Escape Tectonics and the Extrusion of Alaska: Past, Present, and Future

Total Page:16

File Type:pdf, Size:1020Kb

Escape Tectonics and the Extrusion of Alaska: Past, Present, and Future Downloaded from geology.gsapubs.org on February 1, 2015 Escape tectonics and the extrusion of Alaska: Past, present, and future T. F. Redfi eld Geological Survey of Norway, Leiv Eirikssens vei 39, 7491 Trondheim, Norway David W. Scholl Department of Geophysics, Stanford University, Stanford, California 94035, USA, and U.S. Geological Survey, Menlo Park, California 94025, USA Paul G. Fitzgerald Department of Earth Sciences, Syracuse University, Syracuse, New York 13244, USA Myrl E. Beck, Jr. Department of Geology, Western Washington University, Bellingham, Washington 98225, USA ABSTRACT as a laterally moving crustal raft or orogenic fl oat (e.g., Oldow et al., The North Pacifi c Rim is a tectonically active plate boundary 1990; Mazzotti and Hyndman, 2002). zone, parts of which may be characterized as a laterally moving oro- We refer to this mobilization of crustal blocks as the North Pacifi c genic stream. Crustal blocks are transported along large-magnitude Rim orogenic stream (NPRS). We postulate that, since the Eocene, NPRS strike-slip faults in western Canada and central Alaska toward the crust has ascended the British Columbia margin, entered the apex of the Aleutian–Bering Sea subduction zones. Throughout much of the Alaska orocline, encountered a buttress or backstop preventing further Cenozoic, at and west of its Alaskan nexus, the North Pacifi c Rim northward displacement, and escaped southwestward toward the Aleu- orogenic Stream (NPRS) has undergone tectonic escape. During tian and Bering Sea subduction zones (Beck, 1986; Scholl and Stevenson, transport, relatively rigid blocks acquired paleomagnetic rotations 1991; Dumitru et al., 1995; Mackey et al., 1997; Fujita et al., 2002). and fault-juxtaposed boundaries while fl owing differentially through the system, from their original point of accretion and entrainment ANATOLIA: AN INSTRUCTIVE ANALOGY toward the free face defi ned by the Aleutian–Bering Sea subduction Anatolia, whose crust is extruded toward the Hellenic subduction zones. Built upon classical terrane tectonics, the NPRS model pro- zone in response to the northward impingement of the Arabian block vides a new framework with which to view the mobilistic nature of the (Nyst and Thatcher, 2004), provides a tectonic analog. The escaping western North American plate boundary zone. Anatolian crustal panel (Fig. 1A) is a structurally complex and internally deforming region, comparable to southern Alaska. The Eurasian Plate to Keywords: Alaska, Anatolia, orocline, extrusion, escape, Denali Tintina, the north acts as a rigid backstop: the dextral North Anatolian fault sys- fault, Bering Sea. tem accommodates westward escape. The north-dipping Hellenic sub- duction zone to the west and southwest makes room for extruded crust. INTRODUCTION Global positioning system (GPS) data have resolved complicated rela- For more than half a century, the geotectonic evolution of Alaska tive motions between individual Anatolian crustal domains (McClusky has been viewed from the context of its arcuate internal structure. Under et al., 2000; Nyst and Thatcher, 2004). the Alaskan Orocline paradigm of Carey (1955), counterclockwise The Anatolian model provides a useful kinematic and dynamic (CCW) vertical-axis paleomagnetic rotations have been interpreted as framework with which to analyze the tectonics of southern and south- small block rotations related in some way to tectonic reshaping of Alaska east Alaska. Structures in Canada, Alaska, and the Bering Sea region have (e.g., Coe et al., 1989). However, simple bending of Alaskan crust con- direct counterparts in Anatolia (Figs. 1A, 1B, 1C). The role of the Arabian fl icts with the