Ph.D. Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Ph.D. Dissertation PDK-1/AKT PATHWAY AS TARGETS FOR CHEMOSENSITIZING EFFECTS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ping-Hui Tseng, M.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Professor Ching-Shih Chen, Advisor Professor Pui-Kai Li Adviser Graduate Program in Pharmacy Professor Charles L. Shapiro Professor Tatiana M. Oberyszyn ABSTRACT Cancer is the leading causes of human deaths all over the world. The growing understanding in cancer biology provides the researchers to develop molecularly targeted therapeutic strategies. However, the toxicity and resistance limit the applications for molecularly targeted agents. Here, we proposed that inhibiting PI3K/PDK-1/Akt signaling pathway, which is critical in controlling cell survival and proliferation, is able to enhance the therapeutic effects and overcome resistance of the current used molecularly targeted drugs. Imatinib (STI571; Gleevec), a selective bcr-abl tyrosine kinase inhibitor, is approved to treat patients with chronic myelogenous leukemia (CML). However, patients in more advanced phases of CML frequently develop resistance to the treatment. Mutations within the kinase domain for the binding of imatininb attributes as one of the major imatinib-resistant mechanisms. The effects of imatinib each alone and in combination with OSU-03012, a novel celecoxib-derived PDK-1 inhibitor, was evaluated in a panel of Bcr-Abl positive Ba/F3 cell lines without or with mutations. The IC50 values for OSU- 03012 alone were comparable, while the sensitivities to imatinib alone were differed. The combination treatment, however, caused a synergistic enhancement of apoptosis in these cells, including those that are resistant to imatinib. ii HER2/neu is frequently over-expressed in breast cancers that are characterized by aggressive tumor progression and resistant to current therapies. The effects of trastuzumab (Herceptin), a monoclonal antibody targeting to HER2/neu, alone and in combination with OSU-03012 were evaluated in a panel of breast cancer cell lines. The IC50 values for OSU-03012 alone in four cell lines were comparable, while the sensitivities to trastuzumab alone were mainly dependent on the HER2/neu expression level or resistant phenotypes. The combination treatments, however, caused a synergistic enhancement of anti-proliferation in HER2/neu positive cell lines, including SKBR3/IGF-IR, as a resistant phenotype, that responded poorly to trastuzumab. These results demonstrate the potential clinical value of a therapeutic strategy to sensitize cancer cells to molecularly targeted drugs by co-targeting PDK-1/Akt signaling. More importantly, the co-treatments are able to overcome drug resistance. iii Dedicated to my lovely parents iv ACKNOWLEDGMENTS I would like to acknowledge my advisor, Dr. Ching-Shih Chen, for his guidance, encouragement, and providing me such an opportunity to study in OSU. I would also like to express my sincere appreciation to my advisory committee members, Dr. Pui-Kai Li, Dr. Charles L. Shapiro and Dr. Tatiana M. Oberyszyn, for all their help and advice in my research. Moreover, I would like to thank Dr. Mike Zhu, Dr. Druker, and Dr. Pollak for their advice in my research and kindly providing materials. I also want to mention the colleagues in Chen’s Lab, Dr. Kulp, Dr. Song, Dr. Johnson, Dr. Wang, Ya-Ting, Julie, Qiang, Ho-Pi, Chung-Wai, Yvette, Arthur, Kuen- Feng, Chang-Shi, Jim, Leo, Jack and Nicole. Without their involvement in scientific discussion, and technique support, my graduate study won’t be so smooth. Of course, I need to thank Pang, Mei-I, Ya-Wen, Raymond, Jason, and all other friends in