Early Jurassic Pterosaur Dorygnathus Banthensis (Theodori, 1830) and the Early Jurassic Pterosaur Campylognathoides Strand, 1928 (Special Papers in Palaeontology)

Total Page:16

File Type:pdf, Size:1020Kb

Early Jurassic Pterosaur Dorygnathus Banthensis (Theodori, 1830) and the Early Jurassic Pterosaur Campylognathoides Strand, 1928 (Special Papers in Palaeontology) [Download] Early Jurassic pterosaur Dorygnathus banthensis (Theodori, 1830) and The Early Jurassic pterosaur Campylognathoides Strand, 1928 (Special Papers in Palaeontology) Early Jurassic pterosaur Dorygnathus banthensis (Theodori, 1830) and The Early Jurassic pterosaur Campylognathoides Strand, 1928 (Special Papers in Palaeontology) By Kevin Padian ebooks | Download PDF | *ePub | DOC | audiobook | #14701148 in Books | Wiley-Blackwell | 2009-02-24 | Original language: English | PDF # 1 | 10.90 x .26 x 8.30l, .75 | File type: PDF | 108 pages | | File size: 37.Mb By Kevin Padian : Early Jurassic pterosaur Dorygnathus banthensis (Theodori, 1830) and The Early Jurassic pterosaur Campylognathoides Strand, 1928 (Special Papers in Palaeontology) Early Jurassic pterosaur Dorygnathus banthensis (Theodori, 1830) and The Early Jurassic pterosaur Campylognathoides Strand, 1928 (Special Papers in Palaeontology): Provides a review of the history of the understanding of Dorygnathus a description of the known specimens in public repositories and an assessment of the general morphology and systematic position of the genus From the Back Cover Provides a review of the history of the understanding of Dorygnathus a description of the known specimens in public repositories and an assessment of the general morphology and systematic position of the genus [Download] epub pdf download Free audiobook summary Related: Guide to Wild Dinosaurs BROCKHAUSEN Bastelbuch Bd. 10 - Prickeln: Das große Buch der Fensterbilder: Ritter (Kleine Entdecker) (Volume 10) (German Edition) Troodon - The Wounding Tooth DINOSAUR POP - UP ABC Dinosaur Eggs GB (All Aboard Reading) BROCKHAUSEN Livre du bricolage vol. 9 - Mon grand livre du bricolage: Décoratif Pour Fenêtre & Découper: À la ferme (Petits explorateurs) (Volume 9) (French Edition) Searching for Ropens: Living Pterosaurs in Papua New Guinea Astonishing Legends Family Reference Guide Dinosaurs Predators (The Dinosaur Files) THE RIDDLE OF THE DINOSAUR Home | DMCA | Contact US | sitemap.
Recommended publications
  • Theropod Composition of Early Late Cretaceous Faunas from Central
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Repository of the Academy's Library 1 Feeding related characters in basal pterosaurs: implications for jaw mechanism, dental function and diet RH: Feeding related characters in pterosaurs Attila Ősi A comparative study of various feeding related features in basal pterosaurs reveals a significant change in feeding strategies during the early evolutionary history of the group. These features are related to the skull architecture (e.g. quadrate morphology and orientation, jaw joint), dentition (e.g. crown morphology, wear patterns), reconstructed adductor musculature, and postcranium. The most basal pterosaurs (Preondactylus, dimorphodontids and anurognathids) were small bodied animals with a wing span no greater than 1.5 m, a relatively short, lightly constructed skull, straight mandibles with a large gape, sharply pointed teeth and well developed external adductors. The absence of extended tooth wear excludes complex oral food processing and indicates that jaw closure was simply orthal. Features of these basalmost forms indicate a predominantly insectivorous diet. Among stratigraphically older but more derived forms (Eudimorphodon, Carniadactylus, Caviramus) complex, multicusped teeth allowed the consumption of a wider variety of prey via a more effective form of food processing. This is supported by heavy dental wear in all forms with multicusped teeth. Typical piscivorous forms occurred no earlier than the Early Jurassic, and are characterized by widely spaced, enlarged procumbent teeth forming a fish grab and an anteriorly inclined quadrate that permitted only a relatively small gape. In addition, the skull became more elongate and body size 2 increased. Besides the dominance of piscivory, dental morphology and the scarcity of tooth wear reflect accidental dental occlusion that could have been caused by the capturing or seasonal consumption of harder food items.