lack of extensional and compressional structures outside indenter is played by PAC-NAM dextral oblique to strike-slip coupling, and inside the curvature of the arc (Schultz and Aydin, 1990). Although which drives the NPRS northward along the eastern Pacifi c Rim. consistent with orocline models, the southern Alaskan CCW rotations require another explanation (e.g., Glen, 2004). KINEMATICS AND STRUCTURE IN CENTRAL ALASKA Alaska has long been known as a tectonic collage. Packer and Fitch (1972) proposed that oblique subduction could drive continen- Stone (1972, 1974) suggested southern Alaska had moved north and tal-scale transform faulting. Plate kinematic models for at least the past rotated clockwise (CW) to achieve its present position. Packer et al. 50 m.y. predict dominantly transpressional convergence between Cas- (1975) defi ned three distinct regions, bounded by the Tintina-Rocky cadia and southeast Alaska (Tarduno et al., 2003). Subduction zone– Mountain Trench and Denali fault systems, and made up of multiple driven oblique shear along the western North American margin clearly blocks of conti nental lithosphere brought together in a progressive series drove inboard transform faulting (Beck, 1980, 1986; Gabrielse et al., of accretionary events. Later, Jones et al. (1977) identifi ed Wrangellia 2006). Piercing points along the Kaltag-Tintina–Rocky Mountain Trench as exotic to Alaska. Consolidating the terrane paradigm, Beck (1980), and Denali Fault System (DFS) require signifi cant net northward transla- Stone (1980), and Coney et al. (1980) suggested that the assembly of tion toward the interior of eastern Alaska since 55 Ma (Lanphere, 1978). much of western North American crust was driven by Pacifi c–North Approximately 430 km of dextral displacement occurred across the Tintina America (PAC-NAM) relative convergence. fault system in the Eocene (Gabrielse et al., 2006; Fig. 1D). Along the However, the conventional terrane model incompletely describes eastern segment of the DFS, the geologic record since the earliest Tertiary the mobility of the present-day margin. Western British Columbia and requires ~370 km of dextral offset (Eisbacher, 1976, Fig. 1D). The sum of southern Alaska constitute a diffuse plate boundary zone characterized these numbers (~800 km) multiplied by the width of the orogen (between by non-rigid deformation, mountain building, and block rotations (e.g., ~700 km in British Columbia and ~1200 km in Alaska south of the Kobuk Stein and Freymueller, 2002). Here, we suggest that the “Bering Block” fault) provides a sense of the length and width of the NPRS conveyor. of Mackey et al., (1997) and Fujita et al. (2002) is part of this mobi- The 2002 large-magnitude dextral rupture of the DFS (Haeussler lized zone (Fig. 1). We extend the zone eastward to include the 500- to et al., 2004) demonstrated that relative PAC-NAM plate convergence 1000-km-wide belt of diffusively deformed crustal material south of the continues to drive crust along the interior strike-slip faults of western Brooks Range and outboard of stable parts of the Canadian Cordillera. Canada and southeastern Alaska. Geologic, seismologic, and paleo- We suggest that non-rigid behavior characterizes much of this region, magnetic evidence for northward translation predicts that a signifi cant and that it has been tectonically active throughout much of the Cenozoic space problem should develop in central Alaska. In the apices of the © 2007 The Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or [email protected]. GEOLOGY,Geology, November November 2007; 2007 v. 35; no. 11; p. 1039–1042; doi: 10.1130/G23799A.1; 1 fi gure. 1039 Downloaded from geology.gsapubs.org on February 1, 2015 Figure 1. Inset maps (polar stereographic pro- jections) comparing doc- umented Anatolian extru- sion (A) with hypoth e sized escape of western