,<' /& E## 8 8F  "88 =%"888 #+ > -+ >

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 55 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 56

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D        ! "#$  %&  ' '& (""$ ) *+'%$ #$, !- ."/0#$#$1$2$ !/!,#$. +-!/$"  3  4( ))#$""2 2$ "$/52#$ K&' %+%%+&L 4 6) + ++ %% 9 ' %% 7 % 1+   6   '  ' % & *  &77%       

4 & ;#" -1$)&'H4I&H;J 0$#$!"/0#) 7 *5  4 )##$3*%)' %58  !- ."/0#$#$1$  3  4( ))#$""2 2$ "$/52#$ K%+ *+%L 4 4 &+ + 6)&+&++ * 9 %% 8 9% %% 8 9&7 %% * % 43: 434 ;<4  % 77 %=1$+6 4  #1!34 4   ;#" -1$) *H4IH;J .>/! 4001$00$10$#$!#"""/0#)% +% &

/0#""$,$ 0$#$!"/0#) ?%& "        0$#$!#"""/0#)&5 ;#--#$110#$1"0#1!/$"@ / !/".!-$1#!"-$1  1$+"$$1#$10- "1  8"@ $# 1        !13 !AB!1C@# )7A- #1D#+E8#1 $#         3  4( ))#$""2 2$ "$/52#$ K&''&+&+*L 4 6) +&++ %% 9 % %%  *8 9 %% *8 9'7% %% 7' %  3<66 4 &%=12#$    '       

4*# & (""$ )%$ -)& % ;"1#2#$+-1$#$1"  3  4( )%)0""$#.#>//""/$1" K*7+'&+7L 4 4 '%+'7+& 6)&+%+%+ *%% 9 %% 8 9*% %% %8 9' % %% %& %  34  4  && 7& **+5&  %%  '**

4' 4&  3  4( )7)#$"#-! 2$ "$/2#$-$",1$" K7'% + +L 4 6)&+++ * 97% %% %* % &&+   +&+36 3 *= 7 '7 %* % *&  &

4%  * ;#" -1$)*7H4I&H;J  3  4( ))#$""2 2$ "$/52#$ K7%%+%+%L 4 '+*+ 6)&+ ++ * 9 %% *&' % &&+ 6 +&+3  3  '&  I+&'J % 777  &77%

47 & ;#" -1$)'&H4I%H;J (""$ ) %$  3  4( ))#$""2 2$ "$/52#$ K7' %+%+ L 4 4 ' + 7+ 6) + +%+ * 9&% %% %% 97 %% *& % &&+  36 3F '% 7 7+ %5 * IJ

4   ;#" -1$)M%H4IM &%H;J 3#$,#$"#""#-# /1". -" #$1   B.G $#           3  4( ))#$""2 2$ "$/52#$ K'*&+ +L 4 4 &+ +* 6) ++%+ * 9 7 %% * 9 %% % %  36 4  7 7 **+5% I'+*J %   ''%  !"#$%&"##''#() ;#" -1$)*H4I 'H;J

474 ;C;)( &-'  3  4( )7)#$"#-! 2$ "$/2#$-$",1$" K&&+*+ L 6)&+ ++ * 9'7 %% %% 9* %% %    4    %+ 5*

4&4&  3  4( )7)#$"#-! 2$ "$/2#$-$",1$" K7*+*&+L 6)&+&++ % 9% %% 7%&% % -+  36 4  7' ' *+  %% *  *%**

4&4 ;#" -1$)H4I*&H;J  3  4( )7)#$"#-! 2$ "$/2#$-$",1$" K&* &+&%+L 4 4 * +'*+ 6)&+ ++ * 9'% %% 7%&* % -+  6 34  %*  +*5  %  *&&%

47%4  ;#" -1$)7%H4IH;J  3  4( )7)#$"#-! 2$ "$/2#$-$",1$" K *77+&+L 4 6)&+ ++ * 9 ' %% 56 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 57

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D F7G" qGC@R@GE716@CECF7@)B3 " " "  

1!6!1gFd 4gVtcqpdiu$#ƒ1?#"ƒ4@ Xpaus`Vu`YtvsaVX`$hBh 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut

T!#U GF1) 31" 6A7F$Q b 4 b 4 HYDROPHOBIC F7G" qGC@R@GE7A3G6CQRF7@)B3  !""  ! 

16 CFd 4gVtcqpdiu$#ƒ1?ƒ4@ Xpaus`Vu`YtvsaVX`$hBh 1cVsb`XpiuspgtvsaVX`us`Vuh`iuaps`g`XusptuVudXXpqd`sqVsudXg`t RVhVVfd68qi9pfVd8D !!#)## 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T!"!!U 6A7F$Q b 4" b 4 F7G" GE7)1CBGR@27A3G6R@16@CECF7@)B3Wg`iY  ? "@

16 !1gFd "=1ViYcdbc`s=11" 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut T!"U GF1) 31!#" 6A7F$Q b 4 b 4 # F7G"" GE7)1CBGR@GE716@CECF7@)B3Wg`iY   ? "@

16 1gFd "=1ViYcdbc`s=11" 3hqgp€`YdiWpiY`YqcVt`taps6D@1paXVspu`i`t F``VgtpF76#!63Q)1CFR@GE716@CECF7@)B3%F7G" ?GE716@CECF7@R@A3G6R@@63DG)1CF)B3 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut T!"""U GF1) 31!## 6A7F$Q b 4 b 4 # F7G"  ?GE716@CECF7@R@A3G6R@@63DG)1CF)B3#= "  ?@ #      

1"6!1gFd 1piuVditdtph`st

4pshtWpiY`YqcVt`taps6D@1VqqgdXVudpit4pshtWpiY`YqcVt` 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut6R2EC@RG71F3BF7G7 T###U GF1)@ 6A7F$Q b 4 F7G"  !?GE716@CECF7@R@A3G6R@@D3BG)231)B3u`Xc# #""   #"       

1 61gFd 1piuVditdtph`st 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut 6A7F$Q b 4! F7G"! ?GE7231)4@HCECG3GE)6R2ECC1GR@@ ! "## !  27A3G6R@16@CECF7@)B3 4gVtcqpdiu$ƒ1? ƒ4@            

161g4Fd DVXfVb`Ypw`sXpqq`sqpxY`s 3hqgp€`YdiXpgvhiXcsphVupbsVqc€xc`s`gpxqspu`dis`u`iudwdu€dts`rvds`Y 3hqgp€`YditpgdYqcVt``yusVXudpipaagvpspvtqcVt`t ApYdadXVudpipagV€`s`YtdgdXVu`t€d`gYtadghapshdibXphqptdudpit QdiYv5`uVg !"##  1vssVi2!$" ! CbVxVA`uVg$ $%!"! 4psWsViXc`YagvpsdiVu`YVgf€gtdgVi`t``F70!  6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut T""!U 6A7F$Q b 4 b 4  F7G"! ?GE7231)4@HCECG3GE)6R2ECC1GR@@   "##    A3G6R@2716@CECF7@)B3 4gVtcqpdiu$ƒ1?ƒ4@

1#6!1g4Fd DVXfVb`Ypw`sXpqq`sqpxY`s IVqpsqs`ttvs`! ƒ$hh 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut T! #  U 31!! 6A7F$Q b 4 b 4  F7G"! ?GE7231)4@HCECG3GE)6R2ECC1GR@@ " "!  #  GE716@CECF7@)B3 4gVtcqpdiu$ƒ1?#ƒ4@

1"61g4Fd DVXfVb`Ypw`sXpqq`sqpxY`s @px`stuc`Xp`aadXd`iupaasdXudpipatdgdXpitvWtusVu`t 2`DVghVI`uVg &!'()" " 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut T!" #U GF1) 31!"#! 6A7F$Q b 4" b 4

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 57 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 58

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D          )0)  K    

   2,#:-%!>&()E) E       

 ! "!#$%#!&'()) )$& *+,-()) )./01%23 4$)%5)&63,&37)#865,$3()))1 01        !   "    #  !$%  # # 33),2#%)   

 ) "()()63,$&#)#2%92')9!&:)1%!#&86309,&36 IJ  ) ;()  <   <             )0)       ; 

!  ) "()()63,$&#)#2%92')9!&:)1%!#&86309,&36 IJ  ) ;()  <   <                )0)             ) =

2! %>&,!>#)?)=)!#%136# @6,>$:37)#&68$&863)5%61#)2%9)#865,$3)&3>#!%>);#  ) "()()63,$&#)#2%92')9!&:)1%!#&86309,&36 ;()  <      A A ;         

 2!  ) "()()63,$&#)6,-!72')9!&:)1%!#&863)9,&36)-6%&!$)#%2+3>&# I J  )   ;() <  <     A A;          

2! 2,#:-%!>&()E)  E *$%1B()))./01%23 ())!-6)1%8#3))1<0.<  ) "()()63,$&#)6,-!72')9!&:)1%!#&863)9,&36)-6%&!$)#%2+3>&# IJ  ) ;()  <   <     A A           

2! 2,#:-%!>&()E)  E  ) "()()63,$&#)6,-!72')9!&:)1%!#&863)9,&36)-6%&!$)#%2+3>&# I  J  )  ;()  <   <  

  A A ;               

! 2,#:-%!>&()E)  E 4$)%5)&63,&37)#865,$3()) )1 01 %61#)$,&,2'&!$)<32#)5%6),36%B!$)%C!7,&!%>)%5),2$%:%2#)!>)$%1B!>,&!%>)9!&:)&3&6,-6%-'2,11%>!81)-366:3>,&3   )!61!>>,) )3&),2 )   )  ) "()()63,$&#)#2%92')9!&:)1%!#&86309,&36 I  J  )    ;() <  <   .<    ;               2,#:-%!>&()E) E   2! ())!:2)1%8#3) %() )1<01 0 ; "!#$%#!&'()) )$& 8&%!<>!&!%>)&31-36,&863()) D ",-%6)-63##863) E() )11 6!&!$,2)&31-36,&863()) E ",-%6)-63##863) E() )11 6!&!$,2)-63##863()) ),&1 865,$3)&3>#!%>()) )1 01 *$%1B())).$,201%23 !-%23)1%13>&()) *5%61()) ).$,201%23 -3$!5!$):3,&()) )$,20<0D *+,-()) ).$,201%23 %355!$!3>&)%5)&:361,2)3C-,>#!%>()) )C) 

;%#&)3$%>%1!$,2),>7)B6%,72')8#37)#!2'2,&!%>)63,<3>&        >:,>$3#)2,!#3>)63,66,><313>&  >:,>$3#)&:3)73-6%&3$&!%>)%5)&@-6%&3$&37),1!>%),$!7#  >:,>$3#)3&:'23>3)<2'$%2).3&,2!F,&!%>)63,$&!%>  ,&,2'F3#)&:3)5%61,&!%>)%5)$:2%6%:'76!>)3#&36#)56%1)7!%2#  3+!3937),#)9,&36)#$,+3><36)!>)63,$&!%>#)%5)$,6B%>'2)$%1-%8>7#   )>!736)@ )@ ),>7),96'28.) ) ) )))  ):3>)@ ) )3&),2 )  )))    ):,>) ) )3&),2 ) ) )   )6,#)/ )3&),2 )  )))  )"%2%$:>8.) ); )3&),2 ) )) G()"%2 ))-)H)"%2 ))-)H)"%2 )-) H)"%2 ))-))-)H)"%2 )-) H)"%2 ))-)H)"%2 ))-)H)"%2 ))-) H )))"%2 ) )-)H)"%2 ) )-) H)"%2 ))-)H)"%2 ))-)H)"%2 ))-)H)"%2 ))-)H)"%2 ))-) H)"%2 ))-)H )))"%2 ))-) H)"%2 ) )-)H)"%2 ) )-))-) )-) H)"%2 )-)  ) "()()63,$&#)6,-!72')9!&:)1%!#&863)9,&36)-6%&!$)#%2+3>&# IJ  )   ;() <   <  .<  58 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 59

Gelest, Inc.

name MW bp/mm (mp) D 20 n 20 4 D F7G" GE7A3G6R@3G6CQRF7@)B3 " ! >"? !! ! D I P O    4gVtcqpdiu$ !ƒ1 >!ƒ4?