Columbus. Because of them, the life outside the graduate study is also full of happiness. v VITA Sep. 19, 1975 ………………………...Born – Taichung, Taiwan 1997 ………………………………….B.S. Chemistry National Taiwan University, Taiwan 1999 ……………………………….M.S. Chemistry National Taiwan University, Taiwan 1999 – 2000. Research Associate Institute of Biomedical Science Academia Sinica, Taiwan 2000 – 2001. Research Associate Institute of Biomedical Science Academia Sinica, Taiwan 2001 – Present ……………………….Research Associate College of Pharmacy, The Ohio State University PUBLICATIONS Research Publications 1. Song, X., Lin, H. P., Johnson, A. J., Tseng, P. H., Yang, Y. T., Kulp, S. K., and Chen, C. S. Cyclooxygenase-2, player or spectator in cyclooxygenase-2 inhibitor- induced apoptosis in prostate cancer cells. J Natl Cancer Inst, 94: 585-591, 2002. 2. Yang, C. C., Lin, H. P., Chen, C. S., Yang, Y. T., Tseng, P. H., Rangnekar, V. M., and Chen, C. S. Bcl-xL mediates a survival mechanism independent of the phosphoinositide 3-kinase/Akt pathway in prostate cancer cells. J Biol Chem, 278: 25872-25878, 2003. vi 3. Kulp, S. K., Yang, Y. T., Hung, C. C., Chen, K. F., Lai, J. P., Tseng, P. H., Fowble, J. W., Ward, P. J., and Chen, C. S. 3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells. Cancer Res, 64: 1444-1451, 2004. 4. Zhu, J., Huang, J. W., Tseng, P. H., Yang, Y. T., Fowble, J., Shiau, C. W., Shaw, Y. J., Kulp, S. K., and Chen, C. S. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res, 64: 4309-4318, 2004. 5. Tseng, P. H., Lin, H. P., Hu, H., Wang, C., Zhu, M. X., and Chen, C. S. The canonical transient receptor potential 6 channel as a putative phosphatidylinositol 3,4,5-trisphosphate-sensitive calcium entry system. Biochemistry, 43: 11701- 11708, 2004. 6. Lin, H. P., Kulp, S. K., Tseng, P. H., Yang, Y. T., Yang, C. C., Chen, C. S., and Chen, C. S. Growth inhibitory effects of celecoxib in human umbilical vein endothelial cells are mediated through G1 arrest via multiple signaling mechanisms. Mol Cancer Ther, 3: 1671-1680, 2004. 7. Tseng, P. H., Lin, H. P., Zhu, J., Chen, K. F., Hade, E. M., Young, D. C., Byrd, J. C., Grever, M., Johnson, K., Druker, B. J., and Chen, C. S. Synergistic interactions between imatinib mesylate and the novel phosphoinositide-dependent kinase-1 inhibitor OSU-03012 in overcoming imatinib mesylate resistance. Blood, 105: 4021-4027, 2005. FIELDS OF STUDY Major Field: Pharmacy vii TABLE OF CONTENTS Page Abstract. ii Dedication. .iv Acknowledgments . .v Vita . .vi List of Figures. xi List of Abbreviations .. .. xiii Chapters: 1. Introduction…………………………………………………………………………… 1 1.1 Molecular Targeting Cancer Therapy…………………………………………….1 1.2 Phosphoinositide 3 Kinase (PI3K)/Phosphoinositide-dependent Kinase-1 (PDK- 1)/Akt Signaling Pathway ………………………………………………………..3 1.3 PI3K/PDK-1/Akt Pathway in Tumorigenesis ……………………….………….. 5 1.4 Inhibitors of the PI3K/PDK-1/Akt Pathway ………………………….………… 7 1.5 Resistance to Chemotherapeutic Agents ……………………………….………. 10 2. Synergistic Interactions Between Imatinib and The Novel Phosphoinositide-dependent kinase-1 Inhibitor OSU-03012 in Overcoming Imatinib Resistance……………..….19 2.1 Background …………………………………… …………..……………………19 2.1.1 Chronic Myelogenous Leukemia (CML)… ………………………….....…19 2.1.2 Bcr-Abl ...…………………………… …………………………………...22 2.1.3 Imatinib .. …………………………… ……………………………………24 viii 2.1.4 Mechanisms of Imatinib Resistance ………………………………………25 2.2 Experimental Hypothesis …………………………………………. ……………27 2.3 Ba/f3 cell models …………………………………………………. ……………28 2.4 Sensitivity of Different Bcr-Abl Positive Cell Lines to Imatinib ……………….29 2.4.1 Anti-proliferation Effects……………………………………. ……………29 2.4.2 Flow Cytometric Analysis with Annexin V/PI staining …………………..30 2.4.3 Effects of Imatinib Treatment on Akt and Cytochrome c …………………31 2.5 Sensitivity of Different Bcr-Abl Posity Cell Lines to OSU-03012. ….