Assessment of Major Aquifers Along Line 3 Enbridge Line 3 Replacement Program

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of Major Aquifers Along Line 3 Enbridge Line 3 Replacement Program Enbridge Pipelines Inc. Attachment 1 to IR 2.2.a to NEB IR No. 2 Application for the Line 3 Replacement Program Filed June 26, 2015 OH-002-2015 File OF-Fac-Oil-E101-2014-11 02 Page 1 of 18 ASSESSMENT OF MAJOR AQUIFERS ALONG LINE 3 ENBRIDGE LINE 3 REPLACEMENT PROGRAM Prepared for: Enbridge Pipelines Inc. Edmonton, Alberta Prepared by: Amec Foster Wheeler Environment & Infrastructure Edmonton, Alberta June 2015 EE263562 Enbridge Pipelines Inc. Attachment 1 to IR 2.2.a to NEB IR No. 2 Application for the Line 3 Replacement Program Filed June 26, 2015 OH-002-2015 File OF-Fac-Oil-E101-2014-11 02 Page 2 of 18 EXECUTIVE SUMMARY Enbridge Pipelines Inc. retained Amec Foster Wheeler Environment & Infrastructure to undertake an assessment of the major aquifers along their Line 3 replacement pipeline route from Hardisty, Alberta to Gretna, Manitoba. The Assessment consisted of a desk top review incorporating data from available provincial and municipal reports available in the public domain. The information collected was used to identifying the approximate aerial extent of major aquifers along the pipeline right-of-way (ROW). For the purposes of this assessment, a “major” aquifer was defined as a saturated regional geological unit, or interbedded units within a formation or group, with bulk hydraulic conductivities and sufficient thickness(es) to support sustained yields, and is currently being used for domestic, industrial or agricultural water purposes. Information regarding the groundwater usage and pertinent characteristics of aquifers (including geology, aquifer yields, hydraulic conductivity or transmissivity, water quality, and type/number of users) along Line 3 in Alberta, Saskatchewan and Manitoba are described. The information presented herein is intended to be used to represent the general subsurface conditions of major aquifers along the Line 3 segments in the respective provinces. Enbridge Pipelines Inc. Attachment 1 to IR 2.2.a to NEB IR No. 2 Application for the Line 3 Replacement Program Filed June 26, 2015 OH-002-2015 File OF-Fac-Oil-E101-2014-11 02 Page 3 of 18 TABLE OF CONTENTS PAGE 1.0 INTRODUCTION ............................................................................................................ 1 2.0 SCOPE OF WORK ......................................................................................................... 1 2.1 METHODOLOGY ................................................................................................ 1 3.0 DISCUSSION OF RESULTS .......................................................................................... 2 3.1 ALBERTA ........................................................................................................... 2 3.2 SASKATCHEWAN .............................................................................................. 2 3.3 MANITOBA ......................................................................................................... 3 3.4 VALVE LOCATIONS ........................................................................................... 4 3.5 AQUIFER CHARACTERISTICS ......................................................................... 4 4.0 SUMMARY ..................................................................................................................... 4 5.0 CLOSURE ...................................................................................................................... 4 LIST OF APPENDICES Appendix A: Reference List Appendix B: Figures Appendix C: Table APPENDIX A Reference List APPENDIX B Figure 1: Major Aquifer Assessment - Alberta Figure 2: Major Aquifer Assessment - Saskatchewan Figure 3: Major Aquifer Assessment - Manitoba APPENDIX C Table 1: Aquifer Characteristics of identified Major Aquifers Along Line 3 in Alberta, Saskatchewan and Manitoba Enbridge Pipelines Inc. Attachment 1 to IR 2.2.a to NEB IR No. 2 Application for the Line 3 Replacement Program Filed June 26, 2015 OH-002-2015 File OF-Fac-Oil-E101-2014-11 02 Page 4 of 18 1.0 INTRODUCTION Enbridge Pipeline Inc. (Enbridge) is in the process of replacing its Line 3 crude oil pipeline that runs from Hardisty, Alberta to Gretna, Manitoba. The replacement line will have an approximate length of 1,096 kilometres and will extend from eastern Alberta, through south central Saskatchewan, and into southwest Manitoba. An assessment of the major aquifers along the route was completed by Amec Foster Wheeler Environment & Infrastructure (Amec Foster Wheeler). This assessment was a study based on existing information available in the public domain. The purpose of the assessment was to identify major aquifers along the pipeline route and to summarize the relevant characteristics for each identified aquifer. 