Seed Germination and Triterpenoid Content of Anemopaegma Arvense (Vell.) Stellfeld Varieties
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Species and Combinations of Apocynaceae, Bignoniaceae, Clethraceae, and Cunoniaceae from the Neotropics
Anales del Jardín Botánico de Madrid 75 (2): e071 https://doi.org/10.3989/ajbm.2499 ISSN: 0211-1322 [email protected], http://rjb.revistas.csic.es/index.php/rjb Copyright: © 2018 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial (by-nc) Spain 4.0 License. New species and combinations of Apocynaceae, Bignoniaceae, Clethraceae, and Cunoniaceae from the Neotropics Juan Francisco Morales 1,2,3 1 Missouri Botanical Garden 4344 Shaw Blvd. St. Louis, MO 63110, USA. 2 Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätstrasse 30, 95447 Bayreuth, Germany. 3 Doctorado en Ciencias Naturales para el Desarrollo (DOCINADE), Universidad Estatal a Distancia, 474–2050 Montes de Oca, Costa Rica. [email protected], https://orcid.org/0000-0002-8906-8567 Abstract. Mandevilla arenicola J.F.Morales sp. nov. from Brazil, Clethra Resumen. Se describen e ilustran Mandevilla arenicola J.F.Morales secazu J.F.Morales sp. nov. from Costa Rica, and Weinmannia abstrusa sp. nov. de Brasil, Clethra secazu J.F.Morales sp. nov. de Costa Rica y J.F.Morales sp. nov. from Honduras are described and illustrated and Weinmannia abstrusa J.F.Morales sp. nov. de Honduras y se discuten their relationships with morphologically related species are discussed. sus relaciones con otras especies de morfología semejante. Se designan Lectotypes are designated for Anemopaegma tonduzianum Kraenzl., lectotipos para Anemopaegma tonduzianum Kraenzl., Bignonia Bignonia sarmentosa var. hirtella Benth. and Paragonia pyramidata var. sarmentosa var. hirtella Benth. and Paragonia pyramidata var. tomentosa tomentosa Bureau & K. Schum., as well as these last two names have Bureau & K.Schum., así como también se combinan estos dos últimos been combined. -
Dimensions of Biodiversity
Dimensions of Biodiversity NATIONAL SCIENCE FOUNDATION CO-FUNDED BY 2010–2015 PROJECTS Introduction 4 Project Abstracts 2015 8 Project Updates 2014 30 Project Updates 2013 42 Project Updates 2012 56 Project Updates 2011 72 Project Updates 2010 88 FRONT COVER IMAGES A B f g h i k j C l m o n q p r D E IMAGE CREDIT THIS PAGE FRONT COVER a MBARI & d Steven Haddock f Steven Haddock k Steven Haddock o Carolyn Wessinger Peter Girguis e Carolyn g Erin Tripp l Lauren Schiebelhut p Steven Litaker b James Lendemer Wessinger h Marty Condon m Lawrence Smart q Sahand Pirbadian & c Matthew L. Lewis i Marty Condon n Verity Salmon Moh El-Naggar j Niklaus Grünwald r Marty Condon FIELD SITES Argentina France Singapore Australia French Guiana South Africa Bahamas French Polynesia Suriname Belize Germany Spain Bermuda Iceland Sweden Bolivia Japan Switzerland Brazil Madagascar Tahiti Canada Malaysia Taiwan China Mexico Thailand Colombia Norway Trinidad Costa Rica Palau United States Czech Republic Panama United Kingdom Dominican Peru Venezuela Republic Philippines Labrador Sea Ecuador Poland North Atlantic Finland Puerto Rico Ocean Russia North Pacific Ocean Saudi Arabia COLLABORATORS Argentina Finland Palau Australia France Panama Brazil Germany Peru Canada Guam Russia INTERNATIONAL PARTNERS Chile India South Africa China Brazil China Indonesia Sri Lanka (NSFC) (FAPESP) Colombia Japan Sweden Costa Rica Kenya United Denmark Malaysia Kingdom Ecuador Mexico ACKNOWLEDGMENTS Many NSF staff members, too numerous to We thank Mina Ta and Matthew Pepper for mention individually, assisted in the development their graphic design contribution to the abstract and implementation of the Dimensions of booklet. -
Lamiales – Synoptical Classification Vers
Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA. -
Extremely Low Nucleotide Diversity Among Thirty-Six New Chloroplast Genome Sequences from Aldama (Heliantheae, Asteraceae) and C