16CFd 1sdudXVg u`hq`sVuvs`$ ƒ IVqps qs`ttvs` ƒ$  hh 6XphW$ #! fXVghpg`

2dqpg` hph`iu$  6wVq$  fXVghpg` A L H Y D R O P B I C )iudtusvXuvsdib VYYdudw` aps tdgdXpi` svWW`s 6R2EC@RG71 F3BF7G7I7GR$ !$ s`VXut tgpxg€ xduc hpdtuvs`xVu`s T" U GF1) 31 !! 6A7F$ Q b 9 fb 9" fb 9 ! F7G"  GE7A3G6R@A3G6CQRF7@)B3  !" !   !"

16CFd 4gVtcqpdiu$ ƒ1 >ƒ4? 2dqpg` hph`iu$ " Y`W€` 6XphW$ #" fXVghpg` HiY`sbp`t gducdVudpi x u`suWvu€ggducdvh  0Vu`t G4 `u Vg    "! 4=4$ Ipg  q # 6R2EC@RG71 F3BF7G7I7GR$ !$ s`VXut tgpxg€ xduc hpdtuvs`xVu`s T" U GF1) 31 ! # 6A7F$ Q b 9# b 9  fb 9# F7G"! GE7A3G6R@F7@CQRGE716@CECF7@)B3   "  

16#1gCFd 4gVtcqpdiu$  ƒ1 > ƒ4? 6R2EC@RG71 F3BF7G7I7GR$ "$ s`VXut sVqdYg€ xduc hpdtuvs` xVu`s qspudX tpgw`iut T!U 6A7F$ Q b 9! F7G""! GE7A3G6R@F7@CQRGE73G6CQRF7@)B3    # "#! " 

1#6CFd 6R2EC@RG71 F3BF7G7I7GR$ !$ s`VXut tgpxg€ xduc hpdtuvs`xVu`s T!" !U 6A7F$ Q b 9! F7G"! GE7F>27A3G6R@)A7BC?A3G6R@F7@)B3 !   ! >? "   

1!6BFd 4gVtcqpdiu$ ƒ1 >" ƒ4? 6R2EC@RG71 F3BF7G7I7GR$ !$ s`VXut tgpxg€ xduc hpdtuvs`xVu`s T! "!"U GF1) 31 ##" 6A7F$ Q b 9 b 9" F7G"!# TGE7F>GE7A3G6R@F7@CQR?F7@R@3G6R@U27A3G6R@ ! "   #  16@CECF7@)B3

16!1gCFd 4psht cdbcg€ c€YspqcpWdX hpipgV€`st 1ViYdYVu` aps t`gaXg`Vidib tvsaVX`t         AX1Vsuc€ G `u Vg  !" !" 6R2EC@RG71 F3BF7G7I7GR$ "$ s`VXut sVqdYg€ xduc hpdtuvs` xVu`s qspudX tpgw`iut T!#!U 6A7F$ Q b 9" F7H# HB231R@GE716@CECF7@)B3 "#!     

161gFd 4gVtcqpdiu$ !ƒ1 >ƒ4? 3hqgp€`Y di F)AF Vt V tqVX`s hpg`Xvg` aps aviXudpiVgg€ udqq`Y tdgVi`t 6R2EC@RG71 F3BF7G7I7GR$ "$ s`VXut sVqdYg€ xduc hpdtuvs` xVu`s qspudX tpgw`iut T"!"U 6A7F$ Q b 9

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 59 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:54 PM Page 60

Gelest, Inc.

Hydrophobic Dipodal Silanes Dipodal Surface Bonding

name MW bp/mm (mp) D 20 n 20 4 D     < ;"A" 

     !"#$% &# B)#+/$'(1"2;D " <DB '( &% !)( "*$&"#)+,!&$-)&.$'"/$,% &#  "01"21"& )-(#"&)/!,"3(+"%$#(4& 5"3)( &5"/&$(-"#$6 '(# ;   ;  7 1"   8 9: >    5  7 9 ; 2  <        B)#+/$'(1"D " DB

<<    ): '("*$&"/&$( -($'"$*"/&%)&,")%' #5"'-4!':")%'$")-!# "=4&-5"" (")" ""5";2;  "01"21"& )-(#"&)/!,"3(+"%$#(4& 5"3)( &5"/&$(-"#$6 '(# 9 2    7  " < 2;  1"  8 9: >  : >;  < 5<  875"9? ;2  <"A" < 92

    B)#+/$'(1"9D "  DB  "01"21"& )-(#"&)/!,"3(+"%$#(4& 5"3)( &5"/&$(-"#$6 '(# ; << ; 1"   8 9: >9< 2 52   75"9?  < ;"A" < 9

  2   B)#+/$'(1"2D " 9  : >< 2 5  @@7  A   <;

;2   B$&%#"-,--"! &6)(6 #"$*"/$,)E, ' $ ! #"#4(). "*$&")'$'-"-$/$,% &F)($' "4'! 5"" (")""" 5" ;   "01"21"& )-(#"&)/!,"3(+"%$#(4& 5"3)( &5"/&$(-"#$6 '(# 9 <  1"  8 9: > < 5   7 9< 2     < 2 ;<   ! !"   " !"  # B)#+/$'(1"D " DB

  /$!)"-$4/':"): '(  "01"21"& )-(#"&)/!,"3(+"%$#(4& 5"3)( &5"/&$(-"#$6 '(# 9 <   7  "    1"  8 9: > : >< <9 5  87 9 2"A"9  ;

  B)#+/$'(1"G<9D " G9DB  "01";1"& )-(#"#$3,"3(+"%$#(4& A3)( & 2 ; 2  "  9  1"  8 9: ><  < 5  BC7    2

B  "01"21"& )-(#"&)/!,"3(+"%$#(4& 5"3)( &5"/&$(-"#$6 '(# ;2   1"   8 : >;9 22 5    7 < "A"  < ;9

  < $'! !"/+)# "*$&"@ "#(). "$6 &"3! "&)': "$*"/  "01"21"& )-(#"&)/!,"3(+"%$#(4& 5"3)( &5"/&$(-"#$6 '(# < 2;    7  1"  8 9: >< 2 5    75"( -+ 9 < 9< "A"

  <  "01";1"& )-(#"#$3,"3(+"%$#(4& A3)( & 9 ; < < 1"  8 : >

PLEASE INQUIRE ABOUT BULK QUANTITIES 60 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:55 PM Page 61

Gelest, Inc.

20 20 name MW bp/mm (mp) D4 nD          8 8%5% 9 

  D I P O

   !"#$%&'("! '$ $ ")$ $*+,*%! )!-&!. /%/!+* ,0$   % 1 2%2%")+/*$%$ !3 '%3 *&%#! $*4")53+*)" A L H Y D R O P B I C G8877 7 7H 62%7    0 ;8       77 8 %5% 7 89

    +$&-! ,*2%B% B !"#$%#)$!-!"!4$%$! 0) %$*"4/*4")$   % 1 2%2%")+/*$%"+- ( '%3 *&%#! $*4") %3+*)" %-"!* /%$! :),*$ G77 98 H  %7 998  62%7    0 ;8 0 ;8 7   6  9 7  88

   4/ )4$%

7   '("! '$ $%")$ $*+,*%( -!(+ %.!,()(%-&+$)%   % 1 2%2%")+/*$%"+- ( '%3 *&%#! $*4") %3+*)" %-"!* /%$! :),*$ 62%7    0 ;8 8       7 8%5%  8

    +$&-! ,*2%B% 79B !"#$%#)$!-!"!4$%$! 0) %$*"4/*4")$   % 1 2%2%")+/*$%"+- ( '%3 *&%#! $*4") %3+*)" %-"!* /%$! :),*$ G 7 H % 8  62%7    0 ;7 0 ;   7   > > 79  %5%8 9 7 8798 87

7   !"#$%#)$!-!"!4$%$! 0) %$*"4/*4")$   % 1 2%2%")+/*$%"+- ( '%3 *&%#! $*4") %3+*)" %-"!* /%$! :),*$ G  H 62%7    0 ; 8   %  978

88     % 1 2%2%")+/*$%"+- ( '%3 *&%#! $*4") %3+*)" %-"!* /%$! :),*$ 62%7    0 ;8   8   ? 88 7 %5%8  889

78  !"#$%-&),' ),) ." (0)(%$ /+%3 *&%!"()")(%-!")%3+ $  %,+0+@ %%)*%+ %%% %78 %A+,0 %A%)*%+ %  %%  %8   % 1 2%2%")+/*$%$ !3 '%3 *&%#! $*4")53+*)" G  H 62%    0 ; 0 ;8      789 9%5%7 77 9 8   +$&-! ,*2%B% B

878   2%%!"+ %"+* %2%%#05@0 1+-!"%-")$$4") %B2%## :+-2%%@C5#! ) (( * :)%*!%$ +,)%/!4- ,0%+0),*$%

! 0) $%!<%  . $ *" #)*&!D'$ ' + @+,)$%")-!"*)(7        !#-!,),*% ,%):+-!"+* !, ,(4/)(%$) < +$$)#. '%!<%#)$!-!"!4$%$*"4/*4")$8 !"#$%#)$!-!"!4$ %()" :+* E)+. )%#! )/4 +"%$ ):)$  %1+,%! F %A%)*%+ %  !"#" %% %9 %1+,%! F %A%)*%+ %  " %%$% %77 7%!' %%%)*%+ %    &"%% $ %87 8%4 %%)*%+ %    &"%% $$ % %6! () %%)*%+ %  %% %77 %&! %%)*%+ %  % % % ))%+ $!% %    % 1 2%2%")+/*$%$ !3 '%3 *&%#! $*4")53+*)" G 7 8H  %8   62%7    0 ; 0 ;89 @0 ;8

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 61 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:55 PM Page 62

Gelest, Inc.

20 20 name MW bp/mm (mp) D4 nD F70" 07F GE73G6CQRF7@R@A3G6)B3  && #! #"       

16C Fd 7iu`sh`YdVu`&aps&tpgb`g&XpVudibt&c€WsdY&dipsbVidXpsbVidX&qpg€h`st 4psht&h`uc€g`i`WsdYb`Y&h`tpqpspvt&tusvXuvs`t &ScVib&P&`u&Vg&&& & ! 6R2EC@RG71&F3BF7G7I7GR$&!$&s`VXut&tgpxg€&xduc&hpdtuvs`xVu`s T""!#U GF1)@ 6A7F$&Q b < b <#  F70" "07F GE73G6CQRF7@R@C1G)B3 "! !&&! # 

16 C Fd GCQ717GR$&&psVg&sVu&@2$& &hbfb 3hqgp€`Y&di&tpgb`g&t€iuc`tdt&pa&h`tpqpspvt&tusvXuvs`t Fpgb`gt&pa&>Wdt usdVgfpy€tdg€gVgfVi`t&s`qpsu`Y &@p€&2)&`u&Vg&  !"&& # & 6R2EC@RG71&F3BF7G7I7GR$&!$&s`VXut&tgpxg€&xduc&hpdtuvs`xVu`s T! U GF1) 6A7F$&Q b < b <#" F70"# 07F GE7A3G6CQRF7@R@231)B3 "  && #" 

1 6"C Fd D`iYViu&YdqpYVg&tdgVi`%&`hqgp€`Y&di&cdbc&q6&6D@1 6R2EC@RG71&F3BF7G7I7GR$&!$&s`VXut&tgpxg€&xduc&hpdtuvs`xVu`s T"!#U GF1)@ 6A7F$&Q b <" b <  F70" 07F GE7A3G6CQRF7@R@3G6)B3 ! &&  " #

1"6C Fd 4gVtcqpdiu$& ƒ1& #ƒ4        GCQ717GR$&&dic&sVu&@1$&&qqh        IVqps&qs`ttvs`&‡$&"hh 3hqgp€`Y&di&aVWsdXVudpi&pa&hvgudgV€`s&qsdiu`Y&XdsXvdu&WpVsYt &DVggVYdip&8&HF&DVu`iu&! &## F``&Vgtp&F70"! 6R2EC@RG71&F3BF7G7I7GR$&!$&s`VXut&tgpxg€&xduc&hpdtuvs`xVu`s T" U GF1) 31&" 6A7F$&Q b < # b < F70" 07F GE7A3G6CQRF7@R@3G6R@03BS3B3 !" "&& " !