2.0 SCOPE OF WORK The Assessment consisted of a desk top review detailing the aerial extent of major aquifers along the Enbridge Line 3 replacement pipeline Right of Way (ROW), between Hardisty, Alberta and Gretna, Manitoba. Data from available provincial (Alberta, Saskatchewan and Manitoba) and municipal reports were assessed to infer the location of major aquifers along the ROW. Information was also obtained and summarized regarding the geology of the identified aquifers, along with aquifer characteristics and water usage including aquifer yield, hydraulic conductivity or transmissivity, water quality, and type/number of users, where available. 2.1 METHODOLOGY The Assessment focus was on the aerial extent of major aquifers along the Enbridge Line 3 replacement pipeline route, therefore efforts to assure consistency of aquifer boundaries at locations geographically remote from Line 3, or along provincial boundaries where uniformity of interpretation or reporting between the different referenced authorities was lacking, was not made. A list of publications referenced in this assessment is provided (see Appendix A). No interpretation or field verification of aquifer characteristics, geology or aerial extent, has been made in this assessment. For the purposes of this assessment, a “major” aquifer is defined as a saturated regional geological unit, or interbedded units within a formation or group, with bulk hydraulic conductivities and sufficient thickness(es) to support sustained yields, and is currently being used for domestic, industrial or agricultural water purposes. Local aquifers of limited extent and/or perched water tables are not included in this definition and have not been included in this assessment. Enbridge Pipelines Inc. Attachment 1 to IR 2.2.a to NEB IR No. 2 Application for the Line 3 Replacement Program Filed June 26, 2015 OH-002-2015 File OF-Fac-Oil-E101-2014-11 02 Page 5 of 18 The Line 3 pipeline route indicated on the appended figures (Appendix B) is the latest route information as provided by Enbridge (L3RP_Centreline_V5_WGS1984_March2015, revision 5.1). 3.0 DISCUSSION OF RESULTS The following sections highlight the major aquifers identified based on information obtained in the public domain. This information is intended to be used to represent the general subsurface conditions of major aquifers along the Line 3 segments in the respective provinces. 3.1 ALBERTA The locations and geographic extent of the major Alberta aquifers in relation to Line 3 are shown on Figure 1 (Appendix B). Two (2) major aquifers were identified along the Line 3 segment in Alberta: the Battleford Valley aquifer and the Belly River Group. The Battleford Valley aquifer is a pre-glacial valley deposit that extends from Chauvin, Alberta to north of Hardisty, Alberta. The aquifer deposits are composed mostly of unconsolidated sand and gravel that are up to 140 metres (450 feet) thick. The lateral eastern extent of the channel is not well defined. This aquifer is inferred to be separated into smaller areas by erosion of the Battle River valley. The Belly River Group is a bedrock aquifer composed of multi-coloured non-marine and marine sand, silt and clay sediments. The formation was deposited in a composite deltaic environment with various components including alluvial, lacustrine, aeolian, lagoonal, swamp, beach and marine materials. The Belly River Group has a maximum thickness of 250 m and contains several water-bearing sandstone units; the most common completion interval for drilled water wells in the bedrock aquifers is at approximately 122 m below grade surface (Hackbarth, 1975; Green, 1972; Le Breton, 1963; McLean, 1971; Hydrogeological Consultants Ltd., 1998a, 1998b). 3.2 SASKATCHEWAN The locations and geographic extent of the major Saskatchewan aquifers in relation to Line 3 are shown on Figure 2. Most of the route east of Regina does not cross major aquifers. Aquifers identified along Line 3 in Saskatchewan are mainly bedrock aquifers. The Late Cretaceous Judith River Formation aquifer is an eastward thinning sedimentary wedge that occurs over much of southwestern and south central Saskatchewan. The maximum thickness for the formation is approximately 360 m. The formation is composed of the same deposits as the Belly River formation identified in Alberta and is essentially the same deposit as described in Section 3.1(Maathuis and Simpson, 2002). Overlying the Judith River Formation is the Bearpaw Formation. The Bearpaw Formation includes a number of sand, silt and clay units and reaches a maximum thickness of 410 m. Around Swift Current, SK, sandstone members within the Bearpaw Formation form bedrock aquifers that occur Enbridge Pipelines Inc. Attachment 1 to IR 2.2.a to NEB IR No. 2 Application for the Line 3 Replacement Program Filed June 26, 2015
