Herpestes Ichneumon – Large Grey Mongoose
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Iberian Lynx Lynx Pardinus Conservation Breeding Program A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC The Iberian lynx Lynx pardinus Conservation Breeding Program A. VARGAS1, I. SA´ NCHEZ2, F. MARTI´NEZ1, A. RIVAS1, J. A. GODOY3, E. ROLDA´ N4, M. A. SIMO´ N5, R. SERRA6, MaJ. PE´ REZ7, C. ENSEN˜ AT8, M. DELIBES3, M. AYMERICH9, 10 11 A. SLIWA & U. BREITENMOSER 1Centro de Cr´ıa de Lince Ibe´rico El Acebuche, Parque Nacional de Don˜ ana, Huelva, Spain, 2Zoobota´ nico de Jerez, Ca´ diz, Spain, 3Don˜ ana Biological Station, CSIC, Sevilla, Spain, 4National Museum of Natural Science, CSIC, Madrid, Spain, 5Environmental Council, Andalusian Government, Jae´ n, Spain, 6Investigac¸a˜ o Veterina´ ria Independente, Lisbon, Portugal, 7Centro de Cr´ıa en Cautividad de Lince Ibe´rico La Olivilla, Jaen, Spain, 8Parc Zoolo´ gic, Barcelona, Spain, 9Direccio´ n General para la Biodiversidad, Ministerio de Medio Ambiente, Madrid, Spain, 10Cologne Zoo, Cologne 50735, Germany, and 11IUCN Cat Specialist Group, Institute of Veterinary Virology, University of Bern, Bern, Switzerland E-mail: [email protected] The Iberian Lynx Conservation Breeding Program fol- INTRODUCTION lows a multidisciplinary approach, integrated within the National Strategy for the Conservation of the Iberian lynx, which is carried out in cooperation with national, Iberian lynx Lynx pardinus wild populations regional and international institutions. The main goals of have undergone a constant regression through- the ex situ conservation programme are to: (1) maintain a out the last century. The decline has been genetically and demographically managed captive popu- especially abrupt in the last 20 years, with more lation; (2) create new Iberian lynx Lynx pardinus free- ranging populations through re-introduction. -
The Gut Microbiota of the Egyptian Mongoose As an Early Warning Indicator of Ecosystem Health in Portugal
International Journal of Environmental Research and Public Health Article The Gut Microbiota of the Egyptian Mongoose as an Early Warning Indicator of Ecosystem Health in Portugal Mónica V. Cunha 1,2,3,* , Teresa Albuquerque 1, Patrícia Themudo 1, Carlos Fonseca 4, Victor Bandeira 4 and Luís M. Rosalino 2,4 1 National Institute for Agrarian and Veterinary Research (INIAV, IP), Wildlife, Hunting and Biodiversity R&D Unit, 2780-157 Oeiras, Portugal; [email protected] (T.A.); [email protected] (P.T.) 2 Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; [email protected] 3 Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal 4 Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; [email protected] (C.F.); [email protected] (V.B.) * Correspondence: [email protected]; Tel.: +351-214-403-500 Received: 1 April 2020; Accepted: 27 April 2020; Published: 29 April 2020 Abstract: The Egyptian mongoose is a carnivore mammal species that in the last decades experienced a tremendous expansion in Iberia, particularly in Portugal, mainly due to its remarkable ecological plasticity in response to land-use changes. However, this species may have a disruptive role on native communities in areas where it has recently arrived due to predation and the potential introduction of novel pathogens. We report reference information on the cultivable gut microbial landscape of widely distributed Egyptian mongoose populations (Herpestes ichneumon, n = 53) and related antimicrobial tolerance across environmental gradients. -
The Yellow Mongoose Cynictis Penicillata in the Great Fish River Reserve (Eastern Cape, South Africa)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by South East Academic Libraries System (SEALS) Spatio-temporal ecology of the yellow mongoose Cynictis penicillata in the Great Fish River Reserve (Eastern Cape, South Africa) By Owen Akhona Mbatyoti A dissertation submitted in fulfilment of the requirements for the degree of MASTER OF SCIENCE (ZOOLOGY) in the Faculty of Science and Agriculture at the University of Fort Hare August 2012 Supervisor: Dr Emmanuel Do Linh San DECLARATION 1. This is to declare that this dissertation entitled “Spatio-temporal ecology of the yellow mongoose Cynictis penicillata in the Great Fish River Reserve (Eastern Cape, South Africa)” is my own work and has not been previously submitted to another institute. 2. I know that plagiarism means taking and using the ideas, writings, work or inventions of another person as if they were one’s own. I know that plagiarism not only includes verbatim copying, but also extensive use of another person’s ideas without proper acknowledgement (which sometimes includes the use of quotation marks). I know that plagiarism covers this sort of material found in textual sources (e.g. books, journal articles and scientific reports) and from the Internet. 3. I acknowledge and understand that plagiarism is wrong. 4. I understand that my research must be accurately referenced. I have followed the academic rules and conventions concerning referencing, citation and the use of quotations. 5. I have not allowed, nor will I in the future allow, anyone to copy my work with the intention of passing it off as their own work. -
