EOL Notification – E200 & E270 Series Industrial SLC Eusb Modules

Total Page:16

File Type:pdf, Size:1020Kb

EOL Notification – E200 & E270 Series Industrial SLC Eusb Modules EOL NOTIFICATION DOCUMENT TITLE: EOL Notification – E200 & E270 Series Industrial SLC eUSB Modules DEPT: Marketing DOCUMENT NO. 412-0052-00 PRINT DATE: 6/9/2020 REV A Page 1 of 2 REVISION HISTORY CHANGE REV DESCRIPTION OF CHANGE DATE REQUEST # A Initial Release 6/12/20 NA Title of EOL: E200 & E270 Series Industrial SLC eUSB Modules Date: 6/12/2020 EOL No: 412-0052-00 EOL Effective Date: 6/15/2020 Last Time Buy Date: 11/13/2020 Last Time Ship Date: 12/15/2021 Description: Due to the discontinuation of the controller and/or older process nodes of SLC NAND flash by the manufacturers, Delkin Devices is announcing end of life on the E200 & E270 Series Industrial SLC eUSB Module product lines. Products Affected: See part number list on page 2. Impact of Change: The part numbers listed will be offered for a Last Time Buy through 11/13/2020 and Last Time Shipment through 12/15/2021, subject to component availability from the manufacturer. Delkin recommends immediate qualification of our E300 Series Industrial SLC eUSB Module, which utilizes the latest controller and flash technology. Reference Documents/Attachments: Engineering Specification 401-0451-00 for the new E300 Series Industrial SLC eUSB Module can be downloaded at Delkin.com. Qualification Samples: Qualification samples of the replacement part numbers are available now, and you are encouraged to contact your Delkin Sales Representative to discuss your requirements and arrange for samples. Please direct any other questions to your Delkin Sales Representative. Sincerely, Tina Guidotti Director of Product Management Delkin Devices, Inc. Delkin Devices, Inc. 13350 Kirkham Way Poway, CA 92064 858.391.1234 www.delkin.com EOL Notification – E200 & E270 Series Industrial SLC eUSB Modules DOCUMENT NO. 412-0052-00 REV A Page 2 of 2 Part Numbers Affected by this End of Life Notification EOL Part Number Replacement Part Number EOL Part Number Replacement Part Number MJ04TFHSY-RA000-D M404TQJGR-RA000-D MY08TFPSY-RL000-D M408TQJGR-RL000-D MU32NLY7L-ST000-D Contact Delkin MY08TFPSY-ST000-D M408TQJGR-ST000-D MV02TFHSW-R3000-D M402TQHFL-R3000-D MY08TGPXU-R9082-D Contact Delkin MV02TFHSW-R5000-D M402TQHFL-R5000-D MY08TQJ7A-RA000-D M408TQJGR-RA000-D MV02TFHSW-RA000-D M402TQHFL-RA000-D MY08TQJ7A-RA050-D M408TQJGR-RA050-D MV04TFNSW-RA000-D M404TQJGR-RA000-D MY08TQJBJ-RA000-D M408TQJGR-RA000-D MV04TFNSY-RA000-D M404TQJGR-RA000-D MY0GTFLSY-R2000-D M40GTQHFL-R2000-D MV08TFPSW-R8000-D M408TQJGR-R8000-D MY0GTFLSY-R5000-D M40GTQHFL-R5000-D MV08TFPSW-RA000-D M408TQJGR-RA000-D MY0GTFLSY-RA000-D M40GTQHFL-RA000-D MY000XX7A-RA000-D Contact Delkin MY0GTFLSY-RA082-D Contact Delkin MY000XX7A-RA082-D Contact Delkin MY0GTQH7A-RA000-D M40GTQHFL-RA000-D MY02TFHSY-R4000-D M402TQHFL-R4000-D MY0GTQHBJ-R9000-D M40GTQHFL-R9000-D MY02TFHSY-R5000-D M402TQHFL-R5000-D MY12TFJSY-R3000-D M40GTQHFL-R3000-D MY02TFHSY-R5SG3-D Contact Delkin MY12TFJSY-RA000-D M40GTQHFL-RA000-D MY02TFHSY-RA000-D M402TQHFL-RA000-D MY16TNK7A-R2000-D M416TNKGR-R2000-D MY02TQHBJ-R3000-D M402TQHFL-R3000-D MY16TNK7A-RA000-D M416TNKGR-RA000-D MY04TFNSY-R2000-D M404TQJGR-R2000-D MY16TNK7A-RA042-D Contact Delkin MY04TFNSY-R5000-D M404TQJGR-R5000-D MY16TNK7A-ST050-D M416TNKGR-ST050-D MY04TFNSY-RA000-D M404TQJGR-RA000-D MY16TNKY4-RA042-D Contact Delkin MY04TLQ7A-RT137-D Contact Delkin MY25TFKSY-R3000-D M40GTQHFL-R3000-D MY04TLQY4-RT137-D Contact Delkin MY25TFKSY-RA000-D M40GTQHFL-RA000-D