United States Patent (19) 11) Patent Number: 4,617,057 Plueddemann 45) Date of Patent: Oct

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11) Patent Number: 4,617,057 Plueddemann 45) Date of Patent: Oct United States Patent (19) 11) Patent Number: 4,617,057 Plueddemann 45) Date of Patent: Oct. 14, 1986 54 OIL AND WATER REPELLENT COATING COMPOST ONS OTHER PUBLICATIONS N. L. Jarvis et al. in Contact Angle, Wettability and Ad (75) Inventor: Edwin P. Plueddemann, Midland, hesion, pp. 317-331, American Chemical Society, Wash Mich. ington, D.C. (1964). 73 Assignee: Dow Corning Corporation, Midland, Primary Examiner-Amelia B. Yarbrough Mich. Attorney, Agent, or Firm-James E. Bittell 21 Appl. No.: 741,642 57 ABSTRACT An oil and water repellent coating composition is dis 22 Filed: Jun. 4, 1985 closed. The composition comprises a blend of an ami 51) Int. Cl................................................. CO9K 3/18 noorganosilane, a perfluorinated organic compound 52 U.S.C. ........................................................ 106/2 and a resin selected from the group consisting of colloi 58) Field of Search ............................ 106/2; 8/115.54 dal inorganic-based siloxane resin, poly (dialkylsilox ane)-monoorgano substituted silisesquioxane block co 56) References Cited polymer, acrylic polymer and copolymer, ethylene U.S. PATENT DOCUMENTS vinyl acetate latex and styrene-butadiene latex. The silane and perfluorinated organic, combined, constitute 3,317,629 5/1967 Quaal ....... ... 260/827 from 0.1% to 10% by weight of the total resin solids in 3,681,266 8/1972 Domba .................................. 260/25 a solution or suspension of the blend. A method of coat 4,070,152 1/1978 Pentz .................................... 8/115.6 ing a smooth substrate or treating a fabric to render the 4,410,563 10/1983 Richter et al. ...................... 427/08 respective surface oleophobic and hydrophobic is fur FOREIGN PATENT DOCUMENTS ther disclosed. 142958 8/1983 Japan ........................................ 3/18 147483 9/1983 Japan ... 15 Claims, No Drawings 4,617,057 1. 2 Jarvis et al. (Contact Angle, Wettability, and Adhesion, p. OIL AND WATER REPELLENT COATING 317, American Chemical Society, Washington, D.C., COMPOSITIONS 1964) that only certain combinations of fluorinated or ganic compounds and (extending) polymers result in This invention relates to the field of protective coat 5 low energy surfaces. Moreover, this reference teaches ings. More specifically, this invention relates to hydro that a critical balance of organophilic/organophobic phobic and oleophobic coating compositions which character (i.e., the precise solubility/insolubility bal impart water and oil repellent properties to substrates ance of the fluorinated compound in the polymer) is coated therewith. These substrates, in turn, may com required of the modifying fluorinated compound if the prise hard, smooth forms such as metal, glass or plastic 10 modified polymer combination is to produce a uniform, as well as fabrics of various types. clear, high quality film, in addition to low surface en ergy. It is therefore recognized in the art that there is no BACKGROUND OF THE INVENTION a priori way to determine how much of, and indeed, Many industrial applications of materials require the which of the many available fluorinated organic com surfaces of these products to possess hydrophobic and 5 pounds, or other low surface energy modifiers, can be oleophobic character for both aesthetic as well as prac successfully combined with a given polymer to produce tical reasons. Coated glass cloth, employed in pre-fab the desired hydrophobic/oleophobic character while ricated air-supported structures such as sports stadia, maintaining a uniform, high quality surface. for example, should have an oil repellent surface so as to prevent unsightly dirt accumulation. High voltage elec 20 SUMMARY OF THE INVENTION trical insulators, likewise, must be hydrophobic and This invention relates to an oil and water repellent "self-cleaning' in contaminated environments such that coating composition, comprising: surface dirt and moisture, and therefore undesirable arc (a) a resin selected from the group consisting of col tracking, are kept to a minimum. Furthermore, many loidal inorganic-based siloxane resin, poly(dialkylsilox coatings, such as those applied to optics, mirrors, wind 25 ane)-monoorgano substituted silisesquioxane block co shields, solar collectors, and greenhouses, must retain polymer, acrylic polymer and copolymer, ethylene clarity to be efficient light transmitters, and therefore vinyl acetate latex and styrene-butadiene latex, also have to be "self-cleaning' (e.g., as by rainfall) rela (b) an aminoorganosilane of the general formula tive to the uncoated surfaces. Finally, as yet another illustration of the utility of low surface energy coatings, 30 the treatment of various fabrics for water repellency and stain resistance (i.e., oleophobicity) has become a Ri R3 Rn, major commercial success. It is known in the coating arts to employ silicones to wherein R is selected from the group consisting of achieve hydrophobic surfaces and