Escape Tectonics and the Extrusion of Alaska: Past, Present, and Future
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G. -
Ecosystem Classification and Interpretation of the C.3 Sub-Boreal Spruce Zone, Prince Rupert Forest Region, British Columbia
Ecosystem Classification and Interpretation of the c.3 Sub-Boreal Spruce Zone, Prince Rupert Forest Region, British Columbia by J. Pojar', R. Trowbridge', and D. Coates2 'Ministry of Forests 2Ministry of Forests Research Section Silviculture Section Prince Rupert Forest Region Prince Rupert Forest Region Bag 5000 Bag 5000 Smithers. B.C. Smithers, B.C. VOJ 2N0 VOJ 2N0 Province of British Columbia Ministry of Forests ACKNOWLEDGEMENTS Numerous individualsassisted in the various phases ofthis report. D.J. Wilford managed theprogram in its first few years. K. Awmack, A. Banner, M. Blouw, W. Chapman, A. Deas, S. Haeussler, D. Holmes, R. Laird, A. Macadam, K. McKeown, M. O'Neill, L. Ricciotti, 6. Robinson, J. Schwab, 0.Wilford, and D. Yolehelped carry out field work. S. Lindeburghand B.M. Geislercontributed tothe Interpretations sections of theguide. J. van Barneveld and 0. Meidingerreviewed the manuscript and provided many usefulsuggestions. G. Bishop, P. Frank, P. Nystedt,and P. Sowden did most ofthe illustrations. F. Boasand J. Godfrey identified some ofthe bryophytes. Final editing and preparationof the report was by W. Taylor and K. McKeown. M. Romeo, and C. Huismanand J. Taekema did the typing andword processing, respectively. TABLE OF CONTENTS Page 1.0 INTRODUCTION ......................................................... 1 2.0 OBJECTIVES ........................................................... 4 3.0 PRINCIPLES AND PHILOSOPHY ............................................ 5 3.1 Ecosystem ...................................................... -
(1987): "Tectonomagmatic Evolution of Cenozoic Extension in the North American Cordillera"
Downloaded from http://sp.lyellcollection.org/ by Frances J Cooper on January 21, 2013 Geological Society, London, Special Publications Tectonomagmatic evolution of Cenozoic extension in the North American Cordillera Brian P. Wernicke, Philip C. England, Leslie J. Sonder and Robert L. Christiansen Geological Society, London, Special Publications 1987, v.28; p203-221. doi: 10.1144/GSL.SP.1987.028.01.15 Email alerting click here to receive free e-mail alerts when service new articles cite this article Permission click here to seek permission to re-use all or request part of this article Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes © The Geological Society of London 2013 Downloaded from http://sp.lyellcollection.org/ by Frances J Cooper on January 21, 2013 Tectonomagmatic evolution of Cenozoic extension in the North American Cordillera B.P. Wernicke, R.L. Christiansen, P.C. England & L.J. Sonder SUMMARY: The spatial and temporal distributions of Cenozoic extension and magmatism in the Cordillera suggest that the onset of major crustal extension at a particular latitude was confined to a relatively narrow belt (< 100 km, pre-extension) and followed the onset of intermediate and silicic magmatism by no more than a few million years. Extension began in early Eocene time in southern British Columbia, northern Washington, Idaho and Montana. Farther S, extension began at about the Eocene- Oligocene boundary in the Great Basin and slightly later in the Mojave-Sonora Desert region. The intervening area, at the latitude of Las Vegas, remained quiescent until mid- Miocene time. Compositional and isotopic characteristics of most pre-Miocene magmas are consistent with their containing major components of melted continental crust. -
ARTICLES Late Cretaceous Through Cenozoic Strike-Slip Tectonics of Southwestern Alaska
" .--- ~, , - /.. ./ . - n L~O J t-7.7/ ~ / (C/ / ' '0! L/ 'L ' x/(,' i J(ff /t1cz/j7 ARTICLES Late Cretaceous through Cenozoic Strike-Slip Tectonics of Southwestern Alaska l and William Marti 1. Miller, Dwight C. Bradley, Thomas K. Bundtzen McClellcmd2 u.s. Geological Survey, 4200 University Drive, Anchorage, Alaska 99508, u.S. (e-mail: mlmillerCtYusgs. gov) ABSTRACT New geologic mapping and geochronology show that margin-parallel strike-slip faults on the western limb of the southern Alaska orocline have experienced multiple episodes of dextral motion since -100 Ma. These faults are on the upper plate of a subduction zone -350-450 km inboard of the paleotrench. In southwestern Alaska, dextral displacement is 134 km on the Denali fault, at least 88-94 km on the Iditarod-Nixon Fork fault, and perhaps tens of kilometers on the Dishna River fault. The strike-slip regime coincided with Late Cretaceous sedimentation and then folding in the Kuskokwim basin, and with episodes of magmatism and mineralization at ~ 70, -60, and -30 Ma. No single driving mechanism can explain all of the -95 million-year history of strike-slip faulting. Since -40 Ma the observed dextral sense of strike slip has run contrary to the sense of subduction obliquity. This may be explained by northward motion of the Pacific Plate driving continental margin slivers into and/or around the oroclinal bend. From 44 to 66 Ma, oroclinal rotation, perhaps involving large-scale flexural slip, may have been accompanied by westward escape of crustal blocks along strike-slip faults. However, reconstructions of this period involve unproven assumptions about the identity of the subducting plate, the position of subducting ridges, and the exact timing of oroclinal bending, thus obscuring the driving mechanisms of strike slip. -