…………32 2.5.1 Anti-proliferation Effects…………………………………………………..32 2.5.2 Flow Cytometric Analysis with Annexin V/PI Staining ………………….33 2.5.3 Immunoblotting …………………………………………………………...33 2.6 OSU-03012 Sensitizes Imatinib-resistant Cells to Imatinib-induced Apoptosis. .34 2.6.1 Anti-proliferation Effects………………………………………………… .34 2.6.2 Flow Cytometric Analysis with Annexin V/PI Staining ………………….34 2.6.3 Combination Index…… …………………………………………………. 35 2.6.4 Effects on Bcr-Abl and Akt………………………………….…………….36 2.7 Discussion ………………………………………………………..……………...37 3. Overcoming Trastuzumab Resistance in HER2/neu-over-expressing Breast Cancer Cells…………….………….………………………………………………………...55 3.1 Background ……………………………………………………………………...55 3.1.1 Breast Cancer …………………...…………………………………………55 3.1.2 HER2/neu in Breast Cancer..……...……………………………………….58 3.1.3 Trastuzumab ……………………………………………………………….60 3.1.4 Mechanisms of Trastuzumab Resistance ………………………………….63 3.2 Experimental Hypothesis …………………………………………………..……65 3.3 In Vitro cell models ………………………………………………………..……66 3.4 Sensitivity of Different HER2/neu Expression Breast Cancer Cell Lines to Trastuzumab ……………………………………………………….……………68 3.4.1 Anti-proliferation Effects ………………………………………………….68 3.4.2 Immunobloting …………………………………………………………….68 3.5 Sensitivity of HER2/neu Expression Breast Cancer Cell Lines to OSU-03012 ...69 3.5.1 Anti-proliferation Effects ………………………………………………….69 3.5.2 Immunobloting …………………………………………………………….70 3.5.3 Immunohistochemical Staining ………………………………………..….71 3.6 OSU-03012 Sensitizes HER2/neu Expressing Cells to Trastuzumab ……..……72 3.6.1 Anti-proliferation effects …………………………………………….,,…..72 3.6.2 Combination Index ……………………………………………………… .72 3.6.3 Immunoblotting …………………………………………………………...73 3.7 Discussion ……………………………………………………………………....74 4. Conclusion
Recommended publications
  • Promoter Janus Kinase 3 Proximal Characterization and Analysis Of
    The Journal of Immunology Characterization and Analysis of the Proximal Janus Kinase 3 Promoter1 Martin Aringer,2*† Sigrun R. Hofmann,2* David M. Frucht,* Min Chen,* Michael Centola,* Akio Morinobu,* Roberta Visconti,* Daniel L. Kastner,* Josef S. Smolen,† and John J. O’Shea3* Janus kinase 3 (Jak3) is a nonreceptor tyrosine kinase essential for signaling via cytokine receptors that comprise the common ␥-chain (␥c), i.e., the receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Jak3 is preferentially expressed in hemopoietic cells and is up-regulated upon cell differentiation and activation. Despite the importance of Jak3 in lymphoid development and immune function, the mechanisms that govern its expression have not been defined. To gain insight into this issue, we set out to characterize the Jak3 promoter. The 5؅-untranslated region of the Jak3 gene is interrupted by a 3515-bp intron. Upstream of this intron and the transcription initiation site, we identified an ϳ1-kb segment that exhibited lymphoid-specific promoter activity and was responsive to TCR signals. Truncation of this fragment revealed that core promoter activity resided in a 267-bp fragment that contains putative Sp-1, AP-1, Ets, Stat, and other binding sites. Mutation of the AP-1 sites significantly diminished, whereas mutation of the Ets sites abolished, the inducibility of the promoter construct. Chromatin immunoprecipitation assays showed that histone acetylation correlates with mRNA expression and that Ets-1/2 binds this region. Thus, transcription factors that bind these sites, especially Ets family members, are likely to be important regulators of Jak3 expression.