treated fabrics. Like 35 hydrogen, alkyl of one to four carbon atoms or wise, perfluorinated organic coatings and fabric treat ments are known to confer oleophobic properties. In deed, these two classes of materials have been effec -R'OR)- tively combined in U.S. Pat. No. 4,410,563 to coat opti Rn, cal glass surfaces as well as in U.S. Pat. No. 3,681,266 to treat fabrics. R2 is an alkylene group of two to four carbon atoms, Unfortunately, the perfluorinated organic com R3 is hydrogen or alkyl of one to four carbon atoms, R. pounds are quite costly and therefore not suitable for is an alkylene group of three to four carbon atoms, R. many applications in which oleophobic surfaces would and R6 are alkyl groups of one to four carbon atoms otherwise prove desirable. Such disadvantage was par 45 each, n is zero to four and m is zero or one; and tially overcome by U.S. Pat. No. 3,317,629, wherein (c) a perfluorinated organic compound of the general fluoroalkylsiloxanes were "extended' with acrylic pol formula: ymers and used to treat a variety of fabrics to obtain hydrophobic and oleophobic character. In a similar RY fashion, U.S. Pat. No. 4,070,152 employs a copolymer 50 of a maleic-anhydride copolymer, a fatty acid amine wherein Rf is a straight or branched perfluoroalkyl and an aminoorganopolysiloxane as an extender for group of four to 18 carbon atoms and Y is selected from fluorinated "textile treating resins.” It discloses im the group consisting of -COOH, -COOR, wherein R proved oil and water repellency and better retention of is alkyl or alkoxyalkyl of one to six carbon atoms and repellency after laundering and dry cleaning relative to 55 wherein the combined amount of the aminoorganosi use of the textile treating resins alone. Still further ex lane and the perfluorinated organic compound com amples of this general concept are provided by Japanese prises between about 0.1 and about 10 percent by Pat. Nos. 142,958/83 and 147,483/83 which combine a weight of said resin and the mole ratio of the perfluori perfluoroalkyl-containing silane and a silane coupling nated organic compound to the sum of primary and agent with water-glass and colloidal silica, respectively, 60 secondary amine group(s) in the aminoorganosilane is for use as a water and oil repellent agent for glass sur fixed between about 0.33 and about 1.0. faces. Although such attempts to reduce the expense of DETAILED DESCRIPTION OF THE fluorinated treating resins have been successful in that INVENTION less of the costly ingredient is required to achieve the 65 It has been discovered that, when certain polymers or same extent of surface modification, complex and costly resins are modified with relatively small quantities of a reaction schemes are sometimes required to produce the perfluorinated organic compound and an aminoor disclosed components. Furthermore, it is known from ganosilane, compositions result which exhibit excellent 4,617,057 3 4 water and oil repellency when employed in bulk, as most preferred aminosilane. Other suitable aminosilanes coatings or as fabric treating resins. One aspect of the include invention, therefore, teaches "extending' or diluting fluorinated organic compounds with certain less expen sive polymers and resins, thereby producing hydropho- 5 bic and oleophobic coating and fabric treating composi tions which are less costly than these compounds alone, or in combination with, an amino-functional silane. Alternatively, the invention discloses the modification of the particular polymers or resins within its scope with the fluorinated organic compounds and amino functional silanes so as to impart hydrophobic and oleo phobic character to the surfaces of these polymers or resins, without attendant untoward effects upon other properties. 15 The invention may be practiced by simply blending The aminoorganosilanes are well known in the art and the three components, at room temperature, either in are typically formed by the reaction of chloroalkylalk solution or suspension, and using that solution or sus oxysilanes with organic amines. For example, the bis pension to coat a substrate or treat a fabric. The order of structures, including formula III above, have been de blending is not critical, so that, for example, the resin 20 scribed in U.S. Pat. No. 4,448,694 and are formed by and silane may be blended together and then the perflu heating the respective amine with the appropriate chlo orinated compound added, or the resin and the perfluo roalkylalkoxysilane in a 1:2 molar ratio. The resultant rinated compound may be blended together and then aminoorganosilanes are generally not pure species and the silane added. In the preferred, as well as most con several side products coexist with the main component. venient, embodiment, a mixture of the perfluorinated 25 Generally either unpurified reaction products or more organic compound and aminoorganosilane may be pre purified portions of the main species can be employed pared (in solution or suspension) and an appropriate for the purposes of this invention. portion thereof used to modify the particular polymer The perfluorinated organic compound employed, or resin.