By Arthur Grantz This Report Is Preliminary and Has Not Been
DEPARTMENT OF INTERIOR U. S. GEOLOGICAL SURVEY STRIKE-SLIP FAULTS ITT ALASKA By Arthur Grantz OPEN-FILE REPORT This report is preliminary and has not been edited cr reviewed for conformity vich Geological Survey standards and nomenclature. CONTENTS Page Introduction- - - - - - -- 1 Structural environment of the strike-slip faults- h Description of strike- slip faults and selected linear features-- 10 Denali fault and Dcnali fault system -- 10 Farewell segment of the Denali fault " 1^ Hines Creek strand of the Denali fault - 16 McKinley strand of the Denali fault 17 Shakwak Valley segment of the Denali fault 20 Togiak-Tikchik fault-- 2U Holitna fault 25 Chilkat River fault zone-- - - - 26 Chatham Strait fault- 26 Castle Mountain fault 27 Iditarod-Nixon Fork fault - -- 28 And. ak- Thompson Creek fault- - - 30 Conjugate strike -slip faults in the Yukon delta region 30 Kaltag fault 31 Stevens Creek fault zone-- - ----- 33 Porcupine lineament-- ----- ------ -- _- - - 33 Yukon Flats discontinuity and fault--- - - --- 3^ Tintina fault zone and Tintina trench- - -- 35 Kobuk trench- - - 38 Fairweather fault-------- - -------- - -- 38 Peril Strait fault *K) Chichagof-Sitka fault and its likely southeastern extension, the Patter son Biy fault-- - ----- Ul Clarence Stra.it lincan 2nt- Age of faulting U2 Maximum apparent lateral separations- U6 Superposition of lateral slip upon pre-existing faults- ^9 Hypotheses involving the strike-slip faults 50 Relation to right-lateral slip along the Pacific Coast- - 51 Internal rotation of Alaska - 53 Bending -
SR51 Follow-Up Report on Wildlife and Cattle Grazing in the East
Follow-up Report on Wildlife and Cattle Grazing in the East Kootenay FPB/SR/51 July 2015 Table of Contents Introduction ................................................................................................................................. 1 Approach ...................................................................................................................................... 2 Objective ....................................................................................................................................................... 2 Methods and Scope ..................................................................................................................................... 2 Findings and Discussion ............................................................................................................ 2 Has authorized grazing been reduced since 2008? ..................................................................................... 2 Are the objectives of the elk management plan being met? ......................................................................... 4 Are the net effects of the ecosystem restoration activities meeting the desired target condition? ............... 6 Conclusion ................................................................................................................................... 9 Appendix I: Funding Sources 1997- 2013 ............................................................................... 10 Introduction In 2008, the Board published the complaint investigation -
Native and Non-Native Plant Species in Grazed Grasslands of British Columbia’S Southern Interior
Research ReportNATIVE AND NON-NATIVE PLANT SPECIES IN GRAZED GRASSLANDS BC Journal of Ecosystems and Management Native and non-native plant species in grazed grasslands of British Columbia’s southern interior Don Gayton1 Abstract Herbaceous vegetation on 17 native grassland sites in southeastern British Columbia were assessed for their proportion of native and non-native plant species. All sites were on grazed Crown rangeland, and found within the Ponderosa Pine and Interior Douglas-fir biogeoclimatic zones. Vegetation cover values for individual species were aggregated into native and non-native categories. Values for non-native herbaceous species at the 17 sites ranged from 0 to 84% of total herbaceous cover, with an average of 35%. When compared to ungrazed controls, results varied by site. Managers of these grasslands should review and adjust current practices to discourage not only noxious weeds, but all non-native species. KEYWORDS: plant species origin, floristic diversity, British Columbia grasslands, native plant species, non- native plant species, species invasion, grazing impacts. Contact Information 1Ecosystem Management Extension Specialist, FORREX–Forest Research Extension Partnership, Box 1013, Nelson, BC V1L 6A5. E-mail: [email protected] JEM — VOLUME 5, NUMBER 1 © FORREX–Forest Research Extension Partnership Gayton, D. 2004. Native and non-native plantJEM species — VOLUME in grazed 5, N grasslandsUMBER 1 of British Columbia’s southern interior.51 BC Journal of Ecosystems and Management 5(1):51–59. URL: www.forrex.org/jem/2004/vol5/no1/art6.pdf GAYTON Introduction In spite of their limited extent, grasslands atural grasslands occupy less than 1% of British Columbia’s land base (Grasslands Conserva- play an important ecological, economic, N tion Council of British Columbia 2003). -
Tectonics, Dynamics, and Seismic Hazard in the Canada–Alaska Cordillera
Tectonics, Dynamics, and Seismic Hazard in the Canada–Alaska Cordillera Stephane Mazzotti, Lucinda J. Leonard, Roy D. Hyndman, and John F. Cassidy Geological Survey of Canada, Natural Resources Canada, Sidney, British Columbia, Canada School of Earth and Ocean Science, University of Victoria, Victoria, British Columbia, Canada The North America Cordillera mobile belt has accommodated relative motion between the North America plate and various oceanic plates since the early Mesozoic. The northern half of the Cordillera (Canada–Alaska Cordillera) extends from northern Washington through western Canada and central Alaska and can be divided into four tectonic domains associated with different plate boundary interactions, variable seismicity, and seismic hazard. We present a quantitative tectonic model of the Canada–Alaska Cordillera based on an integrated set of seismicity and GPS data for these four domains: south (Cascadia subduction region), central (Queen Charlotte–Fairweather transcurrent region), north (Yakutat collision region), and Alaska (Alaska subduction region). This tectonic model is compared with a dynamic model that accounts for lithosphere strength contrasts and internal/ boundary force balance. We argue that most of the Canada–Alaska Cordillera is an orogenic float where current tectonics are mainly limited to the upper crust, which is mechanically decoupled from the lower part of the lithosphere. Variations in deformation style and magnitude across the Cordillera are mostly controlled by the balance between plate boundary forces and topography-related gravitational forces. In particular, the strong compression and gravitational forces associated with the Yakutat collision zone are the primary driver of the complex tectonics from eastern Yukon to central Alaska, resulting in crustal extrusion, translation, and deformation across a 1500 ´ 1000-km2 region. -
The Fire History of a 416-Year-Old Western Larch Tree in Southeastern British Columbia
ExtensionFIRE HISTORY Note OF A 416-YEAR-OLD WESTERN LARCH TREE IN SOUTHEASTERN BRITISH COLUMBIA BC Journal of Ecosystems and Management The fire history of a 416-year-old western larch tree in southeastern British Columbia L.R. Mark Hall1 Abstract The fire history obtained from pre-settlement fire-scarred trees provides useful benchmarks for the restoration of dry interior, fire-dependent forest ecosystems. In the Rocky Mountain Trench of southeast British Columbia, historical benchmarks obtained from periods prior to significant European influence (i.e., pre-1850) are common reference points for forest ecosystem restoration. This extension note discusses the fire history of a 416-year-old western larch (Larix occidentalis) whose growth rings recorded 268 years of fire history before 1850. The study tree’s estimated mean fire intervalmfi ( ) is 34.1 years, and its fire intervals ranged from 19 years to 51 years. The tree did not record a fire during the last 130 years of its life. This extension note also discusses the development of a network of cross-dated benchmark sites across the landscape that would create a master fire chronology for the region. Such a chronology would reflect the natural variability of historical fire patterns, helping policy-makers, managers, recovery teams, and restoration practitioners understand the spatial and temporal distribution of landscape-scale disturbances that historically have created fire-dependent ecological communities (many of which include wildlife and plant species now at risk). The creation of a benchmark network would also refine dry interior forest restoration/conservation programs and improve their efficacy. keywords: fire history, historical benchmark, master chronology, restoration, Rocky Mountain Trench, western larch. -
Challenges in Making a Seismic Hazard Map for Alaska and the Aleutians