Recommended publications
  • Mesocyparis Rosanovii</Emphasis> Sp. Nov
    ISSN 0031-0301, Paleontological Journal, 2006, Vol. 40, No. 3, pp. 328–338. © Pleiades Publishing, Inc., 2006. Original Russian Text © T.M. Kodrul, M.V. Tekleva, V.A. Krassilov, 2006, published in Paleontologicheskii Zhurnal, 2006, No. 3, pp. 93–102. A New Conifer Species, Mesocyparis rosanovii sp. nov. (Cupressaceae, Coniferales), and Transberingian Floristic Connections T. M. Kodrula, M. V. Teklevab, and V. A. Krassilovc aGeological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 109017 Russia e-mail: [email protected] bPaleontological Institute of Russian Academy of Sciences, ul. Profsoyuznaya 123, Moscow, 117997 Russia cInstitute of Evolution, University of Haifa, Mount Carmel 31905, Haifa, Israel Received October 25, 2005 Abstract—A new species, Mesocyparis rosanovii sp. nov. from the Lower Paleocene of the Amur Region, Rus- sia, is characterized by a combination of advanced and primitive features: mixed opposite-alternate branching of vegetative shoots, leafy microsporophylls, as well as a relatively high number of sporangia per microsporo- phyll and seeds per cone scale. The Late Cretaceous–Early Paleogene genus Mesocyparis McIver et Basinger, which obviously embraces a natural group of closely related species, was a significant component of the vege- tation in the middle and high latitudes of eastern Asia and western North America. The range of the genus tes- tifies to terrestrial Transberingian connections between the continents during the Cretaceous warming phases. DOI: 10.1134/S0031030106030142 Key words: conifers, Cupressaceae, Paleocene, Amur Region, Beringia, phytogeography. INTRODUCTION from each other, which would have virtually excluded the possibility of migration. The problem of floristic exchanges between eastern In this context, phytogeographic relations between Asia and western regions of North America has long Asia and North America should be revised using mod- attracted the attention of phytogeographers.
    [Show full text]
  • Mannville Group of Saskatchewan
    Saskatchewan Report 223 Industry and Resources Saskatchewan Geological Survey Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan J.E. Christopher 2003 19 48 Printed under the authority of the Minister of Industry and Resources Although the Department of Industry and Resources has exercised all reasonable care in the compilation, interpretation, and production of this report, it is not possible to ensure total accuracy, and all persons who rely on the information contained herein do so at their own risk. The Department of Industry and Resources and the Government of Saskatchewan do not accept liability for any errors, omissions or inaccuracies that may be included in, or derived from, this report. Cover: Clearwater River Valley at Contact Rapids (1.5 km south of latitude 56º45'; latitude 109º30'), Saskatchewan. View towards the north. Scarp of Middle Devonian Methy dolomite at right. Dolomite underlies the Lower Cretaceous McMurray Formation outcrops recessed in the valley walls. Photo by J.E. Christopher. Additional copies of this digital report may be obtained by contacting: Saskatchewan Industry and Resources Publications 2101 Scarth Street, 3rd floor Regina, SK S4P 3V7 (306) 787-2528 FAX: (306) 787-2527 E-mail: [email protected] Recommended Citation: Christopher, J.E. (2003): Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan; Sask. Industry and Resources, Report 223, CD-ROM. Editors: C.F. Gilboy C.T. Harper D.F. Paterson RnD Technical Production: E.H. Nickel M.E. Opseth Production Editor: C.L. Brown Saskatchewan Industry and Resources ii Report 223 Foreword This report, the first on CD to be released by the Petroleum Geology Branch, describes the geology of the Success Formation and the Mannville Group wherever these units are present in Saskatchewan.