MY04TQJ7A-R1050-D M404TQJGR-R1050-D MY25TFKSY-RA115-D Contact Delkin MY04TQJ7A-RA000-D M404TQJGR-RA000-D MY32TNJ7A-RA000-D M432TNJGR-RA000-D MY04TQJBJ-RA000-D M404TQJGR-RA000-D MY32TNJ7A-ST000-D M432TNJGR-ST000-D MY08TFPSY-R1000-D M408TQJGR-R1000-D MY32TNJ7A-ST162-D Contact Delkin MY08TFPSY-R2000-D M408TQJGR-R2000-D MY32TNJAM-ST162-D Contact Delkin MY08TFPSY-R6000-D M408TQJGR-R6000-D MY32TNJBJ-ST000-D M432TNJGR-ST000-D MY08TFPSY-R8000-D M408TQJGR-R8000-D MY32TNJBJ-ST162-D Contact Delkin MY08TFPSY-R9000-D M408TQJGR-R9000-D MY32TNJY4-ST000-D M432TNJGR-ST000-D MY08TFPSY-R9082-D Contact Delkin MY51TFKSY-R9082-D Contact Delkin MY08TFPSY-RA000-D M408TQJGR-RA000-D MY51TFKSY-RA082-D Contact Delkin Delkin Devices, Inc. 13350 Kirkham Way Poway, CA 92064 858.391.1234 www.delkin.com .
Recommended publications
  • Mipspro C++ Programmer's Guide
    MIPSproTM C++ Programmer’s Guide 007–0704–150 CONTRIBUTORS Rewritten in 2002 by Jean Wilson with engineering support from John Wilkinson and editing support from Susan Wilkening. COPYRIGHT Copyright © 1995, 1999, 2002 - 2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351. TRADEMARKS AND ATTRIBUTIONS Silicon Graphics, SGI, the SGI logo, IRIX, O2, Octane, and Origin are registered trademarks and OpenMP and ProDev are trademarks of Silicon Graphics, Inc. in the United States and/or other countries worldwide. MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, R2000, R3000, R4000, R4400, R4600, R5000, and R8000 are registered or unregistered trademarks and MIPSpro, R10000, R12000, R1400 are trademarks of MIPS Technologies, Inc., used under license by Silicon Graphics, Inc. Portions of this publication may have been derived from the OpenMP Language Application Program Interface Specification.
    [Show full text]
  • SPIM S20: a MIPS R2000 Simulator∗
    SPIM S20: A MIPS R2000 Simulator∗ 1 th “ 25 the performance at none of the cost” James R. Larus [email protected] Computer Sciences Department University of Wisconsin–Madison 1210 West Dayton Street Madison, WI 53706, USA 608-262-9519 Copyright °c 1990–1997 by James R. Larus (This document may be copied without royalties, so long as this copyright notice remains on it.) 1 SPIM SPIM S20 is a simulator that runs programs for the MIPS R2000/R3000 RISC computers.1 SPIM can read and immediately execute files containing assembly language. SPIM is a self- contained system for running these programs and contains a debugger and interface to a few operating system services. The architecture of the MIPS computers is simple and regular, which makes it easy to learn and understand. The processor contains 32 general-purpose 32-bit registers and a well-designed instruction set that make it a propitious target for generating code in a compiler. However, the obvious question is: why use a simulator when many people have workstations that contain a hardware, and hence significantly faster, implementation of this computer? One reason is that these workstations are not generally available. Another reason is that these ma- chine will not persist for many years because of the rapid progress leading to new and faster computers. Unfortunately, the trend is to make computers faster by executing several instruc- tions concurrently, which makes their architecture more difficult to understand and program. The MIPS architecture may be the epitome of a simple, clean RISC machine. In addition, simulators can provide a better environment for low-level programming than an actual machine because they can detect more errors and provide more features than an actual computer.