Alaska (B). C: Polar stereo- graphic map showing principal physiography of North Pacific Rim region. Arrows schemati- cally show motion of North Pacifi c Rim oro- genic stream (NPRS) and Pacifi c Plate relative to fixed North America. Dashed lines and light plum color delineate the approximate boundaries of the stream. Dark plum colored overlay delin- eates the Bering Block as originally defi ned (Mackey et al., 1997). NPRS com- prises all the crustal ter- ranes of the Canadian Pacifi c, Alaska, and the Bering Sea that are undergoing lateral trans- port northward toward Alaska and west of the curving nexus of central Alaska’s “orocline,” south- westward toward the Aleutian subduction zone. D: Offset map illustrating the space problem in central Alaska associ- ated with varying offsets across the great curved fault systems of Alaska. great curved faults of the Alaskan orocline, the increasingly orthogonal Alaskan seismicity is dominated by Benioff zone events, interior Alaskan resolution of PAC-NAM relative convergence signifi cantly reduces the earthquake solutions support translation along strike-slip faults and escape tangential component driving right-lateral slip (Redfi eld and Fitzgerald, of crust to the southwest. Between the curved faults, thrust faults accom- 1993; Glen, 2004). Experiencing much greater tangential components, modate some of the relative motions of individual tracks of crustal ter- the northern end of the British Columbia sector of the orogen should ranes. The disparity of offset between east and west ends of the curved impinge upon crustal blocks already transported into the orocline. Lack- fault systems (Lanphere, 1978; Miller et al., 2002) also presents a space- ing a mechanism for tectonic escape, telescoping of crust and conse- motion problem that cannot be resolved by conventional models of terrane quent uplift, mountain building, erosion, and laterally extensive deep transport. However, velocity changes across strike-slip fault systems may exhumation
Recommended publications
  • Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
    Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G.
    [Show full text]
  • Ecosystem Classification and Interpretation of the C.3 Sub-Boreal Spruce Zone, Prince Rupert Forest Region, British Columbia
    Ecosystem Classification and Interpretation of the c.3 Sub-Boreal Spruce Zone, Prince Rupert Forest Region, British Columbia by J. Pojar', R. Trowbridge', and D. Coates2 'Ministry of Forests 2Ministry of Forests Research Section Silviculture Section Prince Rupert Forest Region Prince Rupert Forest Region Bag 5000 Bag 5000 Smithers. B.C. Smithers, B.C. VOJ 2N0 VOJ 2N0 Province of British Columbia Ministry of Forests ACKNOWLEDGEMENTS Numerous individualsassisted in the various phases ofthis report. D.J. Wilford managed theprogram in its first few years. K. Awmack, A. Banner, M. Blouw, W. Chapman, A. Deas, S. Haeussler, D. Holmes, R. Laird, A. Macadam, K. McKeown, M. O'Neill, L. Ricciotti, 6. Robinson, J. Schwab, 0.Wilford, and D. Yolehelped carry out field work. S. Lindeburghand B.M. Geislercontributed tothe Interpretations sections of theguide. J. van Barneveld and 0. Meidingerreviewed the manuscript and provided many usefulsuggestions. G. Bishop, P. Frank, P. Nystedt,and P. Sowden did most ofthe illustrations. F. Boasand J. Godfrey identified some ofthe bryophytes. Final editing and preparationof the report was by W. Taylor and K. McKeown. M. Romeo, and C. Huismanand J. Taekema did the typing andword processing, respectively. TABLE OF CONTENTS Page 1.0 INTRODUCTION ......................................................... 1 2.0 OBJECTIVES ........................................................... 4 3.0 PRINCIPLES AND PHILOSOPHY ............................................ 5 3.1 Ecosystem ......................................................