Extremely low nucleotide diversity among thirty-six new chloroplast genome sequences from Aldama (Heliantheae, Asteraceae) and comparative chloroplast genomics analyses with closely related genera Benoit Loeuille1,*, Verônica Thode2,*, Carolina Siniscalchi3, Sonia Andrade4, Magdalena Rossi5 and José Rubens Pirani5 1 Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil 2 Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil 3 Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States of America 4 Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, São Paulo, Brazil 5 Departamento de Botânica, Universidade de São Paulo, São Paulo, São Paulo, Brazil * These authors contributed equally to this work. ABSTRACT Aldama (Heliantheae, Asteraceae) is a diverse genus in the sunflower family. To date, nearly 200 Asteraceae chloroplast genomes have been sequenced, but the plastomes of Aldama remain undescribed. Plastomes in Asteraceae usually show little sequence divergence, consequently, our hypothesis is that species of Aldama will be overall conserved. In this study, we newly sequenced 36 plastomes of Aldama and of five species belonging to other Heliantheae genera selected as outgroups (i.e., Dimerostemma asperatum, Helianthus tuberosus, Iostephane heterophylla, Pappobolus lanatus var. lana- tus, and Tithonia diversifolia). We analyzed the structure and gene content of the Submitted 29 July 2020 assembled plastomes and performed comparative analyses within Aldama and with Accepted 12 January 2021 Published 24 February 2021 other closely related genera. As expected, Aldama plastomes are very conserved, with the overall gene content and orientation being similar in all studied species. -
Apomixis in Neotropical Vegetation
Chapter 7 Apomixis in Neotropical Vegetation Fabiana Firetti FabianaAdditional informationFiretti is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.71856 Abstract In neotropical ecosystems, genetic variability and diversity of plant species seem to be generated and maintained by sexual reproduction. However, apomixis appears as an alternative reproductive strategy in many plant families. Apomixis comprises the devel- opment of a new organism from an unreduced and unfertilized egg cell. Traditionally, it is considered a dead end of evolution due to the lack of genetic variability; however, processes such as de novo mutation, gene conversion, mitotic recombination and epigen- etic drift may work as important sources of genetic variation during apomictic repro- duction. Moreover, plant species show facultative apomixis, which allows the formation of sexual and asexual offspring. As a result, natural apomict populations show greater genotypic variability than expected from a clonal population. Also, asexual reproduction is considered one of the important attributes promoting diversity in angiosperms. Here, I review the occurrence of apomixis in several plant families that are well represented in neotropics and I infer the relation between apomixis and diversity of species. Many plant families that are common in the neotropical region show facultative apomixis associated with polyploidy and hybridization events. Apomixis seems to play a key role in the estab- lishment of new evolutionary lineages in a wide variety of environmental conditions. Keywords: asexual reproduction, diversity, genetic variability, plant diversity, tropical vegetation 1. Introduction The tropics, subdivided into paleotropics and neotropics, include the region of the earth’s sur- face between Tropic of Cancer (23°27′N) and the Tropic of Capricorn (23°27′S) and comprise about 40% of the earth’s land surface [1]. -
Redalyc.Nuptial Nectary Structure of Bignoniaceae from Argentina