    [Show full text]
  • Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry Erick Charles Anderson [email protected]
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2016 Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry Erick Charles Anderson [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Animal Sciences Commons, Ecology and Evolutionary Biology Commons, and the Paleontology Commons Recommended Citation Anderson, Erick Charles, "Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry" (2016). Theses, Dissertations and Capstones. 1031. http://mds.marshall.edu/etd/1031 This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. ANALYZING PTEROSAUR ONTOGENY AND SEXUAL DIMORPHISM WITH MULTIVARIATE ALLOMETRY A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences by Erick Charles Anderson Approved by Dr. Frank R. O’Keefe, Committee Chairperson Dr. Suzanne Strait Dr. Andy Grass Marshall University May 2016 i ii ii Erick Charles Anderson ALL RIGHTS RESERVED iii Acknowledgments I would like to thank Dr. F. Robin O’Keefe for his guidance and advice during my three years at Marshall University. His past research and experience with reptile evolution made this research possible. I would also like to thank Dr. Andy Grass for his advice during the course of the research. I would like to thank my fellow graduate students Donald Morgan and Tiffany Aeling for their support, encouragement, and advice in the lab and bar during our two years working together.
    [Show full text]
  • Pterosaur Distribution in Time and Space: an Atlas 61
    Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W.
    [Show full text]
  • New Information on the Tapejaridae (Pterosauria, Pterodactyloidea) and Discussion of the Relationships of This Clade
    AMEGHINIANA (Rev. Asoc. Paleontol. Argent.) - 41 (4): 521-534. Buenos Aires, 30-12-2004 ISSN 0002-7014 New information on the Tapejaridae (Pterosauria, Pterodactyloidea) and discussion of the relationships of this clade Alexander Wilhelm Armin KELLNER1 Abstract. A phylogenetic analysis indicates that the Tapejaridae is a monophyletic group of pterodactyloid pterosaurs, diagnosed by the following synapomorphies: premaxillary sagittal crest that starts at the anterior tip of the premaxilla and extends posteriorly after the occipital region, large nasoantorbital fenestra that reaches over 45% of the length between premaxilla and squamosal, lacrimal process of the jugal thin, distinct small pear- shaped orbit with lower portion narrow, and broad tubercle at the ventroposterior margin of the coracoid. Several cranial and postcranial characters indicate that the Tapejaridae are well nested within the Tapejaroidea, in sister group relationship with the Azhdarchidae. A preliminary study of the ingroup relationships within the Tapejaridae shows that Tupuxuara is more closely related to Thalassodromeus relative to Tapejara. At present tape- jarid remains have been found in the following deposits: Crato and Romualdo members of the Santana Formation (Aptian-Albian), Araripe Basin, Brazil; Jiufotang Formation (Aptian), Jehol Group of western Liaoning, China; and in the redbeds (Cenomanian) of the Kem Kem region, Morocco. An incomplete skull found in the Javelina Formation (Maastrichtian), Texas also shows several tapejarid features and might be a member of this clade. Although information is still limited, the present distribution of the Tapejaridae indicates that this clade of pterosaurs was not exclusive of Gondwana, and was more widespread than previously known. Resumen. NUEVA INFORMACIÓN SOBRE LOS TAPEJARIDAE (PTEROSAURIA, PTERODACTYLOIDEA) Y DISCUSIÓN SOBRE LAS RELACIONES DE ESTE CLADO.
    [Show full text]
  • On the Osteology of Tapejara Wellnhoferi KELLNER 1989 and the first Occurrence of a Multiple Specimen Assemblage from the Santana Formation, Araripe Basin, NE-Brazil
    Swiss J Palaeontol (2011) 130:277–296 DOI 10.1007/s13358-011-0024-5 On the osteology of Tapejara wellnhoferi KELLNER 1989 and the first occurrence of a multiple specimen assemblage from the Santana Formation, Araripe Basin, NE-Brazil Kristina Eck • Ross A. Elgin • Eberhard Frey Received: 28 May 2011 / Accepted: 9 August 2011 / Published online: 26 August 2011 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2011 Abstract The postcranial elements of two similar sized ocular lobes indicate that Tapejara possessed both excel- and juvenile individuals, along with a partial skull, are lent balancing and visual systems as a consequence of its attributed to the Early Cretaceous pterosaur Tapejara aerial lifestyle. wellnhoferi. The remains, recovered from a single con- cretion of the Romualdo Member, Santana Formation, Keywords Brazil Á Lower Cretaceous Á Santana NE-Brazil, represent the first account of multiple specimens Formation Á Pterosauria Á Tapejaridae Á Osteology having settled together and allow for a complete review of postcranial osteology in tapejarid pterosaurs. A comparison Abbreviations of long bone morphometrics indicates that all specimens BSP Bayerische Staatammlung fu¨r Pala¨ontologie und attributed to the Tapejaridae for which these elements are historische Geologie, Munich, Germany known (i.e. Huaxiapterus, Sinopterus, Tapejara) display D Dalian Natural History Museum, Dalian, China similar bivariate ratios, suggesting that Chinese and Bra- IMNH Iwaki City Museum of Coal and Fossils, Iwaki, zilian taxa must have exhibited similar growth patterns. An Japan unusual pneumatic configuration, whereby the humerus is IVPP Institute for Vertebrate Palaeontology and pierced by both dorsally and ventrally located foramina, is Palaeoanthropology Beijing, P.