    [Show full text]
  • 2025.Full-Text.Pdf
    Human Cancer Biology Inhibition of Phosphotyrosine Phosphatase 1B Causes Resistance in BCR-ABL-PositiveLeukemiaCellstotheABLKinaseInhibitorSTI571 Noriko Koyama,1Steffen Koschmieder,1SandhyaTyagi,1Ignacio Portero-Robles,1Jo« rg Chromic,1 Silke Myloch,1Heike Nu« rnberger,1Ta nja Ro s s m a ni t h , 1Wolf-Karsten Hofmann,2 Dieter Hoelzer,1and Oliver Gerhard Ottmann1 Abstract Protein tyrosine phosphatase 1B(PTP1B) is a negative regulator of BCR-ABL-mediated transfor- mation in vitro and in vivo. Toinvestigate whether PTP1B modulates the biological effects of the abl kinase inhibitor STI571in BCR-ABL-positive cells, we transfected Philadelphia chromosome ^ positive (Ph+) chronic myeloid leukemia cell-derived K562 cells with either wild-type PTP1B (K562/PTP1B), a substrate-trapping dominant-negative mutant PTP1B(K562/D181A), or empty vector (K562/mock). Cells were cultured with or without STI571and analyzed for its effects on proliferation, differentiation, and apoptosis. In both K562/mock and K562/PTP1B cells, 0.25 to 1 Amol/L STI571 induced dose-dependent growth arrest and apoptosis, as measured by a decrease of cell proliferation and an increase of Annexin V-positive cells and/or of cells in the sub-G1 apoptotic phase. Western blot analysis showed increased protein levels of activated caspase-3 and caspase-8 and induction of poly(ADP-ribose) polymerase cleavage. Low con- centrations of STI571promoted erythroid differentiation of these cells. Conversely, K562/D181A cells displayed significantly lower PTP1B-specific tyrosine phosphatase activity and were signifi- cantly less sensitive to STI571-induced growth arrest, apoptosis, and erythroid differentiation. Pharmacologic inhibition of PTP1B activity in wild-type K562 cells, using bis(N,N-dimethylhy- droxamido)hydroxooxovanadate, attenuated STI571-induced apoptosis.
    [Show full text]
  • Insulin Receptor Substrates-5 and -6 Are Poor Substrates for the Insulin Receptor
    MOLECULAR MEDICINE REPORTS 3: 189-193, 2010 189 Insulin receptor substrates-5 and -6 are poor substrates for the insulin receptor SoETkIn VERSTEyHE1, CHRISToPHE BlanqUart2,3, CoRnElIa HamPE2,3, SHaUkaT maHmooD1, nEVEna CHRISTEFF2,3, PIERRE DE MEYTS1, STEVEn G. GRay1,4 and TARIK ISSAD2,3 1Receptor Systems Biology laboratory, Hagedorn Research Institute, novo nordisk a/S, 2820 Gentofte, Denmark; 2Institut Cochin, Université Paris Descartes, CnRS (UmR 8104), 75014 Paris; 3Inserm, U567, 75654 Paris, France; 4Translational Cancer Research Group, Trinity Centre for Health Sciences, Institute of molecular medicine, St James's Hospital, Dublin 8, Ireland Received September 30, 2009; accepted november 13, 2009 DoI: 10.3892/mmr_00000239 Abstract. Insulin receptor substrates (IRS)-5 and -6 are two leads to the activation of receptor tyrosine kinase and receptor recently identified members of the IRS family. We investi- phosphorylation, which enables the binding of docking proteins gated their roles as insulin receptor substrates and compared such as insulin receptor substrates (IRS)-1, -2, -3 and -4 and them with Src-homology-2-containing (Shc) protein, a Src-homology-2-containing protein (Shc). This in turn leads to well-established substrate. Bioluminescence resonance their phosphorylation and, thereby, intracellular signalling (1). energy transfer (BRET) experiments showed no interaction Until recently, the IRS family included IRS-1, -2, -3 and between the receptor and IRS-5, while interaction with IRS-6 -4 (2) and three downstream of kinases, Dok-1, -2 and -3. was not enhanced by insulin. By contrast, Shc showed an These seven proteins have similar amino-terminal pleckstrin insulin-induced BRET response, as did a truncated form of homology (PH) and similar phosphotyrosine binding (PTB) IRS-1 (1-262).