    [Show full text]
  • MIPS® Architecture for Programmers Volume I-B: Introduction to the Micromips32™ Architecture, Revision 5.03
    MIPS® Architecture For Programmers Volume I-B: Introduction to the microMIPS32™ Architecture Document Number: MD00741 Revision 5.03 Sept. 9, 2013 Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries. This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’ affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE) reserve the right to change the information contained in this document to improve function, design or otherwise. MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.
    [Show full text]
  • Mipspro™ Compiling and Performance Tuning Guide
    MIPSpro™ Compiling and Performance Tuning Guide Document Number 007-2360-006 Contributors Written by Arthur Evans, Wendy Ferguson, Jed Hartman, Jackie Neider Edited by Christina Cary Production by Lorrie Williams Engineering contributions by Dave Anderson, Zaineb Asaf, Dave Babcock, Greg Boyd, Jack Carter, Ann Mei Chang, Wei-Chau Chang, David Ciemiewicz, Rune Dahl, Jim Dehnert, David Frederick, Sanjoy Ghosh, Jay Gischer, Bob Green, Seema Hiranandani, W. Wilson Ho, Marty Itzkowitz, Bhaskar Janakiraman, Woody Lichtenstein, Dror Maydan, Ajit Mayya, Ray Milkey, Michael Murphy, Bron Nelson, Andy Palay, Ron Price, John Wilkinson © Copyright 1996 Silicon Graphics, Inc.— All Rights Reserved This document contains proprietary and confidential information of Silicon Graphics, Inc. The contents of this document may not be disclosed to third parties, copied, or duplicated in any form, in whole or in part, without the prior written permission of Silicon Graphics, Inc. Restricted Rights Legend Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. Silicon Graphics, the Silicon Graphics logo, and IRIS are registered trademarks and IRIX, CASEVision, IRIS IM, IRIS Showcase, Impressario, Indigo Magic, Inventor, IRIS-4D, POWER Series, RealityEngine, CHALLENGE, Onyx, Origin2000, and WorkShop are trademarks of Silicon Graphics, Inc.
    [Show full text]
  • MIPS IV Instruction Set
    MIPS IV Instruction Set Revision 3.2 September, 1995 Charles Price MIPS Technologies, Inc. All Right Reserved RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and / or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States. Contractor / manufacturer is MIPS Technologies, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. R2000, R3000, R6000, R4000, R4400, R4200, R8000, R4300 and R10000 are trademarks of MIPS Technologies, Inc. MIPS and R3000 are registered trademarks of MIPS Technologies, Inc. The information in this document is preliminary and subject to change without notice. MIPS Technologies, Inc. (MTI) reserves the right to change any portion of the product described herein to improve function or design. MTI does not assume liability arising out of the application or use of any product or circuit described herein. Information on MIPS products is available electronically: (a) Through the World Wide Web. Point your WWW client to: http://www.mips.com (b) Through ftp from the internet site “sgigate.sgi.com”. Login as “ftp” or “anonymous” and then cd to the directory “pub/doc”. (c) Through an automated FAX service: Inside the USA toll free: (800) 446-6477 (800-IGO-MIPS) Outside the USA: (415) 688-4321 (call from a FAX machine) MIPS Technologies, Inc.