Darwiniana ISSN: 0011-6793 [email protected] Instituto de Botánica Darwinion Argentina Rivera, Guillermo L. Nuptial nectary structure of Bignoniaceae from Argentina Darwiniana, vol. 38, núm. 3-4, 2000, pp. 227-239 Instituto de Botánica Darwinion Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=66938404 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative G. L. RIVERA.DARWINIANA Nuptial nectary structure of Bignoniaceae fromISSN Argentina 0011-6793 38(3-4): 227-239. 2000 NUPTIAL NECTARY STRUCTURE OF BIGNONIACEAE FROM ARGENTINA GUILLERMO L. RIVERA Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, Casilla de Correo 495, 5000 Córdoba, Argentina. E-mail: [email protected] ABSTRACT: Rivera, G. L. 2000. Nuptial nectary structure of Bignoniaceae from Argentina. Darwiniana 38(3-4): 227-239. Nuptial nectary characteristics were investigated in 37 taxa of Bignoniaceae. A nuptial nectary associated to the floral axis was found in all species. Two main types can be distinguished according to their degree of development and functionality: 1) vestigial and non-secretory and 2) well-developed and secretory. The former is characteristic of Clytostoma spp., while the latter is found in the remaining species. Two subvarieties of the secretory type of nectary can be discerned according to their position and shape: 1) annular, found in Adenocalymma, Amphilophium, Anemopaegma, Arrabidaea, Dolichandra, Eccremocarpus, Macfadyena, Melloa, Pithecoctenium, Tabebuia, and Tecoma, and 2) cylindrical, found in Argylia, Cuspidaria, Jacaranda, Mansoa, Parabignonia, Pyrostegia, and Tynnanthus. -
Universidade Federal De Uberlândia Instituto De Biologia Programa De Pós-Graduação Em Ecologia E Conservação De Recursos Naturais
UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUTO DE BIOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA E CONSERVAÇÃO DE RECURSOS NATURAIS BIOLOGIA REPRODUTIVA DE ESPÉCIES DE BIGNONIACEAE OCORRENTES NO CERRADO E VARIAÇÕES NO SISTEMA DE AUTOINCOMPATIBILIDADE DIANA SALLES SAMPAIO Orientador: Prof. Dr. Paulo Eugênio A. M. Oliveira Coorientador: Prof. Dr. Nelson Sabino Bittencourt Jr. Uberlândia, março de 2010 UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUTO DE BIOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA E CONSERVAÇÃO DE RECURSOS NATURAIS BIOLOGIA REPRODUTIVA DE ESPÉCIES DE BIGNONIACEAE OCORRENTES NO CERRADO E VARIAÇÕES NO SISTEMA DE AUTOINCOMPATIBILIDADE DIANA SALLES SAMPAIO Orientador: Prof. Dr. Paulo Eugênio A. M. Oliveira Coorientador: Prof. Dr. Nelson Sabino Bittencourt Jr. Tese apresentada ao Programa de Pós- Graduação em Ecologia e Conservação dos Recursos Naturais da Universidade Federal de Uberlândia como parte dos requisitos para obtenção do título de Doutor em Ecologia. Uberlândia, março de 2010 DIANA SALLES SAMPAIO BIOLOGIA REPRODUTIVA DE ESPÉCIES DE BIGNONIACEAE OCORRENTES NO CERRADO E VARIAÇÕES NO SISTEMA DE AUTOINCOMPATIBILIDADE Tese apresentada ao Programa de Pós-Graduação em Ecologia e Conservação dos Recursos Naturais da Universidade Federal de Uberlândia como parte dos requisitos para obtenção do título de Doutor em Ecologia. Aprovada em: 26/03/2010 Banca Examinadora: Prof. Dr. Eduardo Leite Borba – UFMG ________________________________________ Profa. Dra. Eliana Forni-Martins – UNICAMP ___________________________________ Profa. -
Article ISSN 1179-3163 (Online Edition)
Phytotaxa 219 (2): 174–182 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.219.2.7 A new species of Anemopaegma (Bignonieae, Bignoniaceae) from the Atlantic Forest of Brazil FABIANA FIRETTI-LEGGIERI1,2, DIEGO DEMARCO1 & LÚCIA G. LOHMANN1,2 1 Universidade de São Paulo, Instituto de Biociências, Departamento de Botânica, Rua do Matão 277, CEP 05508-090, São Paulo, SP, Brazil. 2 Authors for correspondence: [email protected]; [email protected] Abstract The Atlantic Forest of Brazil includes one of the highest species diversity and endemism in the planet, representing a priority for biodiversity conservation. A new species of Anemopaegma from the Atlantic Forest of Brazil is here described, illustrated and compared to its closest relatives. Anemopaegma nebulosum Firetti-Leggieri & L.G. Lohmann has been traditionally treated as a morph of Anemopaegma prostratum; however, additional morphological and anatomical studies indicated that A. nebulosum differs significantly from A. prostratum and is best treated as a separate species. More specifically, A. nebulosum is characterized by elliptic and coriaceous leaflets (vs. ovate to orbicular and membranaceous in A. prostratum), smaller leaflet blades (3.6–5.5 x 2.0–3.0 cm vs. 6.7–13.0 x 4.2–8.4 cm in A. prostratum), orbicular prophylls of the axillary buds (vs. no prophylls in A. prostratum), solitary flowers (vs. multi- flowered axillary racemes in A. prostratum) and a gibbous corolla (vs. infundibuliform corollas in A. prostratum). In addition, A. nebulosum differs from A. -