    [Show full text]
  • Evolution of Morphological Disparity in Pterosaurs Katherine C
    Journal of Systematic Palaeontology, Vol. 9, Issue 3, September 2011, 337–353 Evolution of morphological disparity in pterosaurs Katherine C. Prentice, Marcello Ruta∗ and Michael J. Benton School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK (Received 9 November 2009; accepted 22 October 2010; printed 15 September 2011) Pterosaurs were important flying vertebrates for most of the Mesozoic, from the Late Triassic to the end of the Cretaceous (225–65 Ma). They varied enormously through time in overall size (with wing spans from about 250 mm to about 12 m), and in features of their cranial and postcranial skeletons. Comparisons of disparity based on discrete cladistic characters show that the basal paraphyletic rhamphorhynchoids (Triassic–Early Cretaceous) occupied a distinct, and relatively small, region of morphospace compared to the derived pterodactyloids (Late Jurassic–Late Cretaceous). This separation is unexpected, especially in view of common constraints on anatomy caused by the requirements of flight. Pterodactyloid disparity shifted through time, with different, small portions of morphospace occupied in the Late Jurassic and Late Cretaceous, and a much larger portion in the Early Cretaceous. This explosion in disparity after 100 Ma of evolution is matched by the highest diversity of the clade: evidently, pterosaurs express a rather ‘top heavy’ clade shape, and this is reflected in delayed morphological evolution, again an unexpected finding. The expansion of disparity among pterodactyloids was comparable across subclades: pairwise comparisons among the four pterodactyloid superfamilies show that, for the most part, these clades display significant morphological separation, except in the case of Dsungaripteroidea and Azhdarchoidea.
    [Show full text]
  • Evolution of the Pterosaur Pelvis Author(S): Elaine S
    Evolution of the Pterosaur Pelvis Author(s): Elaine S. Hyder, Mark P. Witton and David M. Martill Source: Acta Palaeontologica Polonica, 59(1):109-124. Published By: Institute of Paleobiology, Polish Academy of Sciences URL: http://www.bioone.org/doi/full/10.4202/app.2011.1109 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Evolution of the pterosaur pelvis ELAINE S. HYDER, MARK P. WITTON, and DAVID M. MARTILL Hyder, E.S., Witton, M.P., and Martill, D.M. 2014. Evolution of the pterosaur pelvis. Acta Palaeontologica Polonica 59 (1): 109–124. Pterosaur pelvic girdles are complex structures that offer a wealth of phylogenetic and biomechanical information, but have been largely overlooked by pterosaur anatomists. Here, we review pterosaur pelvic morphology and find significant differences that correlate well with pterosaur clades identified in some phylogenetic analyses.