1 6C Fd Ady`Y&dtph`st 4gVtcqpdiu$&#ƒ1& !#ƒ4 4psht&cdbc&s`asVXudw`&diY`y&XpVudibt 6R2EC@RG71&F3BF7G7I7GR$&!$&s`VXut&tgpxg€&xduc&hpdtuvs`xVu`s T"#"U GF1) 6A7F$&Q b < b < F70"  07F GE7A3G6CQRF7@R@63Q)B3    &&  

16C Fd 4gVtcqpdiu$&#ƒ1& ƒ4 Fpg5`gt&pa&>Wdt usdh`ucpy€tdg€gVgfVi`t&s`qpsu`Y &@p€&2)&`u&Vg&  !"&& # & 6R2EC@RG71&F3BF7G7I7GR$&!$&s`VXut&tgpxg€&xduc&hpdtuvs`xVu`s T"!U 6A7F$&Q b <" b < F70" 07F GE7A3G6CQRF7@R@A3G6R@03BS3B3   && #! ! 

16 C Fd 4psht&VYc`s`iu&adght&pi&h`uVg&tvWtusVu`t 6R2EC@RG71&F3BF7G7I7GR$&!$&s`VXut&tgpxg€&xduc&hpdtuvs`xVu`s T#" U 6A7F$&Q b <" F70" 07F GE7A3G6CQRF7@R@DECDR@03BS3B3  

1"6C Fd 6R2EC@RG71&F3BF7G7I7GR$&!$&s`VXut&tgpxg€&xduc&hpdtuvs`xVu`s 6A7F$&Q b < F71  16@CEC27A3G6R@F7@R@ T 16@CEC27A3G6R@ #  "  F7@R@3G6R@U071R1@C63DG)B3

16 1gFd Adyuvs`&pa&&ViY&&s`bdp&dtph`st&`yp&ViY&`iYp 4psht&qpg€h`st 6R2EC@RG71&F3BF7G7I7GR$&!$&s`VXut&tgpxg€&xduc&hpdtuvs`xVu`s T!U 6A7F$&Q b < F7G"""

 GE73G6CQRF7@R@ 273G6CQRA3G6R@F7@R@  && #         3G6)B3 4gVtcqpdiu$&ƒ1&  ƒ4

16CFd GCQ717GR$&&psVg&sVu&@2$&(&hbfb 2dqpYVg&tdgVi`%&apsht&VWsVtdpis`tdtuViu&tpgb`g&XpVudibt 7hqspw`t&c€Yspg€udX&tuVWdgdu€&pa&tdgVi`&VYc`tdpi&qsphpudpi&t€tu`ht 6R2EC@RG71&F3BF7G7I7GR$&!$&s`VXut&tgpxg€&xduc&hpdtuvs`xVu`s T""!U GF1) 6A7F$&Q b < b < fb <"

PLEASE INQUIRE ABOUT BULK QUANTITIES 62 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:55 PM Page 63

Gelest, Inc. Polymeric Hydrophobic Silanes Polymeric Surface Bonding P O L

20 20 name MW bp/mm (mp) D4 nD Y M E R I C H D O P B )GDU7RQ69C@F@ CH CH 2 2 FFD CH CH GE73G6CQRF7@R@AC274732DC@R0HG)273B3  # CH2CHCH2CHCH2CH diupgv`i` IdtXptdu€$XFu CH2CH2Si(OC2H5)3 1pvqgdibVb`iuaps3D2As`tdit T!###U GF1) 6A7F$Q tups`&‡ b 4  fb 4!"

CH2 CH2 FFD CH CH GE73G6CQRF7@R@AC274732DC@R0HG)273B3  # diwpgVudg`tdgdXpi` CH CHCH CHCH CH 2 2 2 IdtXptdu€$XFu CH2CH2Si(OC2H5)3 Dsdh`sXpVudibapstdgdXpi`svWW`st T!###U GF1) 6A7F$Q tups`&‡ b 4 " FFD" 273G6CQRA3G6R@F7@R@AC274732DC@R0HG)  # 273B3diupgv`i` IdtXptdu€$!XFu PVu`sus``s`tdtuViuVYYdudw`apsXspttgdifVWg`62D3XVWg`XgVYYdib 6A7F$Q tups`&‡ b 4"  FFD >GE73G6CQRF7@R@3G6R@?3G6R@3B3  >0HG)273B3?>FGRE3B3?u`sqpg€h`sdiupgv`i` (CH2CH)m(CH2CH)n(CH2CH CHCH2)p IdtXptdu€$XFu

CH2CH2Si(OC2H5)3 6A7F$Q b 4" 

Reactive Polydimethylsiloxane Oligomers

Chlorine Terminated CAS: [67923-13-1] TSCA Molecular Specific Code Viscosity Weight Gravity Price/100g Price/1kg DMS-K05 3 - 6 425-600 1.00 $55.00 $358.00 DMS-K13 20-50 2000-4000 0.99 $120.00 DMS-K26 500-800 15,000-20,000 0.99 $94.00

Dimethylamino Terminated PolyDimethylsiloxanes CAS: [67762-92-9] TSCA Molecular Specific Code Viscosity Weight Gravity Price/100g DMS-N05 3 - 8 450-600 0.93 $160.00

Ethoxy Terminated PolyDimethylsiloxanes CAS: [70851-25-1] TSCA Molecular Specific Code Viscosity Weight Gravity Price/100g Price/1kg DMS-XE11 5-10 800-900 0.94 $32.00 $210.00

Methoxy Terminated PolyDimethylsiloxanes CAS: [68951-97-3] TSCA Molecular Specific Code Viscosity Weight Gravity Price/100g Price/1kg DMS-XM11 5-12 900-1000 0.94 $29.00 $188.00

Silanol Terminated PolyDimethylsiloxanes CAS: [70131-67-8] TSCA Molecular Specific Refractive Code Viscosity Weight % (OH) (OH) - Eq/kg Gravity Index Price/100g Price/3kg Price/16kg DMS-S12 16-32 400-700 4.5-7.5 2.3-3.5 0.95 1.401 $19.00 $124.00 $496.00 DMS-S14 35-45 700-1500 3.0-4.0 1.7-2.3 0.96 1.402 $18.00 $117.00 $460.00 DMS-S15 45-85 2000-3500 0.9-1.2 0.53-0.70 0.96 1.402 $18.00 $117.00 $460.00

63 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:55 PM Page 64

Gelest, Inc.

Hydrophilic Silane Properties Polar - Non-hydrogen Bonding

20 20 name MW bp/mm (mp) D4 nD                   D')*%$#&+./ EB8 E BD  !"#$%&'&( !&$#!)' *&')+, -&*(#*&. / 0 0 (. 12.&+ ().)' *. 3#"4* 4#&*.5", ("#** '&+6)7', ",*&+* 8 -/ 9/ ",)(.* *'#:' :&.% 4#&*.5",2:).," 9>   8;  /    < => 6< = > 0       ;

8& )? -&+ ' 35+(.&#+)' % !"#$%&'&( !&$#!)' (#5$'&+< )<,+. 3#" $"#.,&+ &44#7&'&@).&#+ 8 -/ 9/ ",)(.* *'#:' :&.% 4#&*.5",2:).,"  /     < => 8  8;A 8; 99   2  >>

898'& 8 -/ / ",)(.* ")$&!' :&.% 4#&*.5",0 :).,"0 $"#.&( *#'?,+.*  /    < = < =  8 9 8;A 8; >9  2  

88'& 8 -/ / ",)(.* ")$&!' :&.% 4#&*.5",0 :).,"0 $"#.&( *#'?,+.* 9   8; 8 9    /    < = < =  8 9 8;A  ; 9  99 2  >9  

89& D')*%$#&+./ > B8 >>BD 8 -/ 9/ ",)(.* *'#:' :&.% 4#&*.5",2:).," 9>  >  8;  /    < = 8  8;A8; 9  2   > 

88' & 8 -/ / ",)(.* ")$&!' :&.% 4#&*.5",0 :).,"0 $"#.&( *#'?,+.*      /    < = > < =9 8 > 8;A;  >

8  & 8 -/ 9/ ",)(.* *'#:' :&.% 4#&*.5",2:).,"  /     < =  8  8; 8;    2    

898'& D')*%$#&+./ B8 BD -)$#" $",**5",0 B/  44 #+#4," 3#" $#')" *&'&(#+,* 5*,! &+ C8 $%)*,* 8 -/ / ",)(.* ")$&!' :&.% 4#&*.5",0 :).,"0 $"#.&( *#'?,+.* 9   8; 8  > >  /    < =  8  8;8;    2      

8 8' & 8/ #")' ").0 / 0 4<26< -)$#" $",**5",0 B/  44 ?)$/  6()'24#', 8 -/ / ",)(.* ")$&!' :&.% 4#&*.5",0 :).,"0 $"#.&( *#'?,+.* 9   8; 8  >   /    < => < =

PLEASE INQUIRE ABOUT BULK QUANTITIES 64 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:55 PM Page 65

Gelest, Inc.

20 20 name MW bp/mm (mp) D4 nD F71 1R)BC3G6R@GE73G6CQRF7@)B3 !  #!# 

1#6#BCFd 4gVtcqpdiu$" ƒ19"!ƒ4: GCQ717GR$psVgsVu@2$ hbfb P O L A R H Y D I C 1spttgdif`sapshpdtuvs`Xvs`tdgdXpi`EGItdhqspw`tav`gs`tdtuViX` 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T##U GF1) 31 6A7F$Q b 5 b 5# fb 5  F71  1R)BC3G6R@GE7A3G6CQRF7@)B3 !  !# 

1 6BCFd 4gVtcqpdiu$!#ƒ19!ƒ4: Xpaus`Vu`YtvsaVX`t$hBh 1spttgdif`sapshpdtuvs`Xvs`tdgdXpi`tdhqspw`ttpgw`ius`tdtuViX` 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T  !U GF1) 31#!  6A7F$Q b 5 b 5" F71 1R)BCDECDR@277FCDECDR@927A3G6R@)A7BC:   # " "# F7@)B3        

16 BFd FuVWg`X€VipaviXudpiVgWpiY`YqcVt` 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T !##U GF1) 6A7F$Q b 5 F71 1R)BCDECDR@27A3G6R@16@CECF7@)B3  ! "# #"          4gVtcqpdiu$"ƒ19"ƒ4:

1 61gBFd 1pvqgdibVb`iuapsViudWpYd`t )ggpxtapshVudpipa`g`XusptuVudXbVu`YiVipqps``g`XuspY`t 4VgdqpvF`uVg !"#$"%&'  PVib5`uVg(&# %&#$"%&#&##)*! !# 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut T" U GF1) 31#" 6A7F$Q b 5 b 5 F71 1R)BCDECDR@A3G6R@2716@CECF7@)B3 " !#"    

16#1gBFd 4gVtcqpdiu$#ƒ19#"ƒ4: GCQ717GR$psVgsVu@2$"hbfb Apiph`sapstdgdXpi`adghtapshdXsp`g`XuspY`tq`sh`VWg`upqpgVshpg`Xvg`t 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut T# U GF1) 31!! 6A7F$Q b 5# b 5! F71 1R)BCDECDR@A3G6R@27A3G6CQRF7@)B3 !# " ##! 

1!6BCFd F``VgtpF71! 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T!U 6A7F$Q b 5# b 5 F71 1R)BCDECDR@GE716@CECF7@)B3  #"           4gVtcqpdiu$!ƒ19 !ƒ4:

16 1gBFd 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut T!!"U GF1) 31## 6A7F$Q b 5 b 5!" F71 1R)BCDECDR@GE73G6CQRF7@)B3 ! !#" #  !