Recommended publications
  • Analytical Standards for Human Exposure Analysis
    ENVIRONMENTAL STANDARDS Cambridge Isotope Laboratories, Inc. isotope.com Analytical Standards for Human Exposure Analysis Human Personal Care Industrial Products Pollution Dermal Inhalation Ingestion Food Tobacco Products Drinking Water Pharmaceuticals Cambridge Isotope Laboratories, Inc. North America: 1.800.322.1174 [email protected] | International: +1.978.749.8000 [email protected] | fax: 1.978.749.2768 | isotope.com Cambridge Isotope Laboratories, Inc. | Analytical Standards for Human Exposure Analysis Analytical Standards for Human Exposure Analysis Exposomics is the study of the exposome and is a field that has been gaining attention as researchers focus not only on identifying contaminants present in the environment, but their effects on humans. The exposome encompasses an individual’s lifetime exposure to internal and external stresses, including environmental, dietary, and metabolic factors, to name a few. Cambridge Isotope Laboratories, Inc. (CIL) has and continues to produce standards that are used in many leading biomonitoring research projects, such as the US Centers for Disease Control and Prevention (CDC) “National Health and Nutrition Examination Survey (NHANES)” and the Japan National Institute for Environmental Studies (NIES) “Japan Environment and Children’s Study (JECS).” The CDC’s NHANES program is focused on assessing the health and nutritional status of both children and adults in the United States. There are several studies involved in this program, which is notable in that both interviews and physical examinations are factored in when compiling data. The first NHANES study was conducted from 1971-1975 and subsequent studies are continuing to this day. Additional information about the NHANES program can be found at www.cdc.gov/nchs/nhanes/index.htm.
    [Show full text]
  • Priority Pollutant, Endocrine Disruptor, and Chemical Contaminant Standards Solutions for a Greener World Introduction
    Priority Pollutant, Endocrine Disruptor, and Chemical Contaminant Standards Solutions for a Greener World Introduction Priority Pollutant, Endocrine Disruptor, and Chemical Contaminant Standards isotope.com Pharmaceutical and Personal Care Product Halogenated and Substituted Benzene Standards and Phenol Standards Concern about environmental and human exposure to Many industrial and consumer products are composed of pharmaceuticals and personal care products (PPCPs) has grown chemicals that contain halogenated or substituted benzene significantly. This classification encompasses a broad range of or phenol functional groups. Resistant to decomposition and chemicals, ranging from antibiotics to hormones to pesticides. metabolism, these chemicals may persist even after the parent One common theme among these groups is the need for molecule has undergone partial decomposition, or they may high-quality isotopically labeled standards to strengthen the exist as a product or an industrial byproduct. The increased analysis of PPCPs in difficult matrices such as sewage sludge use of brominated compounds is expected to lead to more and wastewater. CIL, with guidance from leading laboratories brominated benzenes and phenols in the environment, and around the world, works diligently to produce representative the continued presence of chlorinated compounds ensures standards for the analysis of PPCPs. that chlorinated benzenes and phenols will be found in the environment for years to come. Food and Drinking Water Analysis Standards Bisphenol Standards Increased attention to possible contamination of food and Bisphenol A (BPA) is a synthetic compound that has long been water has caused analysts to broaden the scope of trace food used in the production of polycarbonate plastics and epoxy and water testing by IDMS.