    [Show full text]
  • Calycosin Down-Regulates C-Met to Suppress Development of Glioblastomas
    J Biosci (2019) 44:96 Ó Indian Academy of Sciences DOI: 10.1007/s12038-019-9904-4 (0123456789().,-volV)(0123456789().,-volV) Calycosin down-regulates c-Met to suppress development of glioblastomas , XIAOHU NIE ,YUE ZHOU* ,XIAOBING LI,JIE XU,XUYAN PAN,RUI YIN and BIN LU Department of Neurosurgery, Huzhou Central Hospital, Huzhou, Zhejiang, People’s Republic of China *Corresponding author (Email, [email protected]) These authors contributed equally to this work. MS received 15 October 2018; accepted 9 June 2019; published online 7 August 2019 The antitumor effect of calycosin has been widely studied, but the targets of calycosin against glioblastomas are still unclear. In this study we focused on revealing c-Met as a potential target of calycosin suppressing glioblastomas. In this study, suppressed-cell proliferation and cell invasion together with induced-cell apoptosis appeared in calycosin-treated U251 and U87 cells. Under treatment of calycosin, the mRNA expression levels of Dtk, c-Met, Lyn and PYK2 were observed in U87 cells. Meanwhile a western blot assay showed that c-Met together with matrix metalloproteinases-9 (MMP9) and phosphorylation of the serine/threonine kinase AKT (p-AKT) was significantly down-regulated by calycosin. Furthermore, overexpressed c-Met in U87 enhanced the expression level of MMP9 and p-AKT and also improved cell invasion. Additionally, the expression levels of c-Met, MMP9 and p-AKT were inhibited by calycosin in c-Met overex- pressed cells. However, an AKT inhibitor (LY294002) only effected on MMP9 and p-AKT, not on c-Met. These data collectively indicated that calycosin possibility targeting on c-Met and exert an anti-tumor role via MMP9 and AKT.
    [Show full text]
  • Insulin Activates the Insulin Receptor to Downregulate the PTEN Tumour Suppressor
    Oncogene (2014) 33, 3878–3885 OPEN & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc ORIGINAL ARTICLE Insulin activates the insulin receptor to downregulate the PTEN tumour suppressor J Liu1, S Visser-Grieve2,4, J Boudreau1, B Yeung2,SLo1, G Chamberlain1,FYu1, T Sun3,5, T Papanicolaou1, A Lam1, X Yang2 and I Chin-Sang1 Insulin and insulin-like growth factor-1 signaling have fundamental roles in energy metabolism, growth and development. Recent research suggests hyperactive insulin receptor (IR) and hyperinsulinemia are cancer risk factors. However, the mechanisms that account for the link between the hyperactive insulin signaling and cancer risk are not well understood. Here we show that an insulin-like signaling inhibits the DAF-18/(phosphatase and tensin homolog) PTEN tumour suppressor in Caenorhabditis elegans and that this regulation is conserved in human breast cancer cells. We show that inhibiting the IR increases PTEN protein levels, while increasing insulin signaling decreases PTEN protein levels. Our results show that the kinase region of IRb subunit physically binds to PTEN and phosphorylates on Y27 and Y174. Our genetic results also show that DAF-2/IR negatively regulates DAF-18/PTEN during C. elegans axon guidance. As PTEN is an important tumour suppressor, our results therefore suggest a possible mechanism for increased cancer risk observed in hyperinsulinemia and hyperactive IR individuals. Oncogene (2014) 33, 3878–3885; doi:10.1038/onc.2013.347; published online 2 September 2013 Keywords: PTEN; C. elegans; tumour suppressor; cancer; insulin signaling; genetics INTRODUCTION tumour suppression and further substantiate the importance of Insulin and insulin-like growth factor (IGF)-1 signaling are the PTEN regulation in cancer progression.