    [Show full text]
  • The Taxonomy and Systematics of Parapsicephalus Purdoni (Reptilia
    The taxonomy and systematics of Parapsicephalus purdoni (Reptilia: Pterosauria) from the Lower Jurassic Whitby Mudstone Formation, Whitby, U.K. Michael O’Sullivan1 and David M. Martill2 1,2School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, United Kingdom, PO1 3QL *Corresponding author: [email protected] Keywords: Pterosauria, Parapsicephalus, United Kingdom, taxonomy, Lower Jurassic, Toarcian. Abstract The Lower Jurassic (Toarcian) pterosaur Parapsicephalus purdoni (Newton, 1888) from the Whitby Mudstone Formation of North Yorkshire is known from a three-dimensionally preserved skull with brain cast. Since Newton’s original description, its taxonomic status has been contentious. Several cladistic studies have placed it within either Dimorphodontidae or Rhamphorhynchidae. Some investigators have suggested that it is a junior synonym of the Toarcian pterosaur Dorygnathus from the Posidonia Shale of south-western Germany. The holotype skull (GSM 3166) is redescribed and its taxonomic status re-evaluated. Several apomorphies place it suggest it belongs in the Rhamphorhynchidae while autapomorphies of the palate and jugal distinguish Parapsicephalus from Dorygnathus, supporting the continued separation of the two genera. 1. Introduction The Lower Jurassic marine strata of the United Kingdom yield a diverse assemblage of reptilian taxa (Owen, 1881), including ichthyosaurs, plesiosaurs, marine crocodiles and, more rarely, pterosaurs. While Lower Jurassic pterosaurs are best known from the Liassic strata of Dorset (Buckland, 1829; Benton and Spencer, 1995), one of the best preserved examples is a three-dimensional near-complete skull (GSM 3166, figs. 1, 2) from the Toarcian (~182 ma) Whitby Mudstone Formation of Loftus, Yorkshire. Identified as the holotype of Parapsicephalus purdoni by Newton, 1888, it is deposited in the British Geological Survey (BGS) at Keyworth, Nottinghamshire.
    [Show full text]
  • Page Numbers in Italic, Eg 153, Refer to Figures
    Index Page numbers in italic, e.g. 153, refer to figures. Page numbers in bold, e.g. 321, signify entries in tables. Aetosaurus ferratus 26 brachiopatagium Agadirichnus elegans 321,322-323 Azhdarchidae (indet.) 249-250 air diverticulae see pneumatization Crato Formation 250 Angustinaripterus 144, 177 Rhamphorhynchus muensteri 238,240-246 Anhanguera 123-124 Solnhofen Lithographic Limestone 234, 235-346 pectoral girdle 191-215 thermoregulation 256-259 inferred myology 201-208 Brazil osteological correlates 193-197 Crato Formation 56, 65-72, 234-235,247-250 Anhanguera blittersdorffi, skull 153 Nova Olinda Member 56-63 Anhanguera piscator 122-123 Santana Formation 234-235 Anhanguera santanae, skull 251 bone histovariability 335-342 Anhangueridae 123 Breviquartossa, definition, content, synapomorphies scapulocoracoid 73-77 155-156 ankle and pes, Triassic genera 37-39 Anurognathidae 107-111,176 Caelidracones, definition, content, synapomorphies Anurognathus ammoni 152-153, 176 152-153 phalanges 176 Campylognathoides 115-116 Ap6n Formation, Venezuela, Early Cretaceous 73-77 caudal vertebrae 18 "Araripesaurus" 178 jugal 9 Araripesaurus castilhoi 145 pectoral girdle 191-215 Archaeopterodactyloidea, definition, content, inferred myology 198-201,203-208 synapomorphies 117-119 osteologicai correlates 197 Araripe Basin, Brazil, Santana Formation 234-235 Campylognathoides liasicus Arizona, Morrison Formation 45-46 skull 152 Asiaticognathidae 107, 111-112 wing ratios 19 astragalus 37 Campylognathoididae 176 Austria, Tyrol, Eudimorphodon cf. ranzii 5-22
    [Show full text]
  • An Unusual Long-Tailed Pterosaur with Elongated Neck from Western Liaoning of China
    “main” — 2009/10/20 — 22:33 — page 793 — #1 Anais da Academia Brasileira de Ciências (2009) 81(4): 793-812 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc An unusual long-tailed pterosaur with elongated neck from western Liaoning of China XIAOLIN WANG1, ALEXANDER W.A. KELLNER2, , , SHUNXING JIANG1 3 and XI MENG1 3 1Key Laboratory of Evolutionary Systematics of Vertebrates Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences PO Box 643, Beijing, 100044, China 2Setor de Paleovertebrados, Museu Nacional, UFRJ Quinta da Boa Vista s/n, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brasil 3Graduate University of Chinese Academy of Sciences, Beijing, 100049, China Manuscript received on August 11, 2009; accepted for publication on September 10, 2009; contributed by ALEXANDER W.A. KELLNER* ABSTRACT A new long-tailed pterosaur, Wukongopterus lii gen. et sp. nov, is described based on an almost complete skeleton (IVPP V15113) representing an individual with an estimated wing span of 730 mm. The specimen was discovered in strata that possibly represent the Daohugou Bed (or Daohugou Formation) at Linglongta, Jianchang, Liaoning Province, China. Wukongopterus lii is a non-pterodactyloid pterosaur diagnosed by the first two pairs of premax- illary teeth protruding beyond the dentary, elongated cervical vertebrae (convergent with Pterodactyloidea), and a strongly curved second pedal phalanx of the fifth toe. The specimen further has a broken tibia that indicates anin- jury occurred while the individual was still alive. Taphonomic aspects provide indirect evidence of an uropatagium, supporting the general hypothesis that at least all non-pterodactyloid pterosaurs show a membrane between the hind limbs.