    [Show full text]
  • TGI Strat Column 2009.Cdr
    STRATIGRAPHIC CORRELATION CHART TGI II: Williston Basin Architecture and Hydrocarbon Potential in Eastern Saskatchewan and Western Manitoba EASTERN MANITOBA PERIOD MANITOBA SUBSURFACE SASKATCHEWAN OUTCROP ERA glacial drift glacial drift glacial drift Quaternary Wood Mountain Formation Peace Garden Peace Garden Member Tertiary Member Ravenscrag Formation CENOZOIC Formation Goodlands Member Formation Goodlands Member Turtle Mountain Turtle Mountain Turtle Frenchman Formation Whitemud Formation Boissevain Formation Boissevain Formation Eastend Formation Coulter Member Coulter Member Bearpaw Formation Odanah Member Belly River “marker” Odanah Member Belly River Formation “lower” Odanah Member Millwood Member Lea Park Formation Millwood Member MONTANA GROUP Pembina Member Pembina Member Pierre Shale Pierre Shale Milk River Formation Gammon Ferruginous Member Gammon Ferruginous Member Niobrara Formation Chalky Unit Boyne Member Boyne Member Boyne Calcareous Shale Unit Member Carlile Morden Member Carlile upper Formation Morden Member Formation Morden Member Carlile Formation Assiniboine Marco Calcarenite Assiniboine Member Member CRETACEOUS Second White Specks Laurier Limestone Beds Favel Favel Keld Keld Member Member Formation Formation Belle Fourche Formation Belle Fourche Member MESOZOIC COLORADO GROUP Belle Fourche Member upper Fish Scale Formation Fish Scale Zone upper Base of Fish Scale marker Base of Fish Scale marker Westgate Formation Westgate Member lower Westgate Member Newcastle Formation Newcastle Member lower Viking Sandstone
    [Show full text]
  • From the Late Cretaceous (Campanian) Kanguk Formation of Axel Heiberg Island, Nunavut, Canada, and Its Ecological and Geographical Implications MATTHEW J
    ARCTIC VOL. 67, NO. 1 (MARCH 2014) P. 1 – 9 A Hadrosaurid (Dinosauria: Ornithischia) from the Late Cretaceous (Campanian) Kanguk Formation of Axel Heiberg Island, Nunavut, Canada, and Its Ecological and Geographical Implications MATTHEW J. VAVREK,1 LEN V. HILLS2 and PHILIP J. CURRIE3 (Received 1 October 2012; accepted in revised form 30 May 2013) ABSTRACT. A hadrosaurid vertebra was recovered during a palynological survey of the Upper Cretaceous Kanguk Formation in the eastern Canadian Arctic. This vertebra represents the farthest north record of any non-avian dinosaur to date. Although highly abraded, the fossil nonetheless represents an interesting biogeographic data point. During the Campanian, when this vertebra was deposited, the eastern Canadian Arctic was likely isolated both from western North America by the Western Interior Seaway and from more southern regions of eastern North America by the Hudson Seaway. This fossil suggests that large-bodied hadrosaurid dinosaurs may have inhabited a large polar insular landmass during the Late Cretaceous, where they would have lived year-round, unable to migrate to more southern regions during winters. It is possible that the resident herbivorous dinosaurs could have fed on non-deciduous conifers, as well as other woody twigs and stems, during the long, dark winter months when most deciduous plant species had lost their leaves. Key words: Appalachia, Arctic, Campanian, dinosaur, Laramidia, palaeobiogeography RÉSUMÉ. La vertèbre d’un hadrosauridé a été retrouvée pendant l’étude palynologique de la formation Kanguk remontant au Crétacé supérieur, dans l’est de l’Arctique canadien. Il s’agit de la vertèbre appartenant à un dinosaure non avien qui a été recueillie la plus au nord jusqu’à maintenant.