    [Show full text]
  • MIPS Architecture • MIPS (Microprocessor Without Interlocked Pipeline Stages) • MIPS Computer Systems Inc
    Spring 2011 Prof. Hyesoon Kim MIPS Architecture • MIPS (Microprocessor without interlocked pipeline stages) • MIPS Computer Systems Inc. • Developed from Stanford • MIPS architecture usages • 1990’s – R2000, R3000, R4000, Motorola 68000 family • Playstation, Playstation 2, Sony PSP handheld, Nintendo 64 console • Android • Shift to SOC http://en.wikipedia.org/wiki/MIPS_architecture • MIPS R4000 CPU core • Floating point and vector floating point co-processors • 3D-CG extended instruction sets • Graphics – 3D curved surface and other 3D functionality – Hardware clipping, compressed texture handling • R4300 (embedded version) – Nintendo-64 http://www.digitaltrends.com/gaming/sony- announces-playstation-portable-specs/ Not Yet out • Google TV: an Android-based software service that lets users switch between their TV content and Web applications such as Netflix and Amazon Video on Demand • GoogleTV : search capabilities. • High stream data? • Internet accesses? • Multi-threading, SMP design • High graphics processors • Several CODEC – Hardware vs. Software • Displaying frame buffer e.g) 1080p resolution: 1920 (H) x 1080 (V) color depth: 4 bytes/pixel 4*1920*1080 ~= 8.3MB 8.3MB * 60Hz=498MB/sec • Started from 32-bit • Later 64-bit • microMIPS: 16-bit compression version (similar to ARM thumb) • SIMD additions-64 bit floating points • User Defined Instructions (UDIs) coprocessors • All self-modified code • Allow unaligned accesses http://www.spiritus-temporis.com/mips-architecture/ • 32 64-bit general purpose registers (GPRs) • A pair of special-purpose registers to hold the results of integer multiply, divide, and multiply-accumulate operations (HI and LO) – HI—Multiply and Divide register higher result – LO—Multiply and Divide register lower result • a special-purpose program counter (PC), • A MIPS64 processor always produces a 64-bit result • 32 floating point registers (FPRs).
    [Show full text]
  • Optimal Software Pipelining: Integer Linear Programming Approach
    OPTIMAL SOFTWARE PIPELINING: INTEGER LINEAR PROGRAMMING APPROACH by Artour V. Stoutchinin Schooi of Cornputer Science McGill University, Montréal A THESIS SUBMITTED TO THE FACULTYOF GRADUATESTUDIES AND RESEARCH IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTEROF SCIENCE Copyright @ by Artour V. Stoutchinin Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. nie Wellington Ottawa ON K1A ON4 Ottawa ON KI A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la fome de microfiche/^, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantialextracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation- Acknowledgements First, 1 thank my family - my Mom, Nina Stoutcliinina, my brother Mark Stoutchinine, and my sister-in-law, Nina Denisova, for their love, support, and infinite patience that comes with having to put up with someone like myself. I also thank rny father, Viatcheslav Stoutchinin, who is no longer with us. Without them this thesis could not have had happened.
    [Show full text]
  • Pluggable Interface Relays CR-M Miniature Relays
    Data sheet Pluggable interface relays CR-M Miniature relays Pluggable interface relays are used for electrical isolation, amplification and signal matching between the electronic controlling, e.g. PLC (programmable logic controller), PC or field bus systems and the sensor / actuator level. They don’t use additional internal protective circuits and thus are overload-proof against short-time variations like current or voltage peaks. 2CDC 291 002 S0015 Characteristics Approvals – Standard miniature relays with mechanical status indication H ANSI/UL 508, CAN/CSA C22.2 No.14 – 13 different rated control supply voltages: F CAN/CSA C22.2 No.14 DC versions: 12 V, 24 V, 48 V, 60 V, 110 V, 125 V, 220 V J VDE (except 125 V DC devices) AC versions: 24 V, 48 V, 60 V, 110 V, 120 V, 230 V EAC – Output: 2 c/o (SPDT) contacts (12 A), 3 c/o (SPDT) R contacts (10 A) or 4 c/o (SPDT) contacts (6 A) P Lloyds Register (only devices with 4 c/o (SPDT) – Available with or without LED contacts) CCC – 4 c/o (SPDT) contact version optionally equipped with E gold contacts, LED and free wheeling diode L RMRS (except 60 V and 125 V devices) – Integrated test button for manual actuation and locking of output contacts (DC coil = blue, AC coil = orange) that Marks can be removed if necessary a CE – Cadmium-free contact material – Suited for logical and standard sockets – Width on socket: 27 mm (1.063 in) – Pluggable function modules: reverse polarity protection/ free wheeling diode, LED indication, RC elements, overvoltage protection Order data Packing unit = 10 pieces