Richard G. Olmstead, 2,6 Michelle L. Zjhra, 3,7 L Ú Cia G. Lohmann, 4,8
American Journal of Botany 96(9): 1731–1743. 2009. A MOLECULAR PHYLOGENY AND CLASSIFICATION OF BIGNONIACEAE 1 Richard G. Olmstead, 2,6 Michelle L. Zjhra, 3,7 L ú cia G. Lohmann, 4,8 Susan O. Grose, 2 and Andrew J. Eckert 2,5 2 Department of Biology, University of Washington, Seattle, Washington 98195 USA; 3 Department of Biology, Box 8042, Georgia Southern University, Statesboro, Georgia 30460 USA; 4 Department of Biology, University of University of Missouri-St. Louis, 8001 Natural Bridge Road, St. Louis, Missouri 63121 USA; and 5 Section of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, California 95616 USA Bignoniaceae are woody, trees, shrubs, and lianas found in all tropical fl oras of the world with lesser representation in temperate regions. Phylogenetic analyses of chloroplast sequences ( rbcL , ndhF , trnL-F ) were undertaken to infer evolutionary relationships in Bignoniaceae and to revise its classifi cation. Eight clades are recognized as tribes (Bignonieae, Catalpeae, Coleeae, Crescen- tieae, Jacarandeae, Oroxyleae, Tecomeae, Tourrettieae); additional inclusive clades are named informally. Jacarandeae and Catal- peae are resurrected; the former is sister to the rest of the family, and the latter occupies an unresolved position within the “ core ” Bignoniaceae. Tribe Eccremocarpeae is included in Tourrettieae. Past classifi cations recognized a large Tecomeae, but this tribe is paraphyletic with respect to all other tribes. Here Tecomeae are reduced to a clade of approximately 12 genera with a worldwide distribution in both temperate and tropical ecosystems. Two large clades, Bignonieae and Crescentiina, account for over 80% of the species in the family. -
(Bignoniaceae): Chromosome Numbers and Heterochromatin
Anais da Academia Brasileira de Ciências (2017) 89(4): 2697-2706 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201720170363 www.scielo.br/aabc | www.fb.com/aabcjournal Karyotype analysis in Bignonieae (Bignoniaceae): chromosome numbers and heterochromatin JOEL M.P. CORDEIRO1, MIRIAM KAEHLER2, GUSTAVO SOUZA3 and LEONARDO P. FELIX1 1Centro de Ciências Agrárias, Departamento de Ciências Biológicas, Universidade Federal da Paraíba, Campus II, Rodovia PB 079, Km 12, 58397-000 Areia, PB, Brazil 2Mülleriana, Sociedade Fritz Müller de Ciências Naturais, Rua Humberto Morona, 26, 80050-402 Curitiba, PR, Brazil 3Centro de Ciências Biológicas, Departamento de Botânica, Universidade Federal de Pernambuco, Campus I, Av. Prof. Moraes Rego, 1235, 50670-901 Recife, PE, Brazil Manuscript received on May 18, 2017; accepted for publication on July 31, 2017 ABSTRACT Chromosome numbers and heterochromatin banding pattern variability have been shown to be useful for taxonomic and evolutionary studies of different plant taxa. Bignonieae is the largest tribe of Bignoniaceae, composed mostly by woody climber species whose taxonomies are quite complicated. We reviewed and added new data concerning chromosome numbers in Bignonieae and performed the first analyses of heterochromatin banding patterns in that tribe based on the fluorochromes chromomycin A3 (CMA) and 4’-6-diamidino-2-phenylindole (DAPI). We confirmed the predominant diploid number 2n = 40, as well as variations reported in the literature (dysploidy in Mansoa [2n = 38] and polyploidy in Dolichandra ungis-cati [2n = 80] and Pyrostegia venusta [2n = 80]). We also found a new cytotype for the genus Anemopaegma (Anemopaegma citrinum, 2n = 60) and provide the first chromosome counts for five species (Adenocalymma divaricatum, Amphilophium scabriusculum, Fridericia limae, F.