    [Show full text]
  • A High-Latitude Gondwanan Lagerstätte
    University of Birmingham A high-latitude Gondwanan lagerstätte : the Permian permineralised peat biota of the Prince Charles Mountains, Antarctica Slater, Ben J.; Mcloughlin, Stephen; Hilton, Jason DOI: 10.1016/j.gr.2014.01.004 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Slater, BJ, Mcloughlin, S & Hilton, J 2014, 'A high-latitude Gondwanan lagerstätte : the Permian permineralised peat biota of the Prince Charles Mountains, Antarctica', Gondwana Research. https://doi.org/10.1016/j.gr.2014.01.004 Link to publication on Research at Birmingham portal Publisher Rights Statement: Eligibility for repository : checked 03/06/2014 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • Petroleum Geology of Canada
    CANADA DEPARTMENT OF MINES AND RESOURCES MINES AND GEOLOGY BRANCH GEOLOGICAL SURVEY ECONOMIC GEOLOGY SERIES No. 14 PETROLEUM GEOLOGY OF CANADA BY G. S. Hume Geologist for Oil Controller for Canada OTI'AWA EDMOND CLOUTIER P RINTER TO THE KING'S MOST EXCELLENT MAJESTY 1944 Price, 25 cents CANADA DEPARTMENT OF MINES AND RESOURCES MINES AND GEOLOGY BRANCH GEOLOGICAL SURVEY ECONOMIC GEOLOGY SERIES No. 14 PETROLEUM GEOLOGY OF CANADA BY G. S. Hume Geologist for Oil Con troller for Can ada OTTAWA EDMOND CLOUTIER Pfl !NTER TO THE KTKG 'S MOST EXCELLENT MAJESTY 1944 Price. 25 cents CONTENTS PAGE Introduction ... .. ............. .. ........... ... .............. ...... 1 Hudson Bay Lo\Yland ........................... .... .. .. ... .. ...... 5 Gaspe, Quebec ......... .. .. .. ... .......... .. ..... ..................... ... 7 New Brunswick. .. ... ..... .. .. .... ..... .... .. .. .. .. .... .. .... 10 Prince Edward Island .. ..... .. ................................. .. .. .... .. 15 Nova Scotia. ..... .................. 15 Ontario........ ........ .... ....... ... ........... .. ..... ... ....... 17 The Interior Plains ........................................ ...... .. .... ........ 21 General statement.... .. ....... ............ ........ 21 Southern Alberta . ... ........... ....... .. .. .. .. .. ... ........... 25 East-ccn tral Alberta . ... .... ... .. .. .. .. ..... .... .. .... ..... 27 Northwest Alberta-Peace River area ..... ................ .... .. .... .. ... 30 Athabaska bituminous sands. ...... ..... ... ... 30 Foothills of south
    [Show full text]
  • Bedrock Geology of Alberta
    Alberta Geological Survey Map 600 Legend Bedrock Geology of Alberta Southwestern Plains Southeastern Plains Central Plains Northwestern Plains Northeastern Plains NEOGENE (± PALEOGENE) NEOGENE ND DEL BONITA GRAVELS: pebble gravel with some cobbles; minor thin beds and lenses NH HAND HILLS FORMATION: gravel and sand, locally cemented into conglomerate; gravel of sand; pebbles consist primarily of quartzite and argillite with minor amounts of sandstone, composed of mainly quartzite and sandstone with minor amounts of chert, arkose, and coal; fluvial amygdaloidal basalt, and diabase; age poorly constrained; fluvial PALEOGENE PALEOGENE PALEOGENE (± NEOGENE) PALEOGENE (± NEOGENE) UPLAND GRAVEL: gravel composed of mainly white quartzite cobbles and pebbles with lesser amounts of UPLAND GRAVEL: gravel capping the Clear Hills, Halverson Ridge, and Caribou Mountains; predominantly .C CYPRESS HILLS FORMATION: gravel and sand, locally cemented to conglomerate; mainly quartzite .G .G and sandstone clasts with minor chert and quartz component; fluvial black chert pebbles; sand matrix; minor thin beds and lenses of sand; includes gravel in the Swan Hills area; white quartzite cobbles and pebbles with lesser amounts of black chert pebbles; quartzite boulders occur in the age poorly constrained; fluvial Clear Hills and Halverson Ridge gravels; sand matrix; ages poorly constrained; extents poorly defined; fluvial .PH PORCUPINE HILLS FORMATION: olive-brown mudstone interbedded with fine- to coarse-grained, .R RAVENSCRAG FORMATION: grey to buff mudstone