    [Show full text]
  • (1987): "Tectonomagmatic Evolution of Cenozoic Extension in the North American Cordillera"
    Downloaded from http://sp.lyellcollection.org/ by Frances J Cooper on January 21, 2013 Geological Society, London, Special Publications Tectonomagmatic evolution of Cenozoic extension in the North American Cordillera Brian P. Wernicke, Philip C. England, Leslie J. Sonder and Robert L. Christiansen Geological Society, London, Special Publications 1987, v.28; p203-221. doi: 10.1144/GSL.SP.1987.028.01.15 Email alerting click here to receive free e-mail alerts when service new articles cite this article Permission click here to seek permission to re-use all or request part of this article Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes © The Geological Society of London 2013 Downloaded from http://sp.lyellcollection.org/ by Frances J Cooper on January 21, 2013 Tectonomagmatic evolution of Cenozoic extension in the North American Cordillera B.P. Wernicke, R.L. Christiansen, P.C. England & L.J. Sonder SUMMARY: The spatial and temporal distributions of Cenozoic extension and magmatism in the Cordillera suggest that the onset of major crustal extension at a particular latitude was confined to a relatively narrow belt (< 100 km, pre-extension) and followed the onset of intermediate and silicic magmatism by no more than a few million years. Extension began in early Eocene time in southern British Columbia, northern Washington, Idaho and Montana. Farther S, extension began at about the Eocene- Oligocene boundary in the Great Basin and slightly later in the Mojave-Sonora Desert region. The intervening area, at the latitude of Las Vegas, remained quiescent until mid- Miocene time. Compositional and isotopic characteristics of most pre-Miocene magmas are consistent with their containing major components of melted continental crust.
    [Show full text]
  • ARTICLES Late Cretaceous Through Cenozoic Strike-Slip Tectonics of Southwestern Alaska
    " .--- ~, , - /.. ./ . - n L~O J t-7.7/ ~ / (C/ / ' '0! L/ 'L ' x/(,' i J(ff /t1cz/j7 ARTICLES Late Cretaceous through Cenozoic Strike-Slip Tectonics of Southwestern Alaska l and William Marti 1. Miller, Dwight C. Bradley, Thomas K. Bundtzen McClellcmd2 u.s. Geological Survey, 4200 University Drive, Anchorage, Alaska 99508, u.S. (e-mail: mlmillerCtYusgs. gov) ABSTRACT New geologic mapping and geochronology show that margin-parallel strike-slip faults on the western limb of the southern Alaska orocline have experienced multiple episodes of dextral motion since -100 Ma. These faults are on the upper plate of a subduction zone -350-450 km inboard of the paleotrench. In southwestern Alaska, dextral displacement is 134 km on the Denali fault, at least 88-94 km on the Iditarod-Nixon Fork fault, and perhaps tens of kilometers on the Dishna River fault. The strike-slip regime coincided with Late Cretaceous sedimentation and then folding in the Kuskokwim basin, and with episodes of magmatism and mineralization at ~ 70, -60, and -30 Ma. No single driving mechanism can explain all of the -95 million-year history of strike-slip faulting. Since -40 Ma the observed dextral sense of strike slip has run contrary to the sense of subduction obliquity. This may be explained by northward motion of the Pacific Plate driving continental margin slivers into and/or around the oroclinal bend. From 44 to 66 Ma, oroclinal rotation, perhaps involving large-scale flexural slip, may have been accompanied by westward escape of crustal blocks along strike-slip faults. However, reconstructions of this period involve unproven assumptions about the identity of the subducting plate, the position of subducting ridges, and the exact timing of oroclinal bending, thus obscuring the driving mechanisms of strike slip.