    [Show full text]
  • Recommendation on Perfluorinated Compound Treatment Options for Drinking Water
    Recommendation on Perfluorinated Compound Treatment Options for Drinking Water New Jersey Drinking Water Quality Institute Treatment Subcommittee June 2015 Laura Cummings, P.E., Chair Anthony Matarazzo Norman Nelson, P.E. Fred Sickels Carol T. Storms Background At the request of the Commissioner of the New Jersey Department of Environmental Protection the Drinking Water Quality Institute (DWQI) is working to develop recommended Maximum Contaminant Levels (MCL) for three long-chain perfluorinated compounds (PFC): Perfluorononanoic acid (PFNA), Perfluorooctanoic acid (PFOA) and Perfluorooctanesulfonic acid (PFOS). The Treatment Subcommittee of the Drinking Water Quality Institute is responsible for identifying available treatment technologies or methods for removal of hazardous contaminants from drinking water. The subcommittee has met several times over the last year beginning in July 2014 to discuss and investigate best available treatment options for the long-chain (8 – 9 carbon) PFCs identified above. The subcommittee decided to research and report on treatment options for all three compounds, as the treatment options are not expected to differ from compound to compound due to their similar properties (e.g. persistence, water solubility, similar structure, strong carbon-fluorine bonds, and high polarity). This approach contrasts with the other two subcommittees which will address the three compounds separately. The subcommittee has gathered and reviewed data from several sources in order to identify widely-accepted and well-performing strategies for removal of long-chain PFCs, including use of alternate sources. This report is intended to present the subcommittee’s findings. At this time, there are no Federal drinking water standards for PFNA, PFOA or PFOS; however in 2009 the United State Environmental Protection Agency (USEPA, 2009) established a Provisional Health Advisory (PHA) level of 0.4 µg/L for PFOA and 0.2 µg/L PHA for PFOS for short-term exposure.
    [Show full text]
  • UNITED NATIONS Stockholm Convention on Persistent Organic Pollutants Technical Paper on the Identification and Assessment Of
    UNITED NATIONS SC UNEP/POPS/POPRC.8/INF/17 Distr.: General 15 August 2012 English only Stockholm Convention on Persistent Organic Pollutants Persistent Organic Pollutants Review Committee Eighth meeting Geneva, 15–19 October 2012 Item 5 (g) of the provisional agenda* Technical work: assessment of alternatives to perfluorooctane sulfonic acid in open applications Technical paper on the identification and assessment of alternatives to the use of perfluorooctane sulfonic acid in open applications Note by the Secretariat 1. In paragraph 6 of decision SC-5/5, the Conference of the Parties to the Stockholm Convention requested the Secretariat, subject to the availability of resources, to commission a technical paper on the identification and assessment of alternatives to the use of perfluorooctane sulfonic acid in open applications for consideration by the Persistent Organic Pollutants Review Committee at its eighth meeting. 2. That technical paper has been prepared, with financial support provided by the Government of Norway, on the basis of the terms of reference and an outline developed by the Committee at its seventh meeting. It is set out in the annex to the present note, where it is presented without formal editing. * UNEP/POPS/POPRC.8/1. K1282361 110912 UNEP/POPS/POPRC.8/INF/17 Annex Technical paper on the identification and assessment of alternatives to the use of perfluorooctane sulfonic acid in open applications 2 UNEP/POPS/POPRC.8/INF/17 Table of contents Executive summary.........................................................................................................................................................