16BCFd 4gVtcqpdiu$!ƒ19 ƒ4: GCQ717GR$psVgsVu@2$ hbfb IdtXptdu€$XFu 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T !! U GF1) 31# 6A7F$Q b 5 b 5 F71  1R)BCDECDR@GE7A3G6CQRF7@)B3 "## #! ! 

1!6BCFd 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s TU GF1) 31#  # 6A7F$Q b 5 b 5 F71  1R)BCHB231R@GE716@CECF7@)B3 !   !

161gBFd @pibXcVdipsbVipaviXudpiVgtdgVi` 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut T!   U 6A7F$Q b 5

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 65 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:55 PM Page 66

Gelest, Inc.

Hydrophilic Silane Properties Polar - Hydrogen Bonding

20 20 name MW bp/mm (mp) D4 nD F7)  )13G)A72CDECDR@GE7A3G6CQRF7@)B3    

1"6#BCFd 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T!!! U 6A7F$Q b 6 F7) )13GCQR3G6R@27A3G6R@16@CECF7@)B3 "! "#    

1 61gCFd 4gVtcqpdiu$ ƒ1Bƒ4C 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut T" U 6A7F$Q b 6  F7) )13GCQR3G6R@A3G6R@2716@CECF7@)B3  !  !!  # 

161gCFd 4gVtcqpdiu$ ƒ1B#ƒ4C 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut T" U GF1) 31 6A7F$Q b 6# F7) )13GCQR3G6R@GE716@CECF7@)B3  ! !  ! 

16!1gCFd 4gVtcqpdiu$"ƒ1B"ƒ4C 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut T""U GF1) 31#! 6A7F$Q b 6" b 6# F7) )13GCQR3G6R@GE73G6CQRF7@)B3 !  #" 

16CFd ("ƒs`VssVib`tupVX`upy€usd`ucpy€tdgVi`x`yusvtdpipa`uc€g`i` 3WdVitf€9)`uVg              AEFDspX% 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T"U 6A7F$Q b 6 F7) )13GCQR3G6R@GE7A3G6CQRF7@)B3#@ "# "#!  

1!6 CFd 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T!"!"# U GF1) 6A7F$Q b 6 F7) )13GCQRA3G6R@27A3G6R@)13GCQRF7@)B3 #! #!  ""

1!6CFd 4gVtcqpdiu$ ƒ1Bƒ4C 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T"!"U 6A7F$Q b 6!" F7) )13GCQRA3G6R@GE73G6CQRF7@)B3       #

1#6CFd 6€Yspg€`tupapshtuVWg`tdgVipgtpgvudpitdii`vusVgxVu`s 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T "U 6A7F$Q b 6  b 6 F7) )13GCQRA3G6R@GE7A3G6CQRF7@)B3#@ # # " 

1 6CFd 4gVtcqpdiu$ ƒ1Bƒ4C 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T  #U GF1)@ 6A7F$Q b 6 b 6" F7)!" TB)13GCQRBDC@R3G6R@3B3CQRCDECDR@U ! ! ! GGE73G6CQRF7@)B3#@ IdtXptdu€$XFu 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s 6A7F$Q b 6!"

PLEASE INQUIRE ABOUT BULK QUANTITIES 66 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:55 PM Page 67

Gelest, Inc. H Y D R O G E N B I P L C

20 20 name MW bp/mm (mp) D4 nD F7)# )13GCQRDECDR@A3G6R@2716@CECF7@)B3  !    

1 61gCFd 4gVtcqpdiu$"ƒ19"ƒ4; 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut T#U GF1) 31  "6A7F$Q b 7  F7) )13GCQRDECDR@GE7A3G6CQRF7@)B3  #   

1"6"CFd 4gVtcqpdiu$#ƒ19##ƒ4; Xpaus`Vu`YtvsaVX`t$!hBh 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T#"U 31 "6A7F$Q b 7 b 7  F7) )13GCQRHB231R@GE716@CECF7@)B3 !!"" !# 

161gCFd 4gVtcqpdiu$(ƒ19(ƒ4; 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut T !!#U 6A7F$Q b 7" F7) )13GCQRHB231R@GE73G6CQRF7@)B3 !  

1#6CFd 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T##"U 6A7F$Q b 7  F7) 9B)13GR@5@R1R@;)A7BCDECDR@GE7A3G6CQR !"" 9!; " F7@)B3<dih`ucVipg 4gVtcqpdiu$ƒ19#ƒ4;

16BCFd )hdipVXdYudqq`YtdgVi` 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s 6A7F$Q b 7 F7)## BT9)A7BC9DC@RDECDR@3BCQR;U)A7BCDECDR@ ! #" " GE7A3G6CQRF7@)B3  < qspq€g`ipy€vidut 1piuVditVhdi`u`shdiVu`Yqpg€qspq€g`i`pydY` 1pvqgdibVb`iuxducadghapshdibXVqVWdgdu€ 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s 6A7F$Q b 7!  F70## 03BSCR@CQRDECDR@GE7A3G6CQRF7@)B3 ""   "

16CFd 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T!  U GF1) 6A7F$Q b 7! F70" 07F9GE716@CECF7@R@DECDCQR;231R@CQR " # " DECD)B3

1#6"1g CFd

2dqpYVg1"ViVgpbxduc`hW`YY`Yc€YspqcdgdXdu€ 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut T" #U 6A7F$Q b 7 F70" 07F9GE716@CECF7@R@DECDCQRA3G6R@; #! #  CQ)GE7231)B3#<

161g CFd 2dqpYVgc€YspqcpWdXtvsaVX`us`Vuh`iuxduc`hW`YY`Yc€YspqcpWdXdu€apsXcsphVupbsVqc€ 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut T" ###!U 6A7F$Q b 7" F70"" BBC07FT9GE73G6CQRF7@R@DECDR@;)A7BC  "" "  1)E0CBR@UDC@R3G6R@3B3CQ72393C;   !  !"   2dqpYVgc€YspqcdgdXtdgVi`      " # $%$&%$ '   $ IdtXptdu€$XFu "$"  $( ! 7iXphWdiVudpixductvgapgVi`apshtb`g`g`Xuspg€u`apstpgVsX`ggt )%  #)$ "$" 4pshtqspupiXpiYvXudibc€WsdYpsbVidXdipsbVidXqpg€h`s`g`XuspY`h`hWsVi`t FuVucVupt3`uVg      6pihV7`uVg    " 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T!"""#"U GF1) 6A7F$Q b 7 

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 67 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:55 PM Page 68

Gelest, Inc.

20 20 name MW bp/mm (mp) D4 nD               !"#$%&""'#&(")* !+*$"$%'$"&,) ))&"'!   - . /0/ )&%#''"!1"1$#*2!$'#3 )41&#) 5/    6 A  0  7  8 9:;<  0  0  ;

-;$ >"&'*+!$,#/EF- E F> .$'%!3')""!1"$=3$ >! 2'?$"2'!,)")%# ! )'?!  )#) 2$,&#$!,!?2) %3    @3! )#&" )4QD`V!RXU WDU0  - . /0/ )&%#''"!1"1$#*2!$'#3 )41&#) 7;; ; 8 5/    6 A     7  89:<$,)#*&,!"  0  ;

-;0$ >"&'*+!$,#/F- 0F> ))&"'!  9;   - . /0/ )&%#''"!1"1$#*2!$'#3 )41&#) 7;  8 5/    6 A   6 A      5 9:;<      ;       

-  0$ :2() "$=3$ >"&'*+!$,#/EF- E F> .$'%!'$#/ %# : *)'$!,+ !2!#) ?!  +& #%!, ),'&#$!,%3 )'$"$%!,) .'  - . /0/ )&%#''"!1"1$#*2!$'#3 )41&#) 7  8 -: 5/    6 A  6 A  G6 A   -   -:5 -5 - ; ;  4  ;    : >"&'*+!$,#/F- F>

-;-"$ !,6%*&$,! 6&,!?3,%#$!,&"'$"&,)  - . // )&%#' &+$ "1$#*2!$'#3 )1&#) + !#$%'!"B),#' 7 0;  8 5/    6 A  6 A  -0   -:5 -5 5     4  ;   ;; :

-  $ !,6%*&$,! 6&,!?3,%#$!,&"'$"&,)  - . /0/ )&%#''"!1"1$#*2!$'#3 )41&#) 5/    6 A  6 A  -0   -:5 - -: 0  4  

- -" $  - . /0/ )&%#''"!1"1$#*2!$'#3 )41&#) 7 ; 8 5/    6 A  -   -:5  5 -   ; ;4  0    ;  :#)%* ; >"&'*+!$,#/F- F>

--"$ -!,#&$,'C< %& (!2)#*!D)#*"2)#*" $%*"! !'$"&,)$'!2)  - . // )&%#' &+$ "1$#*2!$'#3 )1&#) + !#$%'!"B),#' 7  8 -: 5/    6 A  -0   -:5   -:   ; 4     1$7'@075("'03536(0@04534(32 7$! >"&'*+!$,#/E F- EF>

-0-" $ #)%* ; -!,#&$,'C< %& (!2)#*!D)#*"# $%*"! !'$"&,)$'!2)  - . // )&%#' &+$ "1$#*2!$'#3 )1&#) + !#$%'!"B),#' 70  8 -: -    5/   6 A ;  6 A  -0   -:5   5 :  ; 04   ;   1$7'@075(1$7'39@6(0@04534(32 7$! >"&'*+!$,#/E F- EF>

-0$ #)%* ; -!,#&$,'C< %& (!2)#*!D)#*"# $2)#*!D'$"&,)$'!2)  - . /0/ )&%#''"!1"1$#*2!$'#3 )41&#) 70   8 5/   6 A 

PLEASE INQUIRE ABOUT BULK QUANTITIES 68 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:55 PM Page 69

Gelest, Inc. H Y D R O G E N B I P L C 20 20 name MW bp/mm (mp) D4 nD            

   !"#$%&'("!)&!* +%)&,$-$%. /&%-#*-((-(%&'("!)& 0 + /' !"#$%!"1,2 + 2!"1,2 +%3-$ +0-$%4+-",$!#-"$5 %,$& 67#- %8%-/%,0%    %% % %  % 9:%;:%"-,+/$%$0!.0'%. /&%#! $/7"-<.,/-" @;;  A 8:%    1 G ; O  ;       %=  %<% ;  

O 0 

!"#$%%*!2(-(%)&,$-$%. /&%-#*-((-(%&'("!)& 0 + /'

Si  % 9:%;:%"-,+/$%$0!.0'%. /&%#! $/7"-<.,/-" Cl Cl Cl 8:%     1 G 8 8         %<%  ;

0  !"#$%$-0> ,$$-#*0-(%#!2!0,'-"$%. /&%?&'("!)& 0 +%/ )$?  % 9:%:%"-,+/$%",) (0'%. /&%#! $/7"- %.,/-" %)"!/ +%$!03-2/$ @  A 8:%    1 G 8

 @8  4 5  A ;  88  

 4 5 4545 4 5  % 9:%;:%"-,+/$%$0!.0'%. /&%#! $/7"-<.,/-" 8:%    1 G  8  @8 4   5 A ;        %/-+& 

 4 5 450 !"#$%&'("!)& 0 +%$7">,+-$ "!3 (-$%)"!/- 2%,2/ >!70 21%$7">,+- %-++&-/ % %-/%,0 %;  % 9:%:%"-,+/$%",) (0'%. /&%#! $/7"- %.,/-" %)"!/ +%$!03-2/$ @  A  8:%     1 G; 8;  @8 4   5 A   4 5  ;   8   %/-+&  0,$&)! 2/:%H%4 H 5

4 5 45  4 5 9 $+!$ /':%%%+/ -(7+-$%2!2 $)-+ > +%* 2( 21%!>%)"!/- 2$ !"#$%+&,"1-%2-7/",0%+!,/ 21$%!2%(-%B7,2/7#%(!/$%.& +&%+!27C71,/-%  %,",D %E%-/%,0% % --%,0$!%F %  % 9:%;:%"-,+/$%$0!.0'%. /&%#! $/7"-<.,/-" @ ; A  8:%    1 G;  1 G; 8;  @8 4   5 A  ;  ;   8   %/-+&  0,$&)! 2/:%H%4 H 5

4 5 45  4 5  % 9:%;:%"-,+/$%$0!.0'%. /&%#! $/7"-<.,/-" @ ; A  8:%    1 G;  1 G; 8;  @8 4   5 A    8   %/-+& 

 4 5 45 4 5  % 9:%;:%"-,+/$%$0!.0'%. /&%#! $/7"-<.,/-" @ ; A 8:%     1 G

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 69 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:55 PM Page 70

Gelest, Inc.