    [Show full text]
  • By Arthur Grantz This Report Is Preliminary and Has Not Been
    DEPARTMENT OF INTERIOR U. S. GEOLOGICAL SURVEY STRIKE-SLIP FAULTS ITT ALASKA By Arthur Grantz OPEN-FILE REPORT This report is preliminary and has not been edited cr reviewed for conformity vich Geological Survey standards and nomenclature. CONTENTS Page Introduction- - - - - - -- 1 Structural environment of the strike-slip faults- h Description of strike- slip faults and selected linear features-- 10 Denali fault and Dcnali fault system -- 10 Farewell segment of the Denali fault " 1^ Hines Creek strand of the Denali fault - 16 McKinley strand of the Denali fault 17 Shakwak Valley segment of the Denali fault 20 Togiak-Tikchik fault-- 2U Holitna fault 25 Chilkat River fault zone-- - - - 26 Chatham Strait fault- 26 Castle Mountain fault 27 Iditarod-Nixon Fork fault - -- 28 And. ak- Thompson Creek fault- - - 30 Conjugate strike -slip faults in the Yukon delta region 30 Kaltag fault 31 Stevens Creek fault zone-- - ----- 33 Porcupine lineament-- ----- ------ -- _- - - 33 Yukon Flats discontinuity and fault--- - - --- 3^ Tintina fault zone and Tintina trench- - -- 35 Kobuk trench- - - 38 Fairweather fault-------- - -------- - -- 38 Peril Strait fault *K) Chichagof-Sitka fault and its likely southeastern extension, the Patter son Biy fault-- - ----- Ul Clarence Stra.it lincan 2nt- Age of faulting U2 Maximum apparent lateral separations- U6 Superposition of lateral slip upon pre-existing faults- ^9 Hypotheses involving the strike-slip faults 50 Relation to right-lateral slip along the Pacific Coast- - 51 Internal rotation of Alaska - 53 Bending
    [Show full text]
  • SR51 Follow-Up Report on Wildlife and Cattle Grazing in the East
    Follow-up Report on Wildlife and Cattle Grazing in the East Kootenay FPB/SR/51 July 2015 Table of Contents Introduction ................................................................................................................................. 1 Approach ...................................................................................................................................... 2 Objective ....................................................................................................................................................... 2 Methods and Scope ..................................................................................................................................... 2 Findings and Discussion ............................................................................................................ 2 Has authorized grazing been reduced since 2008? ..................................................................................... 2 Are the objectives of the elk management plan being met? ......................................................................... 4 Are the net effects of the ecosystem restoration activities meeting the desired target condition? ............... 6 Conclusion ................................................................................................................................... 9 Appendix I: Funding Sources 1997- 2013 ............................................................................... 10 Introduction In 2008, the Board published the complaint investigation
    [Show full text]
  • Native and Non-Native Plant Species in Grazed Grasslands of British Columbia’S Southern Interior
    Research ReportNATIVE AND NON-NATIVE PLANT SPECIES IN GRAZED GRASSLANDS BC Journal of Ecosystems and Management Native and non-native plant species in grazed grasslands of British Columbia’s southern interior Don Gayton1 Abstract Herbaceous vegetation on 17 native grassland sites in southeastern British Columbia were assessed for their proportion of native and non-native plant species. All sites were on grazed Crown rangeland, and found within the Ponderosa Pine and Interior Douglas-fir biogeoclimatic zones. Vegetation cover values for individual species were aggregated into native and non-native categories. Values for non-native herbaceous species at the 17 sites ranged from 0 to 84% of total herbaceous cover, with an average of 35%. When compared to ungrazed controls, results varied by site. Managers of these grasslands should review and adjust current practices to discourage not only noxious weeds, but all non-native species. KEYWORDS: plant species origin, floristic diversity, British Columbia grasslands, native plant species, non- native plant species, species invasion, grazing impacts. Contact Information 1Ecosystem Management Extension Specialist, FORREX–Forest Research Extension Partnership, Box 1013, Nelson, BC V1L 6A5. E-mail: [email protected] JEM — VOLUME 5, NUMBER 1 © FORREX–Forest Research Extension Partnership Gayton, D. 2004. Native and non-native plantJEM species — VOLUME in grazed 5, N grasslandsUMBER 1 of British Columbia’s southern interior.51 BC Journal of Ecosystems and Management 5(1):51–59. URL: www.forrex.org/jem/2004/vol5/no1/art6.pdf GAYTON Introduction In spite of their limited extent, grasslands atural grasslands occupy less than 1% of British Columbia’s land base (Grasslands Conserva- play an important ecological, economic, N tion Council of British Columbia 2003).