    [Show full text]
  • Investigation of Levels of Perfluorinated Compounds in New Jersey Fish, Surface Water, and Sediment
    Investigation of Levels of Perfluorinated Compounds in New Jersey Fish, Surface Water, and Sediment New Jersey Department of Environmental Protection Division of Science, Research, and Environmental Health SR15-010 June 18, 2018 Updated April 9, 2019 Lead Investigators: Sandra M. Goodrow, Ph.D., Bruce Ruppel, Lee Lippincott, Ph.D., Gloria B. Post, Ph.D., D.A.B.T. 1 Executive Summary Per- and polyfluorinated substances (PFAS) are used in the manufacture of useful products that impart stain resistance, water resistance, heat resistance and other desirable properties. PFAS are also used in various Aqueous Film Forming Foams (AFFF) that are used in fire-fighting. These substances are in wide use today, found at industrial sites that use or manufacture them and at military bases, airports and other areas known for fire-fighting activities. A subset of PFAS, perfluorinated compounds (PFCs), have fully fluorinated carbon chains as their backbone, and their extremely strong carbon-fluorine bonds makes them very resistant to degradation. When released to the environment, PFCs persist indefinitely and can travel distances from their source in surface water, groundwater, or in the atmosphere. PFAS are considered “emerging contaminants” because additional information on their presence and toxicity to ecosystems and humans continues to become available. The Division of Science, Research and Environmental Health (DSREH) performed an initial assessment of 13 PFAS, all of which are perfluorinated compounds (PFCs), at 11 waterways across the state. Fourteen surface water and sediment samples and 94 fish tissue samples were collected at sites along these waterways. The sites were selected based on their proximity to potential sources of PFAS and their likelihood of being used for recreational and fishing purposes.
    [Show full text]
  • Chemicals Americas
    Chemicals in the Americas November 30, 2017 The Houston Club, Houston TX www.bdlaw.com/2017ChemicalsConference Global Influences on National Chemical Laws Russ LaMotte, Managing Principal, Beveridge & Diamond www.bdlaw.com/2017ChemicalsConference Goals • Identify key global KEY TAKEAWAYS drivers of chemicals Your takeaways policy here • Flag opportunities to track and influence www.bdlaw.com/2017ChemicalsConference 3 Agenda 1. Global Outlook 2. European Union & REACH: Global Impacts KEY TAKEAWAYS 3. Multilateral Treaties Your takeaways here − Stockholm Convention on Persistent Organic Pollutants − Rotterdam Convention on Prior Informed Consent 4. Other Pressure Points − UN Environment Assembly (UNEA) − Strategic Approach to International Chemicals Management (SAICM) www.bdlaw.com/2017ChemicalsConference 4 New Section/Subsection Divider OptionGlobal 2 – Picture Outlook Background Global Chemical Policy Initiatives International Orgs Key National Regimes OECD European Union WHO United States (TSCA) FAO Canada APEC Japan UNEA Australia China SAICM CA/WA/OR/MN UNECE (GHS) Multilateral Treaties NGOs IPEN Stockholm (PBTs) Greenpeace (“detox”) Rotterdam PIC SIN (hazardous chemicals trade) Retailers/Purchasers Basel (hazardous Walmart waste) Target Montreal Protocol WERCs (ODS and HFCs) Green procurement Minimata Mercury Market deselection Restricted Chemicals Lists Global Chemical Policy Initiatives International Orgs Key National Regimes OECD European Union WHO United States (TSCA) FAO Canada APEC Japan UNEA Australia China SAICM CA/WA/OR/MN
    [Show full text]
  • Petersburgh Landfill Site No
    PETERSBURH LANDFILL SITE CHARACTERIZATION REPORT WORK ASSIGNMENT D007622-36 PETERSBURGH LANDFILL SITE NO. 442054 PETERSBURGH RENSSELAER COUNTY, NY Prepared for: NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 625 Broadway, Albany, New York Basil Seggos, Commissioner DIVISION OF ENVIRONMENTAL REMEDIATION Remedial Bureau B URS Corporation 257 West Genesee Street Suite 400 Buffalo, New York 14202 Final May 2017 SITE CHARACTERIZATION REPORT CERTIFICATION !, lA;~\Z L L.,""~ l.-1 · , certify that I am currently a NYS registered professional engineer (No.014-01 S) or Qualified Environmental Professional and that this Site Characterization Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-ap_proved modifications. v J\ProjectMOS221lO_P""1bur&~De!Mnbles\SOl-SilcCharecuriZlllioo~l..vldlillSileChanllurizllioo·Rnised~O~l700c:Jc SITE CHARACTERIZATION REPORT PETERSBURGH LANDFILL SITE ID NO. 442054 PETERSBURGH, NEW YORK PREPARED FOR: NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION WORK ASSIGNMENT NO. D007622-36 PREPARED BY: URS CORPORATION 257 WEST GENESEE STREET, SUITE 400 BUFFALO, NEW YORK 14202 FINAL MAY 2017 TABLE OF CONTENTS Page No. 1.0 INTRODUCTION ..........................................................................................................