    [Show full text]
  • RI7120100316.Pdf
    ..-­ "" .. ­ ~. ------­ TIGRAPHIC NAMES DAKOTA ") "­ ........ / \ ~ / / / ---­ \ \ / \ \ } '­ ) "­ I / \ ) \ /' /" /''' , \ .­ ./ "­ "1 /' ,.­ ) ~ / "-­ ~ "­ \. " LEXICON OF STRATIGRAPHIC NAMES j ft OF NORTH DAKOTA i by Joanne Lerud REPORT OF INVESTIGATION NO. 71 NORTH DAKOTA GEOLOGICAL SURVEY Don L. Halvorson, State Geologist 1982 Printed by Kaye's Inc., Fargo, ND 58102 1982 ...:. CONTENTS Page INTRODUCTION 1 LEXICON . 2 REFERENCES 113 APPENDIX A--NAMED LIGNITE BEDS IN NORTH DAKOTA 115 APPENDIX B--PLEISTOCENE AND HOLOCENE STRATIGRAPHIC NAMES 129 SELECTED BIBLIOGRAPHY--PLEISTOCENE AND HOLOCENE STRATIGRAPHIC TERMINOLOGY . 137 ILLUSTRATIONS Plate 1. North Dakota Stratigraphic Column . (in pocket) INTRODUCTION This lexicon is a modified version of a master's thesis completed at the University of North Dakota entitled, "Lexicon of Bedrock Stratigraphic Names of North Dakota" by Joanne Van Ornum Groenewold (now Joanne V. Lerud). In the thesis she attempted to include all terms previously applied to these strata in North Dakota together with a history of the unit, age, area of extent, lithology, thickness, relationships to other units, characteristic fossils, econ­ 0mic significance, depositional environment, and references to type sections. An attempt to show accepted North Dakota usage was presented by a system of capitalization and underlining. The thesis was entirely a literature search with the information provided for each entry being an edited sum of available information for that term. The lexicons of geologic names of the United States by M. Grace Wilmarth (USGS Bulletin 896) and G. C. Keroher (USGS Bulletins 1200 and 1350) were used extensively for the historical summaries. South Dakota Geological Survey Bulletin 14, entitled, "A guide to the Stratigraphy of South Dakota," by Allen F. Agnew and Paul C.
    [Show full text]
  • CO2 Sequestration and Coalbed-Methane Potential of Lower Mannville Group (Lower Cretaceous) Coals, Southern Saskatchewan – Preliminary Investigations
    CO2 Sequestration and Coalbed-Methane Potential of Lower Mannville Group (Lower Cretaceous) Coals, Southern Saskatchewan – Preliminary Investigations S.L. Bend 1 and M.C. Frank 1 Bend, S.L. and Frank, M.C. (2004): CO2 sequestration and coalbed-methane potential of lower Mannville Group (Lower Cretaceous) coals, southern Saskatchewan – preliminary investigations; in Summary of Investigations 2004, Volume 1, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2004-4.1, CD-ROM, Paper A-12, 17p. Abstract The long-term storage of CO2 within deep non-mineable coal seams is widely considered to be a viable means of reducing greenhouse gas emissions. Recent studies have also shown that injection of CO2 into coal seams can enhance the production of coalbed methane (CBM), a more environmentally friendly fuel than oil. The Lower Cretaceous Mannville Group (Aptian-Albian) of southern Saskatchewan contains coals of sub- bituminous rank occurring within the Cantuar Formation. Because of their low economic importance, these coals have received only minimal attention in the past, and little is known of their distribution and character. A major project was recently initiated to assess the CO2 sequestration and CBM potential of the Mannville coals. Analysis of geophysical well logs, core, and drill cuttings was performed along with coal petrography in order to identify areas of the thickest, most extensive coal deposits, and to determine their petrographic characteristics. This report presents some preliminary data on coals of the lower Mannville Group interval (Dina to General Petroleums members). To date, regions of thick (up to 5.5 m), laterally continuous (up to 65 km) coal in the lower Mannville Group have been identified in four principal areas: Winter-Senlac, Kerrobert Paleovalley, Unity-Kindersley embayments, and the Empress Basin.