    [Show full text]
  • Tectonics, Dynamics, and Seismic Hazard in the Canada–Alaska Cordillera
    Tectonics, Dynamics, and Seismic Hazard in the Canada–Alaska Cordillera Stephane Mazzotti, Lucinda J. Leonard, Roy D. Hyndman, and John F. Cassidy Geological Survey of Canada, Natural Resources Canada, Sidney, British Columbia, Canada School of Earth and Ocean Science, University of Victoria, Victoria, British Columbia, Canada The North America Cordillera mobile belt has accommodated relative motion between the North America plate and various oceanic plates since the early Mesozoic. The northern half of the Cordillera (Canada–Alaska Cordillera) extends from northern Washington through western Canada and central Alaska and can be divided into four tectonic domains associated with different plate boundary interactions, variable seismicity, and seismic hazard. We present a quantitative tectonic model of the Canada–Alaska Cordillera based on an integrated set of seismicity and GPS data for these four domains: south (Cascadia subduction region), central (Queen Charlotte–Fairweather transcurrent region), north (Yakutat collision region), and Alaska (Alaska subduction region). This tectonic model is compared with a dynamic model that accounts for lithosphere strength contrasts and internal/ boundary force balance. We argue that most of the Canada–Alaska Cordillera is an orogenic float where current tectonics are mainly limited to the upper crust, which is mechanically decoupled from the lower part of the lithosphere. Variations in deformation style and magnitude across the Cordillera are mostly controlled by the balance between plate boundary forces and topography-related gravitational forces. In particular, the strong compression and gravitational forces associated with the Yakutat collision zone are the primary driver of the complex tectonics from eastern Yukon to central Alaska, resulting in crustal extrusion, translation, and deformation across a 1500 ´ 1000-km2 region.
    [Show full text]
  • The Fire History of a 416-Year-Old Western Larch Tree in Southeastern British Columbia
    ExtensionFIRE HISTORY Note OF A 416-YEAR-OLD WESTERN LARCH TREE IN SOUTHEASTERN BRITISH COLUMBIA BC Journal of Ecosystems and Management The fire history of a 416-year-old western larch tree in southeastern British Columbia L.R. Mark Hall1 Abstract The fire history obtained from pre-settlement fire-scarred trees provides useful benchmarks for the restoration of dry interior, fire-dependent forest ecosystems. In the Rocky Mountain Trench of southeast British Columbia, historical benchmarks obtained from periods prior to significant European influence (i.e., pre-1850) are common reference points for forest ecosystem restoration. This extension note discusses the fire history of a 416-year-old western larch (Larix occidentalis) whose growth rings recorded 268 years of fire history before 1850. The study tree’s estimated mean fire intervalmfi ( ) is 34.1 years, and its fire intervals ranged from 19 years to 51 years. The tree did not record a fire during the last 130 years of its life. This extension note also discusses the development of a network of cross-dated benchmark sites across the landscape that would create a master fire chronology for the region. Such a chronology would reflect the natural variability of historical fire patterns, helping policy-makers, managers, recovery teams, and restoration practitioners understand the spatial and temporal distribution of landscape-scale disturbances that historically have created fire-dependent ecological communities (many of which include wildlife and plant species now at risk). The creation of a benchmark network would also refine dry interior forest restoration/conservation programs and improve their efficacy. keywords: fire history, historical benchmark, master chronology, restoration, Rocky Mountain Trench, western larch.
    [Show full text]
  • Challenges in Making a Seismic Hazard Map for Alaska and the Aleutians
    Challenges in Making a Seismic Hazard Map for Alaska and the Aleutians Robert L. Wesson, Oliver S. Boyd, Charles S. Mueller, and Arthur D. Frankel U.S. Geological Survey, Denver, Colorado, USA We present a summary of the data and analyses leading to the revision of the time-independent probabilistic seismic hazard maps of Alaska and the Aleutians. These maps represent a revision of existing maps based on newly obtained data, and reflect best current judgments about methodology and approach. They have been prepared following the procedures and assumptions made in the preparation of the 2002 National Seismic Hazard Maps for the lower 48 States, and will be proposed for adoption in future revisions to the International Building Code. We present example maps for peak ground acceleration, 0.2 s spectral amplitude (SA), and 1.0 s SA at a probability level of 2% in 50 years (annual probability of 0.000404). In this summary, we emphasize issues encountered in preparation of the maps that motivate or require future investigation and research. 1. INTRODUCTION in the region is associated with the Alaska–Aleutian mega- thrust fault (Plate 2) that extends eastward along the Aleutian This paper summarizes the recent revision of the earlier arc into south-central Alaska. The northwestward-moving seismic hazard map of Alaska and the Aleutians [Wesson et Pacific plate is subducted along this megathrust beneath the al., 2007, 1999a, 1999b] with emphasis on the outstanding North American plate, with relative plate motions from 47 geologic and geophysical challenges requiring additional in- to 75 mm/yr, giving rise to the Aleutian Trench, islands, and vestigation and research.