20 20 name MW bp/mm (mp) D4 nD F7A # A3G6CQRDECDR@GE7A3G6CQRF7@)B3 # #"# ##

1!6"CFd 4gVtcqpdiu$ƒ1:!ƒ4; 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T"#U 6A7F$Q b 1" b 1 F7A # A3G6CQRGE73G6R@3B3CQRDECDR@GE716@CEC #! "  F7@)B3

161gCFd 6R2EC@RG71F3BF7G7I7GR$"$s`VXutsVqdYg€xduchpdtuvs`xVu`sqspudXtpgw`iut T"!"! U GF1)@ 6A7F$Q b 1 F7A # A3G6CQRGE73G6R@3B3CQRDECDR@GE7A3G6CQR       F7@)B3

16C!Fd 4pshtqpg€h`sdXqspupiXpiYvXudib`g`Xuspg€u`t EduXcd`8`uVg    6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T""U 6A7F$Q b 1" F7A #! A3G6CQRGE73G6R@3B3CQRHB231R@GE7A3G6CQR " " F7@)B3   

16 C!Fd 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s 6A7F$Q b 1" F7G! G3GE)6R2EC4HE4HER@CQRDECDR@  !  ## GE73G6CQRF7@)B3

16CFd 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s 6A7F$Q b 1#  F7G""  :GE73G6CQRF7@R@DECDCQR;3G6CQRFH@4C@)B3 " # 

16C!FFd #< 4pshtc€YspqcdgdXtvsaVX`t 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T#"U 6A7F$Q b 1  F7G""  GE73G6CQRF7@R@DECDCQR:DC@R3G6R@3B3CQR;  " #!! !#  2C231)BC)G3:3Cvidut;

1!6 C"Fd 1piuVXuVibg`:us`Vu`YtvsaVX`;xVu`s$ ƒ 1piuVXuVibg`:us`Vu`YtvsaVX`;`uc€gc`y€gqVghduVu`$&ƒ DspwdY`t`hW`YY`Yc€YspqcdgdXdu€xducpg`pqcdgdXXphqVudWdgdu€ FvsaVX`us`Vuh`iuttuVWdgd`qVsudXg`Ydtq`stdpit )sfg`t0`uVgdi     AduuVg93Y%IFD:0sdgg;#Ipgq 6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s TU 6A7F$Q b 1"" F7G"!! GE7F:GE7A3G6CQRF7@R@DECDR@;7FC1R)BHE)G3 " !  

16BCFd u`Xc# 4gVtcqpdiu$ƒ1: ƒ4;        IdtXptdu€$XFu )Yc`tdpiqsphpu`sapscpuh`guVYc`tdw`t 1pvqgdibVb`iuapsqpg€dhdY`tuptdgdXpih`uVg 4pshtq`sdpYdXh`tpqpspvttdgdXVt ScVibP`uVg      6R2EC@RG71F3BF7G7I7GR$!$s`VXuttgpxg€xduchpdtuvs`xVu`s T !"U GF1) 31! " 6A7F$Q b 1 b 1# fb 1"

PLEASE INQUIRE ABOUT BULK QUANTITIES 70 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:56 PM Page 71

Gelest, Inc. Hydrophilic Silane Properties Hydroxylic

20 20 name MW bp/mm (mp) D4 nD             !" #$%&"'(

  ! )*+',%!(!- +#&.#"$ /'+ 0!'1!1#$!- 23+/&-# 1'*!/!-&$!'"   45 5 +#&-$2 2('6() 6!$% 1'!2$3+#76&$#+ 85    . >  9  9   8  :   :  :     !" #$%&"'( B(&2%,'!"$5 H HB     ! ,#-!/!- 6#$$!". 23+/&-#5  1 7. '"$&!"2  %)*+';)#$%)(&1!"',+',)($+!#$%';)2!(&"# <+#$%&"# ,'()1#+ -'3,(!". &.#"$ 1,(')#* !" 23+/&-# 1'*!/!-&$!'" /'+ ,+#,&+&$!'" '/ '(!.'"3-(#'$!*# &++&)2   8-=&(( = #$ &(           45 5 +#&-$2 2('6() 6!$% 1'!2$3+#76&$#+ @   A      : 85    . >   . >:  9   ? 9   ? 9 8    :  8    !" 1#$%&"'(

 ! B(&2%,'!"$5 H HB   45 5 +#&-$2 2('6() 6!$% 1'!2$3+#76&$#+ @   :A 85    . >  9  9 @     :  ::   A    !" #$%&"'( B(&2%,'!"$5 H HB

!     45 5 +#&-$2 2('6() 6!$% 1'!2$3+#76&$#+ 85     . >  9   9 8    :: 9<   !" #$%&"'(

:! B'+ 2'(!* 2$&$# 2)"$%#2!2 '/ '(!.'"3-(#'$!*#2 @: : A 85     . >     88      ::   8   !" 1#$%&"'( B(&2%,'!"$5 H HB

: !   45 5 +#&-$2 2('6() 6!$% 1'!2$3+#76&$#+ @   A 85    . >  . >:    8   !" #$%&"'( :     

! '"$&!"2 #C3!(!0+!31 -'"*#"2&$!'" '(!.'1#+2 )*+'()2!2 )!#(*2 &"&('.2 '/ 2!(!-& %)*+';)1#$%)(2!(&"#$+!'( ,'()1#+2   +D(#2 9 < &$#"$   ::   45 5 +#&-$2 2('6() 6!$% 1'!2$3+#76&$#+ @  :A 85     . >:    @  A    :         !" #$%&"'(   45 5 +#&-$2 2('6() 6!$% 1'!2$3+#76&$#+ 85     . >  :  =< 8 ::   :

 :!  !" #$%&"'( B(&2%,'!"$5 H HB E&$#+ 2'(30(# %)*+',%!(!- 2!(&"#   45 5 +#&-$2 +&,!*() 6!$% 1'!2$3+# 6&$#+ ,+'$!- 2'(F#"$2 @  A 85     . >  . >:  :           9<8

 : ! "-%'+!". +#&.#"$ /'+ (!.%$ *!+#-$#* 2)"$%#2!2 '/   '" .(&22   8-=&(( = #$ &(     !!    45 5 +#&-$2 2('6() 6!$% 1'!2$3+#76&$#+ @  A 85     . >   . >  :         :   

 <  : '"$&!"2 2'1# 0!2 3+#$%&"# &"&('.       

 !   4!2-'2!$)5   -$ )*+',%!(!- 23+/&-# 1'*!/!#+ B'+12 =)(&$#* .(&22 23+/&-#2 23!$&0(# /'+ -&,!((&+) #(#-$+',%'+#2!2   &G3".3G6&  #$ &( "   #$%   ## &(2' 9    45 5 +#&-$2 2('6() 6!$% 1'!2$3+#76&$#+ @: : A  85     . >  . >  D. >  71 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:56 PM Page 72

Gelest, Inc. Hydrophilic Silane Properties Ionic-Charge Inducible

20 20 name MW bp/mm (mp) D4 nD             !"#$ %#"&!'() A%/7 >#&,.5G*GA

*&+*% )&,-'. /,#% -0'"%&12&!  3  *  4  565"'/$.77%#8% 8&. -#&7.2"'98/.'" H=I *  5 : ;= : ;              < *  3(=)&,-'. /,#% A%/7 >#&,.5G*GA

*&+*%  !"#> &%&$/--#,&2,7/%.?@#"-7/,.&@#:72"@/$'@&%-7  3  *  4  565"'/$.77%#8% 8&. -#&7.2"'98/.'"  5 : ;            69  

*=& A%/7 >#&,.5=G*GA ''/%7#   3  *  4  565"'/$.77%#8% 8&. -#&7.2"'98/.'" H6I  5 : ;= : ;  *= *      (3 <   = 6 

*=/& )&,8/.'" >5 ,$#-0&,/.&#,89/-&,#@2,$.&#,/%7&%/,'7@#"-7/-> #.'"&$7&%&$/7 /,( './%  ( (=  3  *  4  55@#"-77./0%'/12'#277#%2.&#,7 H6I  5 : ; : ;=  * * < A    *   6  ()&,-'. %','$ %#"&!' *  *%  & Solid Phase Extraction     (SPE) columns with *#,./&,7)@"''72%@#,&$/$&!/,!7-/%%/-#2,.7#@7&% %72%@#,&$/$&!$#,!',7/.&#,>"#!2$.7 benzenesulfonic acid ->%# '!&,>"'>/"/.&#,#@7#%&!> /7''B."/$.&#,$#%2-,7 functional-  3  *  4  55"'/$.7"/>&!% 8&. -#&7.2"'(8/.'"(>"#.&$7#%C',.7 * *6=6  5 : : ;= ized silica H66I ; are utilized  * to analyze * < A    *    urine  ()&,.#%2',' *  *%  & samples for     *#,./&,7)@"''72%@#,&$/$&!/,!7-/%%/-#2,.7#@7&% %72%@#,&$/$&!$#,!',7/.&#,>"#!2$.7 amino acids ''/%7# 6 and drugs  3  *  4  55"'/$.7"/>&!% 8&. -#&7.2"'(8/.'"(>"#.&$7#%C',.7 of abuse. H66I * *6=6  5 : ; : ;=  *6 * < A          ()&,-'. %','$ %#"&!'

*6*%& -0'"$#%#" *#,./&,7@"''72%@#,&$/$&! "'/.'!7&%&$//$.7/7'. '"&@&$/.&#,$/./% 7. '/:',.@#"72"@/$'&,&.&/.'!  ->%# '!&,-'7#7."2$.2"'!@2'%$'%%-'-0"/,'7 #8('./%      ( A2D2!/(E'./%  ((6 '"'&"/(A'./%  (6  3  *  4  565"'/$.77%#8% 8&. -#&7.2"'98/.'" H=I  5 : ;6 : ;  3 (3 3*        =     < *  3()&,-'. /,#% A%/7 >#&,.5G*GA

*6=*%&

*#,./&,7)*%*& ' ,$#-0&,/.&#,8&. @#"-7 &: >#"'C#%2-'B'"#:'%789/!7#>.&C'$/>/$&.   /"D#C&.F( './%    (6  3  *  4  565"'/$.77%#8% 8&. -#&7.2"'98/.'" H==I * *6  5 : ;

PLEASE INQUIRE ABOUT BULK QUANTITIES 72 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:56 PM Page 73

Gelest, Inc.