    [Show full text]
  • Scoping Documents for 2018
    HORIZON2020 Programme Contract No. 733032 HBM4EU Scoping documents for 2018 Deliverable Report D 4.2 WP 4 Prioritisation and input to the Annual Work Plan Deadline: June, 2017 Upload by Coordinator: 28.06.2017 Entity Name of person responsible Short name of Received institution date Coordinator Marike Kolossa-Gehring UBA 27.06.2017 Grant Signatory Greet Schoeters VITO 23.06.2017 Pillar Leader Greet Schoeters VITO 23.06.2017 Work Package Catherine Ganzleben EEA 23.06.2017 Leader Task leader Greet Schoeters VITO 23.06.2017 Responsible author Greet Schoeters E-mail [email protected] Short name of Phone +32 14 33 5167 VITO institution Co-authors Carolin Tschersich (UBA), Robert Barouki (INSERM), Maria Uhl (EAA), Jana Klánová (MU), Milena Horvat (JSI), Alessandro Alimonti (ISS), Denis Sarigiannis (AUTH), Tiina Santonen (FIOH), Erik Lebret (RIVM) D 4.2 Scoping Documents for 2018 Security: Public WP 4 - Prioritisation and input to the Annual Work Plan Version: 3 Authors: Carolin Tschersich, Robert Barouki, Maria Uhl, Jana Klánová, Milena Horvat, Page: 2 Alessandro Alimonti, Denis Sarigiannis, Tiina Santonen, Erik Lebret, Greet Schoeters Table of contents Table of contents ............................................................................................................................ 2 1. Authors and Acknowledgements .............................................................................................. 5 2. Introduction .............................................................................................................................
    [Show full text]
  • Gastrointestinal Elimination of Perfluorinated Compounds Using Cholestyramine and Chlorella Pyrenoidosa
    Hindawi Publishing Corporation ISRN Toxicology Volume 2013, Article ID 657849, 8 pages http://dx.doi.org/10.1155/2013/657849 Research Article Gastrointestinal Elimination of Perfluorinated Compounds Using Cholestyramine and Chlorella pyrenoidosa Stephen J. Genuis,1 Luke Curtis,2 and Detlef Birkholz3 1 Faculty of Medicine, University of Alberta, 2935-66 Street, Edmonton, AB, Canada T6K 4C1 2 Forest Hills, NY 11375, USA 3 ALS Laboratory Group, University of Alberta and Environmental Division, Edmonton, AB, Canada T6E 5C1 Correspondence should be addressed to Stephen J. Genuis; [email protected] Received 8 June 2013; Accepted 4 August 2013 Academic Editors: Y. C. Hseu and T. E. Stoker Copyright © 2013 Stephen J. Genuis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. While perfluorinated compounds (PFCs) are a family of commonly used synthetic compounds with many applications, some PFCs remain persistent within the human body due, in part, to enterohepatic recirculation and renal tubular reabsorption. With increasing recognition of potential harm to human health associated with PFC bioaccumulation, interventions to facilitate elimination of these toxicants are welcome in order to potentially preclude or overcome illness. Minimal research has been undertaken thus far on methods to accelerate human clearance of PFCs. Methods. To test for possible oral treatments to hasten PFC elimination, a group of individuals with elevated PFC levels was treated with cholestyramine (CSM) and, after a break, was subsequently treated with Chlorella pyrenoidosa (CP).Stoolsampleswerecollectedfromallparticipants(i)priortoanytreatment, (ii) during treatment with CSM, and (iii) during treatment with CP.