    [Show full text]
  • Inhibition of DDR1-BCR Signalling by Nilotinib As a New Therapeutic
    Inhibition of DDR1-BCR signalling by nilotinib as a new therapeutic strategy for metastatic colorectal cancer Maya Jeitany, Cédric Leroy, Priscillia Tosti, Marie Lafitte, Jordy Le Guet, Valérie Simon, Debora Bonenfant, Bruno Robert, Fanny Grillet, Caroline Mollevi, et al. To cite this version: Maya Jeitany, Cédric Leroy, Priscillia Tosti, Marie Lafitte, Jordy Le Guet, et al.. Inhibition of DDR1- BCR signalling by nilotinib as a new therapeutic strategy for metastatic colorectal cancer. EMBO Molecular Medicine, Wiley Open Access, 2018, 10 (4), pp.e7918. 10.15252/emmm.201707918. hal- 01872978 HAL Id: hal-01872978 https://hal.archives-ouvertes.fr/hal-01872978 Submitted on 12 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Research Article Inhibition of DDR1-BCR signalling by nilotinib as a new therapeutic strategy for metastatic colorectal cancer Maya Jeitany1,†, Cédric Leroy1,2,3,†, Priscillia Tosti1,†, Marie Lafitte1, Jordy Le Guet1, Valérie Simon1, Debora Bonenfant2, Bruno Robert4, Fanny Grillet5, Caroline Mollevi4, Safia El Messaoudi4, Amaëlle Otandault4, Lucile Canterel-Thouennon4, Muriel Busson4, Alain R Thierry4, Pierre Martineau4, Julie Pannequin5, Serge Roche1,*,† & Audrey Sirvent1,†,** Abstract The current clinical management involves surgical removal of the primary tumour, often associated with chemotherapy.
    [Show full text]
  • Real-Time Quantification of BCR-ABL Mrna Transcripts Using the Lightcycler-T(9;22) Quantification Kit
    real-time-quantification 09.05.2000 19:18 Uhr Seite 8 Real-time Quantification of BCR-ABL mRNA Transcripts Using the LightCycler-t(9;22) Quantification Kit Heiko Wittor 1, Hermann Leying 1, Andreas Hochhaus 2, and Rob van Miltenburg 1 1 Roche Molecular Biochemicals, Penzberg, Germany 2 III. Medizinische Universitätsklinik, Fakultät für Klinische Medizin Mannheim der Universität Heidelberg, Mannheim, Germany ly different starting concentrations, so that the initial Introduction target concentration can be determined in a single PCR. The concentration of BCR-ABL transcripts is determi- Literature indicates that in 95 % of all subjects with ned relative to the number of transcripts of a control chronic myeloid leukemia (CML) and in 25-30 % of gene, glucose-6-phosphate dehydrogenase (G6PDH). subjects with acute lymphoblastic leukemia (ALL) a The entire procedure from sample preparation to reciprocal translocation between the long arms of quantitative result is performed in 4.5 hours. chromosome 9 and chromosome 22 [t(9;22)] can be found. This translocation or the resulting fusion pro- duct can be detected by a number of techniques, CLER including fluorescent in situ hybridization, Southern CY blotting, western blotting and reverse transcriptase TThe LightCycler System polymerase chain reaction (RT-PCR). Of these techni- The LightCycler System is based on the amplification LIGHT ques, RT-PCR for the chimeric fusion transcript BCR- of target sequences using alternating heated and ABL has received most attention in relation to the ambient temperature cycles. Samples are contained in detection of minimal residual disease because of its glass capillaries with high surface-to-volume ratio, high sensitivity (1).