20 20 name MW bp/mm (mp) D4 nD           +#2#       H Y D R O X L I C P / N

    !" #$%&#'() & #*)&(#+,& # -"  #  - .#.#&(* "#" %/ !#/ 0#1%" )&(2/ (& J5+ +K + .#+++ 3 ;   4+     ###  

5  0&3(#*%' &% #3(' #$%&# %'(&#,& * (" &%"" '6(&#$%%" )&(+*)&(#" *%'(# -"  #  - .#.#&(* "#" %/ !#/ 0#1%" )&(2/ (& J ++K + .#+++ 3 ; 5  4+ ++77     #2#   

  G "0,%' .#># >G 7&%89("#" *+"),,%& (9#*  !" #$%&#4 +99 %'#&(* %'" ) )6)&4#:#( # #   4# 4#5  #  - .#.#&(* "#" %/ !#/ 0#1%" )&(2/ (& J +5+K  #++ .#+++ 3 ; 3 ;      +  +  5 77<#  4#=#'#1( 0'% G "0,%' .#># >G

 5  %' '"##+=#   ( ) %3' %'# (1,(& )&(.##> &(' "# ?)9#*&!"  "        1, %!(9#"##3 ""# )@&*' 7&%89("#'#' "  *#")&$*(#*% '3 ",(&"%'2*%), '3#3(' #$%�30#9('" !#13'( *#&(*%&9'3#1(9 ,, * %'#"#11%@ A@ (#' 1*&%@ #&(,%& (9 #-'*(' 4# #'#    ##(!9('4#4# 9B#C%&9%'#D#E&(*0.#B#, #F0 (4#F#( # #'#   ! #(!9('4#4# 9B#C%&9%'#D#E&(*0.#5B#, ((# "%#4#  #  - .#.#&(* "#" %/ !#/ 0#1%" )&(2/ (& J5++K  # 5++5 .#+ ++ 3 ;5 63 ;5 7 + +7  77  +  5 +#2# 5  5 

   #  - .#.#&(* "#" %/ !#/ 0#1%" )&(2/ (& J5++ K .#+++ 3 ;5 7 + +7  77  +  5 +#2#   

  ,:.# 5 11%@ A@ (# 3'9#$%&#11)'%3 %@) '# 3C#"(,& %'#)"'3#0!9&%,0%@*#*0&3(#'9)* %'#*0&%1 %3&,0!#   #  - .#.#&(* "#" %/ !#/ 0#1%" )&(2/ (& J5+ + K .#+++ 3 ;  75 + +7      #2#    

  1@(&# ?)9 G%&1"#"( $+""(1@ (9# !(&"#/0*0#*'#@(#H''%+"08(9I#@!#"*'''3#G #%"4##( # #!  "!!4##$4# ((# "%#7  #  - .#.#&(* "#" %/ !#/ 0#1%" )&(2/ (& J5+ +K .#+++ 3 ; 7 + +7     #2#    %&'( ')*+ "+"')+",-+( . / G "0,%' .#L># L>G

  ((# "%#75  #  - .#.#&(* "#" %/ !#/ 0#1%" )&(2/ (& J++ K .#+++ 3 ;  3 ;   5 +J+   K7   5+9(*%1,%"(" 

 5  G)1'3#"% 94#1%" )&(#"('" 8( ((# "%#7  #  - .#5.#&(* "#&,9 !#/ 0#1%" )&(4#/ (&4#,&% *#"% 8(' " J5++5K  # ++5 .#+++ 3 ; 

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 73 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:56 PM Page 74

Gelest, Inc.

20 20 name MW bp/mm (mp) D4 nD    

  ! "#$%!% B&/<1#!"9 J JB &'( )$*+ %,"-%.%( .#/"$-% /%!/"0% .1#(%* ! 1#(1(-*!% /%2 &//%.3%* .#!#&(%-/  &$/#!4  %" & )"QHV6XF "QHV"XVVcW 4 4 5 %% &/# 5   67  89 9 -%&:"/ -&1*( ;"< .#/"$-%4 ;&"%-4 1-#": /#0%!"/    K =     69   7 > ?   > ?     7 4      C     6=@ B&/<1#!"9 I J I  JB (1(# A30(2@04534@075($7'39@6(0 2$ (1$3

  5 

8/:#/"(9  :"        #$1!> &>%!" 2#- %%0&"%* "%.1%-&"$-% :$-% %1#,%/ A"'%* !  #2 .%"& :<%&"%/ B#-./ 1-#"#! 0&:&!:( :#!*$:"!> 1#(.%-/ ;C/$2#!&.*%/ 3( /# >% >&!* 2#- .#%:$&- .1-!"!> #2 /:& ;"< :<(.#"-(1/! "-&!/"#! /"&"% &!&#>  $'$D4  %" & "QHV0Hbb   % @%& E%-.$*%'4 8 %" & 6XU&HU3YbRFa(( 64($4`XF  4    6&-D#;"'4 6 %" & 0DWPVcR` 4 4   89 9 -%&:"/ /#;( ;"< .#/"$-%C;&"%-  5  5K =  5   69   7 > ?  > ?5  D> ?5    7    7=A6 AB=4  ! %"<&!#

 5F

 89 9 -%&:"/ /#;( ;"< .#/"$-%C;&"%- 69  7 > ?    7  =AB =  5 

 5   ! ;&"%- 19 G .1#(%* ! 1-%1&-&"#! #2 !&!#/:&% #!: /:&/  H&!!%/4  %" & YYU3`PDWXVHb"QHV 4 4   89 9 2#-./ /"&3% &)$%#$/ /#$"#!/   K = 69  7 > ?  > ?55   76=4    A6 =4 ! ;&"%- B&/<1#!"9 J  JB

  &5 #!"&!/  .%"<&!#4 /#*$. .%"<(1<#/1<#!&"%  89 9 2#-./ /"&3% &)$%#$/ /#$"#!/  5  K =     69  7  > ?5  > ?5    67E@ 44  55 6=66A6 4 5 ! .%"<&!# B&/<1#!"9 J JB

  &!**&"% 2#- %,:<&!>% -%/!/ &!* %,"-&:"#! 1<&/%/  89 9 -%&:"/ /#;( ;"< .#/"$-%C;&"%- 69    7 > ?5 

 67 5    C            =64  B&/<1#!"9 J  JB

   79 #-& -&"4  9 I 4 .>CD> : #2 "-%&"%* /$-2&:%9  .C. &-*%!%-4 :#$1!> &>%!" 2#- %1#,%/  89 9 -%&:"/ /#;( ;"< .#/"$-%C;&"%-    K =     69    7  > ?  D> ?     67=64 5   5 = =4 A6 =4  ! ;&"%-

   & //%!"&( /&!%"-#4 :#!"&!/ & <%&"%/ .%"& #!/  89 9 2#-./ /"&3% &)$%#$/ /#$"#!/    K = 69 7 > ?   > ?

PLEASE INQUIRE ABOUT BULK QUANTITIES 74 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:56 PM Page 75

Gelest, Inc.

                !"#$%&'          

( )! *"%!+!,'-.!$($,%!/!%0'&1-'%&2 134 55&"%!$((05!($"&%'!-(   6337-'+55%$.(&$89&-955-(9%!-"5 E4 )4 F * )  ) 3    : B         " ;     * ;   !"+&%<$"-( C($5<1-!"%3G GC

;' )! ++-.!(!=$.(&1<$5&%'$"57&',$%$(05%   633'&$,%55(-#(0#!%<+-!5%9'&>#$%&' 3)    : B         " ; )    *    !"+&%<$"-( C($5<1-!"%3G GC

( )! @ -"%$!"5)  ,<(-'-1'-10(%'!+&%<-?05!($"&$"2;9)  (   633'&$,%55(-#(0#!%<+-!5%9'&>#$%&' 3)    : B          )    )44 *    !"+&%<$"-( C($5<1-!"%34G 4GC                  ( )! +1(-0&27-'.-"2&2,<'-+$%-:'$1#$%&' E) )4 F *  ))  3    : B  A: B)         " ;    4   ) * ;   !"2!+&%<0(7-'+$+!2& C($5<1-!"%3G )GC

4;' )! ++-.!(!=$.(&1<$5&%'$"57&',$%$(05%   633'&$,%55(-#(0#!%<+-!5%9'&>#$%&' 3)    : B 

   %' ("! "$

    ! "#   4   C      

H        -     !"!5-1'-1$"-( + Cl H N 6!5,-5!%03 ,% D -7"!%'-:&"559.5%!%9%&2 n N 4n +1(-0&2$5$,-91(!":$:&"%7-'1-(0$+!2&5  ",-+.!"$%!-"#!%<:(9%$'$(2&<02&!++-.!(!=&5&"=0+&5  Si(OCH3)3  *'A(&5 ; &%$( "2-+1-5!%&"5% '-,     '$+&'  &%$( " # !$ %" $& ) E)44  F * 3    : B  A: B)4 

H  4        - + Cl H N  C       n N 4n     !"!5-1'-1$"-( 6!5,-5!%03 ,% D -7"!%'-:&"559.5%!%9%&2 Si(OCH ) 3 2 '!+&'7-'.'$55 OCH 3 E  F * 3    : B)  A: B 

Water-borne Aminoalkyl Silsesquioxane Oligomers TSCA

+ δ H 2 2 Functional Molecular Weight % Specific N CH 2 CH H H 2 − C Code Group Mole % Weight in solution Gravity Viscosity pH Price/100g 3kg O δ Si

OH WSA-7011 Aminopropyl 65-75 250-500 25-28 1.10 5-15 10-10.5 $29.00 $435.00 H 3 O C 2 n N CH i H 2 S H WSA-9911* Aminopropyl 100 270-550 22-25 1.06 5-15 10-10.5 $24.00 $360.00 C 2 O O 2 H H C m − Si + H δ WSA-7021 Aminoethylaminopropyl 65-75 370-650 25-28 1.10 5-10 10-11 $29.00 $435.00 δ OH H 2 O O N Si H C O WSAV-6511** Aminopropyl, vinyl 60-65 250-500 25-28 1.11 3-10 10-11 $35.00 $480.00 H 2 2 C CH H 2 *CAS [29159-37-3] **[207308-27-8]

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 75 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:56 PM Page 76

Gelest, Inc. Aqueous exposure of treated surfaces Epoxy Functional Silanes converts Epoxy-Silanes to Hydrophilic-Diols Epoxy Functional Silanes - Trialkoxy

20 20 name MW bp/mm (mp) D4 nD

F73 "         3DCQR1R1@C63QR@3G6R@GE73G6CQRF7@)B3 "" !$$  

16"CFd 4gVtcqpdiu$$ƒ1$ #ƒ4 )Yc`tdpi$qsphpu`s$aps$xVu`sWpsi`$XpVudibt$pi$VgfVgdi`$tvWtusVu`t 6R2EC@RG71$F3BF7G7I7GR$$!$$s`VXut$tgpxg€$xduc$hpdtuvs`xVu`s T!U GF1) 6A7F$$Q b 9 b 9  fb 9 F73 !  3DCQR1R1@C63QR@3G6R@GE7A3G6CQR  " #!$$   # F7@)B3 4gVtcqpdiu$$ ƒ1$ #ƒ4

16CFd GCQ717GR$$$psVg$sVu$@2$$$hbfb IdtXptdu€$$$$XFu X$pa$us`Vu`Y$tvsaVX`t$$$#$hBh

1p`aadXd`iu$pa$uc`shVg$`yqVitdpi$$$"$y$ Fq`XdadX$x`uudib$tvsaVX`$$$!$hb        IVqpsqs`ttvs`‡$hh Edib$`qpydY`$hps`$s`VXudw`$ucVi$bg€XdYpy€qspq€g$t€tu`ht HI$didudVu`Y$qpg€h`sdVudpi$pa$`qpy€$bspvq$xduc$x`Vf$VXdY$Ypipst 4psht$HIXvsVWg`$XpVudib$s`tdit$W€$Xpiuspgg`Y$c€Yspg€tdt Ht`Y$up$hVf`$`qpy€psbViptdgdXV$qVsudXg`t$x$cdbc$qptdudw`$S`uV$qpu`iudVg $8vtu$C$`u$Vg$1DbH`5Ha6XF6gVY4`XF$$$ $BVfVhvsV$A$ViY$7tcdhvsV$9$0DWPVcR`$$$" 6R2EC@RG71$F3BF7G7I7GR$$!$$s`VXut$tgpxg€$xduc$hpdtuvs`xVu`s T""U GF1) 31$! 6A7F$$Q b 9 fb 9! "fb 9 F73 !  3DCQR63QR@GE73G6CQRF7@)B3   #$$ #    

16 CFd 4gVtcqpdiu$$##ƒ1$ ƒ4 6R2EC@RG71$F3BF7G7I7GR$$!$$s`VXut$tgpxg€$xduc$hpdtuvs`xVu`s T" "U 6A7F$$Q b 9# 

F75"#        5@R172CQRDECDR@GE73G6CQRF7@)B3 !" $$  

16 CFd 4gVtcqpdiu$$ƒ1$ #ƒ4 1pvqgdib$Vb`iu$aps$gVu`y$qpg€h`st 6R2EC@RG71$F3BF7G7I7GR$$!$$s`VXut$tgpxg€$xduc$hpdtuvs`xVu`s T "U GF1) 31$ 6A7F$$Q b 9 b 9 fb 9" F75" $5@R172CQRDECDR@GE7A3G6CQRF7@)B3   $$ &! ! # $439@453439@#4534@075(1$7'39@6(0 2$ 4gVtcqpdiu$$ƒ1$ ! ƒ4 &0@13&4716  GCQ717GR$$$psVg$sVu$@2$$"$hbfb