    [Show full text]
  • Perfluorinated Compounds, Bishenol a and Acetaminophen in Selected Waste Water Treatment Plants in and Around Cape Town, South Africa
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cape Peninsula University of Technology PERFLUORINATED COMPOUNDS, BISHENOL A AND ACETAMINOPHEN IN SELECTED WASTE WATER TREATMENT PLANTS IN AND AROUND CAPE TOWN, SOUTH AFRICA. by ADEOLA PATIENCE ADELEYE Thesis submitted in partial fulfilment of the requirements for the degree of Master of Technology: Chemistry in the Faculty of Applied Sciences at the Cape Peninsula University of Technology Supervisor: Prof B J Ximba Co Supervisor: Prof O S Fatoki External Co- Supervisor: Prof L F Petrik CAPE TOWN 2016 CPUT Copyright Information This thesis may not be published either in part (in scholarly, scientific or technical journals), or as a whole (as a monograph), unless permission has been obtained from the university DECLARATION I, ADEOLA PATIENCE ADELEYE, declare that the contents of this thesis represent my own work, and that the thesis has not previously been submitted for academic examination towards any other qualification. Furthermore, it represents my own opinions and not necessarily those of the Cape Peninsula University of Technology Signed Date i ABSTRACT The release of wastewater to the aquatic environment is most likely to introduce some trace levels of organic contaminants, some of which may be toxic, carcinogenic, or endocrine disruptors, as well as, persistent in the environment. Additionally, increasing contamination of surface waters by wastewater effluents has made water treatment processes more challenging and expensive. The presence of these pollutants in the receiving water body may have negative effects on aquatic species and often pose potential human health risks through the reuse of treated wastewater for drinking purposes and other household use.
    [Show full text]
  • Overview of Prioritized Substances
    Overview of prioritized substances Content 1 Phthalates/DINCH ............................................................................................................................................ 1 2 Bisphenols ......................................................................................................................................................... 5 3 Per-/Polyfluorinated compounds .................................................................................................................... 16 4 Flame Retardants ............................................................................................................................................ 20 5 Cd, Cr (to be added) ........................................................................................................................................ 26 6 PAHs and air pollutants .................................................................................................................................. 32 7 Anilin family: MOCA ...................................................................................................................................... 36 8 Chemical mixtures ........................................................................................................................................... 39 9 Emerging chemicals ........................................................................................................................................ 39 ANNEX: GANTT CHARTS (OLD) ...............................................................................................................................
    [Show full text]
  • Environmental Factors Affecting Thyroid-Stimulating Hormone and Thyroid Hormone Levels
    International Journal of Molecular Sciences Review Environmental Factors Affecting Thyroid-Stimulating Hormone and Thyroid Hormone Levels Mirjana Babi´cLeko , Ivana Gunjaˇca , Nikolina Plei´c and Tatijana Zemunik * Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; [email protected] (M.B.L.); [email protected] (I.G.); [email protected] (N.P.) * Correspondence: [email protected]; Tel.: +385-21-557-888 Abstract: Thyroid hormones are necessary for the normal functioning of physiological systems. Therefore, knowledge of any factor (whether genetic, environmental or intrinsic) that alters the levels of thyroid-stimulating hormone (TSH) and thyroid hormones is crucial. Genetic factors contribute up to 65% of interindividual variations in TSH and thyroid hormone levels, but many environmental factors can also affect thyroid function. This review discusses studies that have analyzed the impact of environmental factors on TSH and thyroid hormone levels in healthy adults. We included lifestyle factors (smoking, alcohol consumption, diet and exercise) and pollutants (chemicals and heavy metals). Many inconsistencies in the results have been observed between studies, making it difficult to draw a general conclusion about how a particular environmental factor influences TSH and thyroid hormone levels. However, lifestyle factors that showed the clearest association with TSH and thyroid hormones were smoking, body mass index (BMI) and iodine (micronutrient taken from the diet). Smoking mainly led to a decrease in TSH levels and an increase in triiodothyronine (T3) and thyroxine (T4) levels, while BMI levels were positively correlated with TSH and free T3 levels. Excess iodine led to an increase in TSH levels and a decrease in thyroid hormone levels.
    [Show full text]