Challenges in Making a Seismic Hazard Map for Alaska and the Aleutians Robert L. Wesson, Oliver S. Boyd, Charles S. Mueller, and Arthur D. Frankel U.S. Geological Survey, Denver, Colorado, USA We present a summary of the data and analyses leading to the revision of the time-independent probabilistic seismic hazard maps of Alaska and the Aleutians. These maps represent a revision of existing maps based on newly obtained data, and reflect best current judgments about methodology and approach. They have been prepared following the procedures and assumptions made in the preparation of the 2002 National Seismic Hazard Maps for the lower 48 States, and will be proposed for adoption in future revisions to the International Building Code. We present example maps for peak ground acceleration, 0.2 s spectral amplitude (SA), and 1.0 s SA at a probability level of 2% in 50 years (annual probability of 0.000404). In this summary, we emphasize issues encountered in preparation of the maps that motivate or require future investigation and research. 1. INTRODUCTION in the region is associated with the Alaska–Aleutian mega- thrust fault (Plate 2) that extends eastward along the Aleutian This paper summarizes the recent revision of the earlier arc into south-central Alaska. The northwestward-moving seismic hazard map of Alaska and the Aleutians [Wesson et Pacific plate is subducted along this megathrust beneath the al., 2007, 1999a, 1999b] with emphasis on the outstanding North American plate, with relative plate motions from 47 geologic and geophysical challenges requiring additional in- to 75 mm/yr, giving rise to the Aleutian Trench, islands, and vestigation and research. -
Columbia River Operations Summary Fall 2020
Pend d’Oreille Reservoir. Photo by Fabio Moscatelli. Columbia River Operations Summary Fall 2020 This publication provides an overview of BC Hydro’s operations on the Columbia River. At 2,000 kilometres long, the Columbia River is the fourth largest river in North America. The headwaters of the Columbia River are in Canal Flats, British Columbia (B.C.). The river then flows northwest Canada through the Rocky Mountain trench before heading south through B.C. and Washington, emptying into the Pacific Vancouver Ocean at Astoria, Oregon. Other major tributaries of the Columbia River in Canada include the Kootenay and Pend U.S. d’Oreille rivers. Seattle Only 15% of the Columbia River basin lies in Canada. The Montana Canadian portion of the basin is mountainous and receives a Washington lot of snow producing, on average, 30 to 35% of the runoff for Canada and the United States (U.S.) combined. The river’s large annual discharge and relatively steep gradient Idaho gives it tremendous potential for the generation of Oregon electricity. The hydroelectric dams on the Columbia’s main stem and many more on its tributaries produce more hydroelectric power than on any other North American river. BC Hydro’s facilities in the Columbia basin include 13 hydroelectric dams, two water storage dams, and a system of reservoirs. Four of the larger reservoirs within Canada are operated according to the Columbia River Treaty and other agreements signed between Canada and the U.S. BCH20-712 Columbia River Operations Update | 1 Columbia River Treaty compensated for energy losses at its Kootenay Canal operations that result from the timing of water releases The Columbia River Treaty between Canada and the United from the Libby Dam. -
Columbia River Treaty
An Overview: Columbia River Treaty WHAT IS THE COLUMBIA RIVER TREATY? KEY DATES: 2014 AND 2024 The Columbia River The Columbia River Treaty (CRT) is The years 2014 and 2024 are key dates an international agreement between for the CRT for two reasons: Basin is a transboundary Canada and the United States for the 1. The year 2024 is the earliest date watershed that crosses joint development, regulation and either Canada or the U.S. may one international and management of the Columbia River terminate the CRT, provided seven state boundaries. in order to coordinate flood control 10-year advance notice is given and optimize hydroelectric energy (2014); and production on both sides of the border. 2. The Assured Annual Flood The CRT has no official expiry date, Control provision of the CRT BC AB CANADA but has a minimum length of 60 years, expires automatically in 2024 U.S. which is met on September 16, 2024. It (unless renegotiated) and flood wa MT is possible that one or both countries control specified under the CRT may wish to renegotiate parts or all of changes to a Called Upon Flood Wy the CRT, or terminate it entirely. Control operation. id or Photo: Kinbasket Reservoir behind Mica Dam. William D. Layman, courtesy of Wenatchee Valley Museum & Cultural Center. Right: Map shows the Columbia RIver Basin in Canada and the U.S. in lighter green CA UT and the Columbia Basin Trust region in darker green. NV www.cbt.org/crt Why Was the CRT Signed? Key Provisions of the Columbia River Treaty THE CHALLENGE DAMS AND RESERVOIRS DOWNSTREAM POWER BENEFITS Canada and the U.S.