1#6CFd FvsaVX`$u`itdpi$$$"$hBh        IdtXptdu€$$$$XFu Fq`XdadX$x`uudib$tvsaVX`$$$$hb 1phqpi`iu$di$VWsVtdpi$s`tdtuViu$XpVudibt$aps$qgVtudX$pqudXt 1pvqgdib$Vb`iu$aps$`qpy€$Xphqptdu`t$`hqgp€`Y$di$`g`XuspidX$EXcdqE$`iXVqtvgVudpi 1phqpi`iu$di$Vgvhdivh$h`uVg$WpiYdib$VYc`tdw`t Ht`Y$up$qs`qVs`$`qpy€XpiuVdidib$c€WsdY$psbVidXdipsbVidX$hVu`sdVgt $7iipX`id$D$`u$Vg$"QHV1DbH`$$$ ! 6R2EC@RG71$F3BF7G7I7GR$$!$$s`VXut$tgpxg€$xduc$hpdtuvs`xVu`s T""U GF1) 31$#!" 6A7F$$Q b 9  fb 9" "fb 9 # F75" $5@R172CQRDECDR@GE7A3G6CQRF7@)B3$##FG   $$ &! ! #

1#6CFd 4gVtcqpdiu$$ƒ1$ ! ƒ4 @px$agvps`tX`iX`$bsVY`$aps$cdbcucspvbcqvu$tXs``idib 6R2EC@RG71$F3BF7G7I7GR$$!$$s`VXut$tgpxg€$xduc$hpdtuvs`xVu`s T""U GF1) 31$#!" 6A7F$$Q b 9" RWIUcX`XYXUgVH`EXbbUH

$%#"!$% F75" 

5@R172CQRDECDR@A3G6R@273G6CQRF7@)B3 "#  $$ #!"        

16CFd 4gVtcqpdiu$$ƒ1$ ƒ4 IdtXptdu€$$$$XFu GCQ717GR$$psVg$sVu$@2$$($hbfb 3hqgp€`Y$di$tXsVuXc$s`tdtuViu$XpVudibt$aps$`€`$bgVtt`t 1pvqgdib$Vb`iu$aps$gVu`y$t€tu`ht$xduc$s`YvX`Y$u`iYViX€$up$b`g$XphqVs`Y$up$F75" 6R2EC@RG71$F3BF7G7I7GR$$!$$s`VXut$tgpxg€$xduc$hpdtuvs`xVu`s T"#! U GF1) 31$!"" 6A7F$$Q b 9" b 9 fb 9" F75"  5@R172CQRDECDR@A3G6R@27A3G6CQRF7@)B3  $$   

1#6CFd 4gVtcqpdiu$$ƒ1$ ƒ4 E`gVudw`$c€Yspg€tdt$sVu`$wt$F75"$$$!$ 6R2EC@RG71$F3BF7G7I7GR$$!$$s`VXut$tgpxg€$xduc$hpdtuvs`xVu`s T !##!U GF1) 31$ ##" 6A7F$$Q b 9 b 9 

$%#"!$% F75" 5@R172CQRDECDR@27A3G6R@3G6CQRF7@)B3 "! $$ # ! 

16CFd 4gVtcqpdiu$$"!ƒ1$ "#ƒ4 6R2EC@RG71$F3BF7G7I7GR$$!$$s`VXut$tgpxg€$xduc$hpdtuvs`xVu`s T!# U GF1) 31$""#! 6A7F$$Q b 9 b 9  76 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:56 PM Page 77

Gelest, Inc.

Silyl Hydrides

Silyl Hydrides are a distinct class of silanes that behave and react very differently than conventional silane coupling agents. Their application is limited to deposition on metals (see discussion on p. 17). They liberate hydrogen on reaction and should be handled a with appropriate caution.

20 20 name MW bp/mm (mp) D4 nD

F72 # 2C231R@F7@)B3  "! !! " 

16"Fd 4pshtF)AtpibpgYViYuduVidvhtvsaVX`t 6R2EC@RG71F3BF7G7I7GR$$ips`VXudpixducxVu`sviY`si`vusVgXpiYdudpit T"!#U 6A7F$Q b 8!" F7C  iC1G)231R@F7@)B3 "  # A#: !#

1"6Fd 1piuVdit 21"dtph`st 4gVtcqpdiu$(ƒ1A(ƒ4: 4pshtt`gaVtt`hWg`YhpipgV€`stpiuduVidvh E`VXutpiupVbpgYtvsaVX`upapshhpipgV€`stpagpibVgf€gXcVdit 4VY`V)`uVg    " Cx`itGA`uVg    " 6R2EC@RG71F3BF7G7I7GR$$s`VXutxducVrv`pvtWVt` T" U GF1) 31# 6A7F$Q b 8  b 8 F7G"! GE7231)4@HCECG3GE)6R2ECC1GR@:F7@)B3 !" !  "

1"6!4Fd DspwdY`twVqpsqcVt`c€YspqcpWdXtvsaVX`tpiuduVidvhbpgYtdgdXpi 6R2EC@RG71F3BF7G7I7GR$$s`VXutxducVrv`pvtWVt` T ##U 6A7F$Q b 8# F7H#" HB2313BR@F7@)B3 " ! "   

16Fd 4pshtt`gaVtt`hWg`YhpipgV€`stpibpgY 6R2EC@RG71F3BF7G7I7GR$$s`VXutxducVrv`pvtWVt` 6A7F$Q b 8

MethylHydrosiloxane homopolymers are used as water-proofing agents, reducing agents and as components in some foamed silicone systems.

polyMethylHydrosiloxanes, Trimethylsiloxy terminated Tg: -119° V.T.C: 0.50 CAS: [63148-57-2] TSCA Molecular Mole % Equivalent Specific Refractive COMMERCIAL Code Viscosity Weight (MeHSiO) Weight Gravity Index Price/100g Price/3 kg HMS-991 15-25 1400-1800 100 67 0.98 1.395 $14.00 $96.00 HMS-992 25-35 1800-2100 100 65 0.99 1.396 $19.00 $134.00 HMS-993 35-45 2100-2400 100 64 0.99 1.396 $24.00 $168.00

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 77 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:56 PM Page 78

Gelest, Inc. UV Active and Fluorescent Silanes

(C2H5O)3SiCH2CH2CH2O 20 name MW bp/mm (mp) nD CH3O SIB1824.8 BIS(4-TRIETHOXYSILYLPROPYL-3-METHOXY- 777.07 O -3 PHENYL)-1,6-HEPTANE-3,5-DIONE tech-90 10 M in THF O C39H60O12Si2 UV: 220, 232(max), 354(broad) metal chelating chromophore CH3O HMIS: 2-1-1-X 500mg/$180.00 (C2H5O)3SiCH2CH2CH2O SID4352.0 3-(2,4-DINITROPHENYLAMINO)PROPYL- 387.46 (27-30°)mp 1.5665 10-5 M in THF NH(CH2)3Si(OC2H5)3 TRIETHOXYSILANE, 95% N-[3-(TRIETHOXYSILYL)PROPYL]-2,4-DINITROPHENYLAMINE O N 2 C15H25N3O7Si viscous liquid or solid flashpoint: >110°C (230°F) UV: 222, 258, 350(max), 410 forms χ2 non-linear optical sol-gel materials by corona poling1,2. 1. E. Toussaere et al, Non-Linear Optics, 2, 37, 1992 NO2 2. B. Lebeau et al, J. Mater. Chem., 4, 1855, 1994 [71783-41-0] HMIS: 2-1-0-X 25g/$54.00 100g/$176.00

HO O SIH6198.0 2-HYDROXY-4-(3-METHYLDIETHOXYSILYL- 388.54 PROPOXY)DIPHENYLKETONE, 95% viscosity, 25°: 100-125 cSt. CH 3 C H O Si monomer for UV opaque fluids (C2H5O)2SiCH 2CH 2CH 2O 21 28 5 HMIS: 2-1-1-X 25g/$86.00

SIH6200.0 -5 2-HYDROXY-4-(3-TRIETHOXYSILYLPROPOXY)- 418.56 1.54525 10 M in THF HO O DIPHENYLKETONE, 95% viscosity, 25°: 125-150 cSt. C22H30O6Si density: 1.12 UV: 230, 248, 296(max), 336 strong UV blocking agent for optically clear coatings, abosrbs from 210-420nm 1 (C2H5O)3SiCH 2CH 2CH 2O UV blocking agent . B. Anthony, US Pat. 4,495,360, 1985 [79876-59-8] TSCA HMIS: 2-1-1-X 25g/$60.00 100g/$195.00

SIM6502.0 -4 O-4-METHYLCOUMARINYL-N-[3-(TRIETHOXY- 423.54 (88-90°)mp 10 M in THF CH 3 SILYL)PROPYL]CARBAMATE UV: 223, 281, 319.5(max) O C20H29NO7Si soluble: THF (CH CH O) SiCH CH CH NHCO 1 3 2 3 2 2 2 OO immobilizeable fluorescent compound . 1. B. Arkles, US Pat. 4,918,200, 1990 [129119-78-4] HMIS: 2-2-1-X 10g/$120.00

OH O SIT8186.2 7-TRIETHOXYSILYLPROPOXY-5-HYDROXY- 458.58 FLAVONE UV: 350nm (max) (C H O) SiCH CH CH O O 2 5 3 2 2 2 C24H30O7Si HMIS: 2-1-1-X 1.0g/$48.00 5.0g/$192.00

SIT8187.0 N-(TRIETHOXYSILYLPROPYL)DANSYLAMIDE 454.66 115-9°/0.1 1.5421 10-5 M in THF (C H O) SiCH CH CH HNSO 2 5 3 2 2 2 2 5-DIMETHYLAMINO-N-(3-TRIETHOXYSILYLPROPYL)- NAPTHALENE-1-SULFONAMIDE viscous liquid - soluble in toluene THF C21H34N2O5SSi density: 1.12 UV: 222(max), 256, 354 fluorescent- employed as a tracer in UV cure composites fluorescence probe for crosslinking in silicones1. 1. P. Leezenberg et al, Chem. Mat., 7, 1784, 1995 N(CH3)2 [70880-05-6] TSCA HMIS: 2-1-1-X 0.5g/$84.00 1.0g/$148.00

CH3 SIT8188.8 N 2-(2-TRIETHOXYSILYLPROPOXY-5-METHYL- 429.59 N PHENYL)BENZOTRIAZOLE N C22H31N3O4Si UV: 300, 330(max) O CH2CH2CH2Si(OCH2CH3)3 UV blocking agent/stabilizer HMIS: 2-1-1-X 10g/$94.00

PLEASE INQUIRE ABOUT BULK QUANTITIES 78 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/23/11 7:56 PM Page 79

Gelest, Inc.