    [Show full text]
  • A Tribute to Loris Shano Russell, 1904-1998
    A Tribute to Loris Shano Russell, 1904-1998 KEVIN L. SEYMOUR Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6 Canada; e-mail: [email protected] Seymour, Kevin L. 2004. A tribute to Loris Shano Russell. 1904-1998. Canadian Field-Naturalist 118(3): 451-464. It was somewhat daunting to try to write the story radio operation, or administration. He was unfailingly of a man as accomplished as Loris Shano Russell. On polite and dignified, and always came to work wearing one hand, it is relatively easy to record or list the jacket and tie; about the worst name he ever called numerous publications and awards. On the other hand, anyone in public was “stuffed shirt”, a phrase he it is much harder to see through all of the accom- reserved for H. F. Osborn. plishments in order to glimpse something of the man Loris died in July 1998, in his 95th year, and was himself. I got to know Loris only later in his life, as predeceased by his beloved wife Grace, in March 1998. the one tasked with arranging his weekly visits to the Their partnership of 60 years is the stuff of legends. Royal Ontario Museum (ROM), and so in this report They did everything together, from hosting museum I have relied on many who knew him earlier, in par- dignitaries at their home, to attending antique markets, ticular, John E. Storer. to working in the dirt and the heat in the badlands of Russell’s accomplishments were many. He was one Alberta collecting fossils (Figure 1).
    [Show full text]
  • Cryptic Diversity of a Glossopteris Forest: the Permian Prince Charles Mountains Floras, Antarctica
    CRYPTIC DIVERSITY OF A GLOSSOPTERIS FOREST: THE PERMIAN PRINCE CHARLES MOUNTAINS FLORAS, ANTARCTICA by Ben James Slater A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Geography, Earth and Environmental Sciences College of Life and Environmental Sciences University of Birmingham September 2013 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT The Toploje Member chert is a Roadian to Wordian autochthonous– parautochthonous silicified peat preserved within the Lambert Graben, East Antarctica. It preserves a remarkable sample of terrestrial life from high-latitude central Gondwana prior to the Capitanian mass extinction event from both mega- and microfossil evidence that includes cryptic components rarely seen in other fossil assemblages. The peat layer is dominated by glossopterid and cordaitalean gymnosperms and contains sparse herbaceous lycophytes, together with a broad array of dispersed organs of ferns and other gymnosperms. The peat also hosts a wide range of fungal morphotypes, Peronosporomycetes, rare arthropod remains and a diverse coprolite assemblage. The fungal and invertebrate-plant interactions associated with various organs of the Glossopteris plant reveal the cryptic presence of a ‘component community’ of invertebrate herbivores and fungal saprotrophs centred around the Glossopteris organism, and demonstrate that a multitude of ecological interactions were well developed by the Middle Permian in high-latitude forest mires.
    [Show full text]
  • Floristic Composition and Variation in Late Paleocene to Early Eocene Floras in North America
    Floristic composition and variation in late Paleocene to early Eocene floras in North America KATHLEEN B. PIGG & MELANIE L. DEVORE The late Paleocene and early Eocene megafossil floras in North America are found primarily in the Williston, Green River, Powder River, Bighorn, and Alberta Basins of the northern Rocky Mountains and Western Interior. A few rare sites occur in the Mississippi Embayment of the Southeast. In contrast to the abrupt floristic changes seen at the K/T boundary, these floras document a gradual transition in species turnover, or, in the case of the Bighorn Basin, a long-term decrease in taxonomic diversity. This gradual transition is also in marked contrast to the rapid speciation among mam- mals of the early Eocene. Both preservation, and ability to place these floras within a temporal scale, determine how use- ful they are in assessing floristic changes across the Paleocene-Eocene transition. In some regions such as the Bighorn Basin of Wyoming precise stratigraphic control has allowed for documentation of paleoclimate change at a highly resolved temporal scale. At others, such as the Almont flora of the Williston Basin in North Dakota, exceptional preser- vation has provided the basis for describing individual taxa with the precision necessary to better understand their evolu- tionary and biogeographical histories. This study examines well-known plant taxa in the late Paleocene and early Eocene in the context of their depositional settings and temporal and spatial distribution. Integration of paleoecological and tax- onomic studies is critical to understanding the evolutionary and depositional history of early Paleocene vegetation of North America.
    [Show full text]