    [Show full text]
  • Biomarker Testing in Non- Small Cell Lung Cancer (NSCLC)
    The biopharma business of Merck KGaA, Darmstadt, Germany operates as EMD Serono in the U.S. and Canada. Biomarker testing in non- small cell lung cancer (NSCLC) Copyright © 2020 EMD Serono, Inc. All rights reserved. US/TEP/1119/0018(1) Lung cancer in the US: Incidence, mortality, and survival Lung cancer is the second most common cancer diagnosed annually and the leading cause of mortality in the US.2 228,820 20.5% 57% Estimated newly 5-year Advanced or 1 survival rate1 metastatic at diagnosed cases in 2020 diagnosis1 5.8% 5-year relative 80-85% 2 135,720 survival with NSCLC distant disease1 Estimated deaths in 20201 2 NSCLC, non-small cell lung cancer; US, United States. 1. National Institutes of Health (NIH), National Cancer Institute. Cancer Stat Facts: Lung and Bronchus Cancer website. www.seer.cancer.gov/statfacts/html/lungb.html. Accessed May 20, 2020. 2. American Cancer Society. What is Lung Cancer? website. https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/what-is-non-small-cell-lung-cancer.html. Accessed May 20, 2020. NSCLC is both histologically and genetically diverse 1-3 NSCLC distribution by histology Prevalence of genetic alterations in NSCLC4 PTEN 10% DDR2 3% OTHER 25% PIK3CA 12% LARGE CELL CARCINOMA 10% FGFR1 20% SQUAMOUS CELL CARCINOMA 25% Oncogenic drivers in adenocarcinoma Other or ADENOCARCINOMA HER2 1.9% 40% KRAS 25.5% wild type RET 0.7% 55% NTRK1 1.7% ROS1 1.7% Oncogenic drivers in 0% 20% 40% 60% RIT1 2.2% squamous cell carcinoma Adenocarcinoma DDR2 2.9% Squamous cell carcinoma NRG1 3.2% Large cell carcinoma
    [Show full text]
  • RET Gene Fusions in Malignancies of the Thyroid and Other Tissues
    G C A T T A C G G C A T genes Review RET Gene Fusions in Malignancies of the Thyroid and Other Tissues Massimo Santoro 1,*, Marialuisa Moccia 1, Giorgia Federico 1 and Francesca Carlomagno 1,2 1 Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; [email protected] (M.M.); [email protected] (G.F.); [email protected] (F.C.) 2 Institute of Endocrinology and Experimental Oncology of the CNR, 80131 Naples, Italy * Correspondence: [email protected] Received: 10 March 2020; Accepted: 12 April 2020; Published: 15 April 2020 Abstract: Following the identification of the BCR-ABL1 (Breakpoint Cluster Region-ABelson murine Leukemia) fusion in chronic myelogenous leukemia, gene fusions generating chimeric oncoproteins have been recognized as common genomic structural variations in human malignancies. This is, in particular, a frequent mechanism in the oncogenic conversion of protein kinases. Gene fusion was the first mechanism identified for the oncogenic activation of the receptor tyrosine kinase RET (REarranged during Transfection), initially discovered in papillary thyroid carcinoma (PTC). More recently, the advent of highly sensitive massive parallel (next generation sequencing, NGS) sequencing of tumor DNA or cell-free (cfDNA) circulating tumor DNA, allowed for the detection of RET fusions in many other solid and hematopoietic malignancies. This review summarizes the role of RET fusions in the pathogenesis of human cancer. Keywords: kinase; tyrosine kinase inhibitor; targeted therapy; thyroid cancer 1. The RET Receptor RET (REarranged during Transfection) was initially isolated as a rearranged oncoprotein upon the transfection of a human lymphoma DNA [1].
    [Show full text]
  • Kinase Inhibitors: an Introduction
    David Peters Baran Group Meeting Kinase Inhibitors: An Introduction 2/2/19 INTRODUCTION SIGNAL TRANSDUCTION KINASES ARE IMPORTANT IN HUMAN BIOLOGY/DISEASE: The process describing how a signal (chemical/physical) is transmitted through a - Kinases are a superfamily of proteins (5th largest in humans) cell ultimately resulting in a cellular response - 518 genes and 106 pseudogenes - Diverse in size, subunit structure, and cellular location RECEPTOR TRANSDUCERS EFFECTORS - ~260 residues make up their conserved catalytic core - dysregulation of kinases occurs in many diseases (cancer, inflamatory, degenerative, and autoimmune diseases) - signals can originate inside or outside the cell - 244 of the 518 map to disease loci - signals generally passed through a series of steps (signal transduction pathway) often consisting of multiple enzymes and messengers protein O - pathways open possibility for signal aplification (>1x106) kinase ATP + PROTEIN OH ADP + PROTEIN O P O - Extracellular signals transduced by RTKs, GPCR’s, guanlyl cyclases, or ligand-gated Ion channels O - Phosphorylation is the most prominent covalent modification/signal in KINASES INHIBITORS ARE IMPORTANT IN DISEASE THERAPY/RESEARCH: cellular regulation - currently 51 FDA approved small molecule kinase inhibitors - “converter enzymes” (protein kinases and phosphoprotein phosphorlyases) - 4 FDA approved antibody kinase inhibitors are regulated; conserve ATP/maintain desired target protein state - thousands of known inhibitors spanning the kinome - pathway ends by affecting biomolecule