    [Show full text]
  • Computer Organization EECC 550 • Introduction: Modern Computer Design Levels, Components, Technology Trends, Register Transfer Week 1 Notation (RTN)
    Computer Organization EECC 550 • Introduction: Modern Computer Design Levels, Components, Technology Trends, Register Transfer Week 1 Notation (RTN). [Chapters 1, 2] • Instruction Set Architecture (ISA) Characteristics and Classifications: CISC Vs. RISC. [Chapter 2] Week 2 • MIPS: An Example RISC ISA. Syntax, Instruction Formats, Addressing Modes, Encoding & Examples. [Chapter 2] • Central Processor Unit (CPU) & Computer System Performance Measures. [Chapter 4] Week 3 • CPU Organization: Datapath & Control Unit Design. [Chapter 5] Week 4 – MIPS Single Cycle Datapath & Control Unit Design. – MIPS Multicycle Datapath and Finite State Machine Control Unit Design. Week 5 • Microprogrammed Control Unit Design. [Chapter 5] – Microprogramming Project Week 6 • Midterm Review and Midterm Exam Week 7 • CPU Pipelining. [Chapter 6] • The Memory Hierarchy: Cache Design & Performance. [Chapter 7] Week 8 • The Memory Hierarchy: Main & Virtual Memory. [Chapter 7] Week 9 • Input/Output Organization & System Performance Evaluation. [Chapter 8] Week 10 • Computer Arithmetic & ALU Design. [Chapter 3] If time permits. Week 11 • Final Exam. EECC550 - Shaaban #1 Lec # 1 Winter 2005 11-29-2005 Computing System History/Trends + Instruction Set Architecture (ISA) Fundamentals • Computing Element Choices: – Computing Element Programmability – Spatial vs. Temporal Computing – Main Processor Types/Applications • General Purpose Processor Generations • The Von Neumann Computer Model • CPU Organization (Design) • Recent Trends in Computer Design/performance • Hierarchy
    [Show full text]
  • IDT79R4600 and IDT79R4700 RISC Processor Hardware User's Manual
    IDT79R4600™ and IDT79R4700™ RISC Processor Hardware User’s Manual Revision 2.0 April 1995 Integrated Device Technology, Inc. Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. IDT does not assume any respon- sibility for use of any circuitry described other than the circuitry embodied in an IDT product. ITD makes no representations that circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent, patent rights, or other rights of Integrated Device Technology, Inc. LIFE SUPPORT POLICY Integrated Device Technology’s products are not authorized for use as critical components in life sup- port devices or systems unless a specific written agreement pertaining to such intended use is executed between the manufacturer and an officer of IDT. 1. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accor- dance with instructions for use provided in the labeling, can be reasonably expected to result in a sig- nificant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
    [Show full text]
  • Mipspro 64-Bit Porting and Transition Guide
    MIPSpro™ 64-Bit Porting and Transition Guide Document Number 007-2391-003 CONTRIBUTORS Written by George Pirocanac Edited by Larry Huffman, Cindy Kleinfeld Production by Cindy Stief Engineering contributions by Dave Anderson, Bean Anderson, Dave Babcock, Jack Carter, Ann Chang, Wei-Chau Chang, Steve Cobb, Rune Dahl, Jim Dehnert, David Frederick, Jay Gischer, Bob Green, W. Wilson Ho, Peter Hsu, Bill Johnson, Dror Maydan, Ash Munshi, Michael Murphy, Bron Nelson, Paul Rodman, John Ruttenberg, Ross Towle, Chris Wagner © Copyright 1994-1996 Silicon Graphics, Inc.— All Rights Reserved The contents of this document may not be copied or duplicated in any form, in whole or in part, without the prior written permission of Silicon Graphics, Inc. RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94043-1389. Silicon Graphics and IRIS are registered trademarks and IRIX, CASEVision, IRIS IM, IRIS Showcase, Impressario, Indigo Magic, Inventor, IRIS-4D, POWER Series, RealityEngine, CHALLENGE, Onyx, and WorkShop are trademarks of Silicon Graphics, Inc. UNIX is a registered trademark of UNIX System Laboratories. OSF/Motif is a trademark of Open Software Foundation, Inc. The X Window System is a trademark of the Massachusetts Institute of Technology.
    [Show full text]
  • MOTOROLA 1995 112P
    High-Performance Internal Product Portfolio Overview Issue 10 Fourth Quarter, 1995 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and µ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
    [Show full text]