    [Show full text]
  • Columbia River Operations Summary Fall 2020
    Pend d’Oreille Reservoir. Photo by Fabio Moscatelli. Columbia River Operations Summary Fall 2020 This publication provides an overview of BC Hydro’s operations on the Columbia River. At 2,000 kilometres long, the Columbia River is the fourth largest river in North America. The headwaters of the Columbia River are in Canal Flats, British Columbia (B.C.). The river then flows northwest Canada through the Rocky Mountain trench before heading south through B.C. and Washington, emptying into the Pacific Vancouver Ocean at Astoria, Oregon. Other major tributaries of the Columbia River in Canada include the Kootenay and Pend U.S. d’Oreille rivers. Seattle Only 15% of the Columbia River basin lies in Canada. The Montana Canadian portion of the basin is mountainous and receives a Washington lot of snow producing, on average, 30 to 35% of the runoff for Canada and the United States (U.S.) combined. The river’s large annual discharge and relatively steep gradient Idaho gives it tremendous potential for the generation of Oregon electricity. The hydroelectric dams on the Columbia’s main stem and many more on its tributaries produce more hydroelectric power than on any other North American river. BC Hydro’s facilities in the Columbia basin include 13 hydroelectric dams, two water storage dams, and a system of reservoirs. Four of the larger reservoirs within Canada are operated according to the Columbia River Treaty and other agreements signed between Canada and the U.S. BCH20-712 Columbia River Operations Update | 1 Columbia River Treaty compensated for energy losses at its Kootenay Canal operations that result from the timing of water releases The Columbia River Treaty between Canada and the United from the Libby Dam.
    [Show full text]
  • Columbia River Treaty
    An Overview: Columbia River Treaty WHAT IS THE COLUMBIA RIVER TREATY? KEY DATES: 2014 AND 2024 The Columbia River The Columbia River Treaty (CRT) is The years 2014 and 2024 are key dates an international agreement between for the CRT for two reasons: Basin is a transboundary Canada and the United States for the 1. The year 2024 is the earliest date watershed that crosses joint development, regulation and either Canada or the U.S. may one international and management of the Columbia River terminate the CRT, provided seven state boundaries. in order to coordinate flood control 10-year advance notice is given and optimize hydroelectric energy (2014); and production on both sides of the border. 2. The Assured Annual Flood The CRT has no official expiry date, Control provision of the CRT BC AB CANADA but has a minimum length of 60 years, expires automatically in 2024 U.S. which is met on September 16, 2024. It (unless renegotiated) and flood wa MT is possible that one or both countries control specified under the CRT may wish to renegotiate parts or all of changes to a Called Upon Flood Wy the CRT, or terminate it entirely. Control operation. id or Photo: Kinbasket Reservoir behind Mica Dam. William D. Layman, courtesy of Wenatchee Valley Museum & Cultural Center. Right: Map shows the Columbia RIver Basin in Canada and the U.S. in lighter green CA UT and the Columbia Basin Trust region in darker green. NV www.cbt.org/crt Why Was the CRT Signed? Key Provisions of the Columbia River Treaty THE CHALLENGE DAMS AND RESERVOIRS DOWNSTREAM POWER BENEFITS Canada and the U.S.
    [Show full text]