    [Show full text]
  • Inhibition of Src Family Kinases and Receptor Tyrosine Kinases by Dasatinib: Possible Combinations in Solid Tumors
    Published OnlineFirst June 13, 2011; DOI: 10.1158/1078-0432.CCR-10-2616 Clinical Cancer Molecular Pathways Research Inhibition of Src Family Kinases and Receptor Tyrosine Kinases by Dasatinib: Possible Combinations in Solid Tumors Juan Carlos Montero1, Samuel Seoane1, Alberto Ocaña2,3, and Atanasio Pandiella1 Abstract Dasatinib is a small molecule tyrosine kinase inhibitor that targets a wide variety of tyrosine kinases implicated in the pathophysiology of several neoplasias. Among the most sensitive dasatinib targets are ABL, the SRC family kinases (SRC, LCK, HCK, FYN, YES, FGR, BLK, LYN, and FRK), and the receptor tyrosine kinases c-KIT, platelet-derived growth factor receptor (PDGFR) a and b, discoidin domain receptor 1 (DDR1), c-FMS, and ephrin receptors. Dasatinib inhibits cell duplication, migration, and invasion, and it triggers apoptosis of tumoral cells. As a consequence, dasatinib reduces tumoral mass and decreases the metastatic dissemination of tumoral cells. Dasatinib also acts on the tumoral microenvironment, which is particularly important in the bone, where dasatinib inhibits osteoclastic activity and favors osteogenesis, exerting a bone-protecting effect. Several preclinical studies have shown that dasatinib potentiates the antitumoral action of various drugs used in the oncology clinic, paving the way for the initiation of clinical trials of dasatinib in combination with standard-of-care treatments for the therapy of various neoplasias. Trials using combinations of dasatinib with ErbB/HER receptor antagonists are being explored in breast, head and neck, and colorectal cancers. In hormone receptor–positive breast cancer, trials using combina- tions of dasatinib with antihormonal therapies are ongoing. Dasatinib combinations with chemother- apeutic agents are also under development in prostate cancer (dasatinib plus docetaxel), melanoma (dasatinib plus dacarbazine), and colorectal cancer (dasatinib plus oxaliplatin plus capecitabine).
    [Show full text]
  • Inhibition of Syk Protein Tyrosine Kinase Induces Apoptosis and Blocks Proliferation in T-Cell Non-Hodgkin’S Lymphoma Cell Lines
    Letters to the Editor 229 Figure 1 (a–d) The BCR–ABL variants show similar tyrosine phosphorylation profiles in vitro.(a) Domain organization of the three BCR–ABL variants tested in this study. The coiled-coil (CC), DBL and pleckstrin homology (PH) domains pertain to BCR; the SH3, SH2 and TK domains pertain to ABL. The p200BCR–ABL variant lacks the PH domain, while p190BCR–ABL lacks both the PH and DBL-like domains. Each BCR–ABL variant was stably expressed in 32D cells and whole-cell lysates were subjected to immunoblot analysis with antibodies specific for (b) ABL or (c) global tyrosine phosphorylation (4G10). (d) Immunoblot analysis of STAT5 and STAT6 phosphorylation in whole cell lysates from Ba/F3 cells expressing each of the three BCR–ABL variants. (e–h) Deletion of the PH domain is sufficient to increase the lymphoid transformation potency of BCR–ABL. Donor bone marrow cells from (e) 5-FU-treated Balb/c mice or (f) non-5-FU-treated Balb/c mice were infected with equivalent titer retrovirus expressing p210BCR–ABL, p200BCR–ABL or p190BCR–ABL and transplanted into lethally irradiated recipient mice. Kaplan–Meier survival curves are shown. Mortality events due to CML-like disease, B-ALL-like disease and unrelated causes are marked with square, circle and triangle symbols, respectively. (g, h) Representative fluorescence-activated cell sorting analyzes for CML-like and B-ALL-like disease, respectively. Peripheral blood cells were measured for GFP expression on the y axis. The x axis represents staining with antibodies specific for myeloid cells (Ly6G), B cells (B220), T cells (Thy1.2), early myeloid cells (CD11b) or erythroid cells (Ter119).
    [Show full text]