20 name MW bp/mm (mp) nD

SIT8191.0 3-(TRIETHOXYSILYLPROPYL)-p-NITRO- 370.48 (54-5°)mp 10-3 M in THF (C2H5O)3SiCH2 BENZAMIDE CH2 C H N O Si O 16 26 2 6 CH2 UV max: 224, 260, 292(s) 1 O2NCN used to prepare diazotizable supports for enzyme immobilization . H H. Weetall, US Pat., 3,652,761 [60871-86-5] TSCA HMIS: 2-1-1-X 25g/$60.00

SIT8192.4 10-3 M in THF O N-TRIETHOXYSILYLPROPYL-O-QUININE- 571.79 (82-4°)mp N (C2H5O)3SiCH2CH2CH2HNCO URETHANE, 95% soluble: warm toluene C H N O Si CH3O 30 45 3 6 UV max: 236(s), 274, 324, 334 N fluorescent, optically active silane HMIS: 2-1-1-X 5.0g/$120.00

Chiral Silanes

20 20 name MW bp/mm (mp) D4 nD CH3 SIM6472.6 (-)-MENTHYLDIMETHYLMETHOXYSILANE 228.45 CH 3 C H OSi Si OCH 13 28 3 reagent for chiral separatioms H C CH 3 CH 3 HMIS: 3-2-1-X 5.0g/$188.00 H3C

SIP6731.5 (R)-N-1-PHENYLETHYL-N’-TRIETHOXYSILYL- 368.55 1.0525 PROPYLUREA flashpoint: > 110°C(>230°F) C18H32N2O4Si optically active silane; treated surfaces resolve enantiomers [68959-21-7] TSCA HMIS: 2-1-0-X 25g/$76.00

SIP6731.6 (S)-N-1-PHENYLETHYL-N’-TRIETHOXYSILYL- 368.55 1.0525 PROPYLUREA flashpoint: > 110°C(>230°F) C18H32N2O4Si optically active silane; treated surfaces resolve enantiomers [68959-21-7] TSCA HMIS: 2-1-0-X 25g/$76.00

SIT8190.0 (S)-N-TRIETHOXYSILYLPROPYL-O-MENTHO- 406.63 0.98525 1.4526 CARBAMATE flashpoint: > 110°C(>230°F) C20H41NO5Si optically active [68479-61-8] TSCA HMIS: 2-1-1-X 10g/$64.00

SIT8192.4 O N-TRIETHOXYSILYLPROPYL-O-QUININE- 571.79 (82-4°)mp N (C2H5O)3SiCH2CH2CH2HNCO URETHANE, 95% soluble: warm toluene C30H45N3O6Si O CH3 fluorescent, optically active silane HYDROLYTIC SENSITIVITY: 7 Si-OR reacts slowly with moisture/water N HMIS: 2-1-1-X 5.0g/$120.00

(215) 547-1015 FAX: (215) 547-2484 www.gelest.com 79 *1028_Hydrophobicity 2011_Silane Coupling Agents-2003 2/26/11 2:27 PM Page 80

Gelest, Inc.

Surface Modification with Silanes: What’s not covered in “Hydrophobicity, Hydrophilicity and Silane Surface Modification”? Silanes which are expected to form covalent bonds after deposition onto surfaces are discussed in the Gelest brochure entitled “Silane Coupling Agents: Connecting Across Boundaries” Aminosilanes which are important in some hydrophilic surface treatments are covered in detail. Further Reading Silane Coupling Agents - General References and Proceedings 1. B. Arkles, Tailoring Surfaces with Silanes, CHEMTECH, 7, 766-778, 1977. 2. E. Plueddemann, “Silane Coupling Agents,” Plenum, 2nd edition, 1990. 3. K. Mittal, “Silanes and Other Coupling Agents,” VSP, 1992. 4. D. Leyden and W. Collins, “Silylated Surfaces,” Gordon & Breach, 1980. 5. D. E. Leyden, “Silanes, Surfaces and Interfaces,” Gordon & Breach 1985. 6. J. Steinmetz and H. Mottola, “Chemically Modified Surfaces,” Elsevier, 1992. 7. J. Blitz and C. Little, “Fundamental & Applied Aspects of Chemically Modified Surfaces,” Royal Society of Chemistry, 1999.

Substrate Chemistry - General References and Proceedings 8. R. Iler, “The Chemistry of Silica,” Wiley, 1979. 9. S. Pantelides, G. Lucovsky, “SiO2 and Its Interfaces,” MRS Proc. 105, 1988.

Hydrophobicity & Hydrophilicity 10. C. Tanford, “The Hydrophobic Effect,” Wiley, 1973. 11. H. Butt, K. Graf, M. Kappl, “Physics and Chemistry of Interfaces,” Wiley, 2003. 12. A. Adamson, “Physical Chemistry of Surfaces,” Wiley, 1976. 13. F. Fowkes, “Contact Angle, Wettability and Adhesion,” American Chemical Society, 1964. 14. D. Quere “Non-sticking Drops” Rep. Prog. Phys. 68, 2495, 2005. 15. McCarthy, T. A Perfectly Hydrophobic Surface, J. Am. Chem. Soc., 128, 9052, 2006. 16. B. Arkles, Y. Pan, Y. Kim., The Role of Polarity on the Substitution of Silanes Employed in Surface Modification, in “Silanes and Other Coupling Agents Vol 5, K. Mittal Ed. p.51 VSP (Brill) 2009.

picture courtesy of D. Teff.

PLEASE INQUIRE ABOUT BULK QUANTITIES 80 *1028_Hydrophobicity_Cvr. 2011_Layout 1 3/20/11 9:43 PM Page 2

Gelest, Inc. Gelest, Inc. Additional Product Information on Silanes & Silicones Telephone: General 215-547-1015 Order Entry 888-734-8344 For Material Science:

Technical Service: 215-547-1016 5 H 2 H 5 Hydrophobicity, OC C 2 Micro-Particle Silane Coupling SiO CH 2 H 5 2 OC 2 FAX: 215-547-2484 CH Enabling Your Technology Hydrophilicity H 2 Surface Modification Agents NC H 2 Micro-Particle The surface properties of Surface Internet: www.gelest.com and Silane Silane coupling Silane Coupling Agents Modification Connecting Across Boundaries P CH CH micro-particles can be Surface 2 2Si(OC agents enhance 2H ) e-mail: [email protected] 5 3 altered to match the 3 Enhance Adhesion Modification adhesion, increase H Si(OEt) CH2 CH2C 2 HOCH 2 NCH 2 Increase Mechanical Properties requirements of various CH2 Correspondence: 11 East Steel Rd. OCH 2 Improve Dispersion Organosilanes are mechanical prop- H OC 2H5 OC H Provide Crosslinking applications. Surface 2 5 Innovating Particle C2H O SiC erties of compos- 5 H2CH Si OC Immobilize Catalysts used extensively 2 2H5 Functionalization Morrisville, PA 19067 Bind Biomaterials treatment services pro- © 2009 Gelest, Inc. OC2H O 5 C2H5 ites, improve Gelest provides chemistries and deposition technologies for micro-particle for modification of Version 2.0: vided on a custom basis New Coupling Agents modifications that dramatically enhance: N for Metal Substrates ! CH3 New Coupling Agents for Vapor Phase • Color • Rheological Behavior dispersion of pig- Deposition ! Si • Polarity • Photo, Chemical, Thermal Stability surface properties. New Coupling Agents at Gelest are described. OCH 3 for Proteins ! • Adhesion • Moisture & Corrosion Resistance For further information consult our web site at: www.gelest.com CH3O Dispersion Mechanical & Electrical Properties This 80-page ments and fillers This brochure reviews • • and immobilize catalysts and biomaterials. In Europe: For research quantities in Europe: brochure describes silane deposition technologies and silane chemistries This 48 page brochure describes chem- provided by Gelest that allow end-users to modify their surface modification with an emphasis on For commercial and istry, techniques, applications and physical micro-particles to achieve optimum surface properties Gelest Inc. making surfaces hydrophobic or hydrophilic properties of silane coupling agents. for composite, separation, dispersion and other bulk quantities contact: Stroofstrasse 27 Geb.2901 applications. 65933 Frankfurt am Main, Gelest Ltd. Germany 46 Pickering Street Silicone Fluids- Reactive Silicon Tel: +49-(0)-69-3800-2150 Stable, Inert Silicones - Compounds: REACTIVE SILICONES: Maidstone Media Forging New FORGING NEW POLYMER LINKS Silanes and Fax: +49-(0)-69-3800-2300 MATERIALS FOR: Adhesives Kent ME15 9RR Binders Design and Polymer Links Ceramic Coatings Silicones SILICON COMPOUNDS: Dielectric Coatings e-mail: [email protected] Encapsulants SILANES & SILICONES Gels Engineering prop- The 48 page Membranes Detailed chemical United Kingdom Optical Coatings Photolithography Polymer Synthesis Internet: www.gelestde.com erties for conven- brochure Sealants properties and Gel est Tel: +44(0)-1622-741115 tional silicone describes reactive reference articles SILICON CHEMICALS FOR: • SURFACE MODIFICATION Fax: +44(0)-8701-308421 • ORGANIC SYNTHESIS Exclusive for the United Kingdom fluids as well as silicones that can New! for over 1600 • OPTICAL COATINGS Expanded Silicone • POLYMER SYNTHESIS Macromers • SELF-ASSEMBLED MONOLAYERS • CATALYSIS e-mail: [email protected] thermal, fluorosil- be formulated into compounds. The • COMPOSITES and Ireland: • NANOFABRICATION icone, hydrophilic coatings, mem- Enabling your technology 590 page catalog Fluorochem Ltd. and low tempera- branes, cured of silane and sili- Unit 14 Graphite Way ture grades are presented in a 24 page rubbers and adhesives for mechanical, cone chemistry includes scholarly reviews selection guide. The brochure provides optical, electronic and ceramic applica- as well as detailed information on various Rossington Park, Hadfield, data on thermal, rheological, electrical, tions. Information on reactions and cures applications. Derbyshire, SK13 1QH, United Kingdom mechanical and optical properties for of silicones as well as physical properties Tel: +44-(0)-1457-860111 silicones. Silicone fluids are available shortens product development time for in viscosities ranging from 0.65 to chemists and engineers. Fax: +44-(0)-1457-858912 2,500,000 cSt. internet: www.fluorochem.net

In Japan: In South-East Asia: For Synthesis: For commercial and For commercial and research quantities contact: research quantities contact: Silicon-Based Silicon-Based Silicon-Based Blocking Reducing Agents Cross-Coupling These silicon- Gulf Chemical Agents Reagents AZmax Co. Ltd. Tokyo Office These silicon based reagents A variety of Matsuda Yaesudori, Bldg F8 39 Jalan Pemimpin reagents are are employed organosilanes 1-10-7 Hatchoubori, Chuo-Ku Tai Lee Industrial Building #04-03 used for func- in the reduction have been shown Tokyo 104-0032 Singapore 577182 tional group of various organic to enter into and inorganic Pd Tel: 65-6358-3185 protection, syn- cross-coupling Tel: 81-3-5543-1630 thesis and systems. The 24 protocols. This Fax: 65-6353-2542 page brochure Reagents For: Fax: 81-3-5543-0312 derivatization. 36 page brochure Carbon-Carbon Bond Formation, Introduction of Aryl, Vinyl and Ethynyl Groups e-mail: [email protected] e-mail: [email protected] The 28 page presents informa- with 105 refer- tion complete with literature references for on-line catalog: www.azmax.co.jp brochure presents detailed application ences reviews selected information on silylation reagents for a variety of reductions using organosilanes. approaches and some of the key aspects of pharmaceutical synthesis and analysis. the organosilane approach to cross-coupling Front Cover Photos: Water rolls off a duck’s back. Lotus leaves exhibit superhydrophobicity. Biological systems Detailed descriptions are presented on chemistry. An emphasis is placed on the are dependent on water, but at the same time must control the interaction. In a sense, all living organisms exhibit selectivity for reactions, resistance to more practical reactions. behaviors that can be described as both hydrophobic and hydrophilic. chemical transformations and selective deblocking conditions. Over 300 refer- ences are provided. Sales of all products listed are subject to the published terms and conditions of Gelest, Inc. *1028_Hydrophobicity_Cvr. 2011_Layout 1 3/20/11 9:42 PM Page 1

Cover background photo: Fluoroalkylsilane treated multi-color red granite is both hydrophobic and oleophobic.

The Stenocara beetle, an African desert species, harvests water that adsorbs on superhydrophilic bumps on its back, then transfers droplets into superhydrophobic channels that lead to its mouth.

GGeelleesstt IInncc.. 1111 EEaasstt SStteeeell RRooaadd MMoorrrriissvviillllee,, PPAA 1199006677 PPhhoonnee ((221155)) 554477--11001155 FFaaxx:: ((221155)) 554477--22448844 wwwwww..ggeelleesstt..ccoomm