    [Show full text]
  • Dorsal Ribs Dorsal and Sacral Vertebrae Prepubes Gastralia
    A FLIGHTLESS PTEROSAUR, JME-Sos2428 Homoeosaurus Jianchangnathus David Peters Huehuecuetzpalli Pterorhynchus A normal pterosaur wing compared to Macrocnemus BES SC111 dorsal and sacral vertebrae Kunpengopterus [email protected] dorsal ribs Macrocnemus T4822 Wukongopterus JME-Sos 2428 in situ — the vestigial wing of Sos 2428. Macrocnemus T2472 Darwinopterus Dinocephalosaurus Scaphognathus crassirostris davidpetersstudio.com Jesairosaurus Scaphognathus SMNS 59395 and where are the wing bones?? Hypuronector Scaphognathus Maxberg Vallesaurus TM 13104 This tiny specimen phylogenetically nests close to Sos 2428. Drepanosaurus St Charles, MO 63303 Gmu10157 Megalancosaurus BSp 1986 XV 132 It shows no sign of wing reduction, Amotosaurus Pterodactylus? micronyx-Pester Langobardisaurus but does have wide gastralia and ribs. Tanytrachelos B St 1936 I 50 n30 Tanystropheus a Cycnorhamphus JME-Sos2428 is a largely complete, crushed, Tanystropheus k and q Moganopterus Cosesaurus Feilongus Sharovipteryx Yixianopterus Solnhofen pterosaur. It was previously Note how small the humerus is. Longisquama MSNM V 3881 (Lateral view below, in situ below far right.) MPUM 6009 Lebanon Ornithocheirid Complete Radius/ulna length estimated. Raeticodactylus JZMP embryo considered another specimen of Ardeadactylus Austriadactylus holotype Haopterus Austriadactylus-SC332466 Boreopterus Dimorphodon macronyx Zhenyuanopterus (formerly Pterodactylus) longicollum (neotype: Preondactylus Arthurdactylus Peteinosaurus Ex3359 Coloborhynchus spielbergi Carniadactylus Criorhynchus
    [Show full text]
  • Cope's Rule in the Pterosauria, and Differing
    doi: 10.1111/j.1420-9101.2006.01284.x Cope’s Rule in the Pterosauria, and differing perceptions of Cope’s Rule at different taxonomic levels D. W. E. HONE* &M.J.BENTON* *Department of Earth Sciences, University of Bristol, Bristol, UK Bayerische Staatssammlung fu¨ r Pala¨ontologie und Geologie, Mu¨ nchen, Germany Keywords: Abstract Cope’s Rule; The remarkable extinct flying reptiles, the pterosaurs, show increasing body giantism; size over 100 million years of the Late Jurassic and Cretaceous, and this seems macroevolution; to be a rare example of a driven trend to large size (Cope’s Rule). The size Pterodactyloidea; increases continue throughout the long time span, and small forms disappear Pterosauria; as larger pterosaurs evolve. Mean wingspan increases through time. Exam- Rhamphorhynchoidea. ining for Cope’s Rule at a variety of taxonomic levels reveals varying trends within the Pterosauria as a whole, as pterodactyloid pterosaurs increase in size at all levels of examination, but rhamphorhynchoid pterosaurs show both size increase and size decrease in different analyses. These results suggest that analyses testing for Cope’s Rule at a single taxonomic level may give misleading results. feature of many lineages, or just a rare and unusual Introduction occurrence, and to clarify that simple size increase Many clades show increasing body size through time, a through time is not in itself enough to warrant special phenomenon often loosely called Cope’s Rule (Benton, explanation. 2002). This has been a part of evolutionary biology Large size is expected to convey certain advantages in theory for over a century (Cope, 1896), yet it has never both interspecific and intraspecific competition (Schmidt- gained common acceptance.
    [Show full text]