Comparative Ecomorphology and Biogeography of Herpestidae and Viverridae (Carnivora) in Africa and Asia
Comparative Ecomorphology and Biogeography of Herpestidae and Viverridae (Carnivora) in Africa and Asia Gina D. Wesley-Hunt1, Reihaneh Dehghani2,3 and Lars Werdelin3 1Biology Department, Montgomery College, 51 Mannakee St. Rockville, Md. 20850, USA; 2Department of Zoology, Stockholm University, SE-106 91, Stockholm, Sweden; 3Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, SE-104 05, Stockholm, Sweden INTRODUCTION Ecological morphology (ecomorphology) is a powerful tool for exploring diversity, ecology and evolution in concert (Wainwright, 1994, and references therein). Alpha taxonomy and diversity measures based on taxon counting are the most commonly used tools for understanding long-term evolutionary patterns and provide the foundation for all other biological studies above the organismal level. However, this provides insight into only a single dimension of a multidimensional system. As a complement, ecomorphology allows us to describe the diversification and evolution of organisms in terms of their morphology and ecological role. This is accomplished by using quantitative and semi-quantitative characterization of features of organisms that are important, for example, in niche partitioning or resource utilization. In this context, diversity is commonly referred to as disparity (Foote, 1993). The process of speciation, for example, can be better understood and hypotheses more rigorously tested, if it can be quantitatively demonstrated whether a new species looks very similar to the original taxon or whether its morphology has changed in a specific direction. For example, if a new species of herbivore evolves with increased grinding area in the cheek dentition, it can either occupy the same area of morphospace as previously existing species, suggesting increased resource competition, or it can occupy an area of morphospace that had previously been empty, suggesting evolution into a new niche. -
Mammalian Predators Appropriating the Refugia of Their Prey
Mamm Res (2015) 60:285–292 DOI 10.1007/s13364-015-0236-y ORIGINAL PAPER When prey provide more than food: mammalian predators appropriating the refugia of their prey William J. Zielinski 1 Received: 30 September 2014 /Accepted: 20 July 2015 /Published online: 31 July 2015 # Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland (outside the USA) 2015 Abstract Some mammalian predators acquire both food and predators) may play disproportionately important roles in their shelter from their prey, by eating them and using the refugia communities. the prey construct. I searched the literature for examples of predators that exhibit this behavior and summarize their taxo- Keywords Predator–prey . Dens . Herbivore . Behavior . nomic affiliations, relative sizes, and distributions. I hypothe- Habitat . Resting . Foraging sized that size ratios of species involved in this dynamic would be near 1.0, and that most of these interactions would occur at intermediate and high latitudes. Seventeen species of Introduction Carnivorans exploited at least 23 species of herbivores as food and for their refugia. Most of them (76.4 %) were in the Mammals require food and most require shelter, either to pro- Mustelidae; several small species of canids and a few tect them from predators or from thermal stress. Carnivorous herpestids were exceptions. Surprisingly, the average mammals are unique in that they subsist on mobile food predator/prey weight ratio was 10.51, but few species of pred- sources which, particularly if these sources are vertebrates, ators were more than ten times the weight of the prey whose may build their own refuges to help regulate their body tem- refugia they exploit. -
Ecology of the Small Indian Mongoose (Herpestes Auropunctatus) in North America
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Publications Plant Health Inspection Service 2018 Ecology of the Small Indian Mongoose (Herpestes auropunctatus) in North America Are R. Berentsen USDA National Wildlife Research Center, [email protected] William C. Pitt Smithsonian Institute Robert T. Sugihara USDA/APHIS/WS/National Wildlife Research Center Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Life Sciences Commons Berentsen, Are R.; Pitt, William C.; and Sugihara, Robert T., "Ecology of the Small Indian Mongoose (Herpestes auropunctatus) in North America" (2018). USDA National Wildlife Research Center - Staff Publications. 2034. https://digitalcommons.unl.edu/icwdm_usdanwrc/2034 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. U.S. Department of Agriculture U.S. Government Publication Animal and Plant Health Inspection Service Wildlife Services Ecology of the Small 12 Indian Mongoose (Herpestes auropunctatus) in North America Are R. Berentsen, William C. Pitt, and Robert T. Sugihara CONTENTS General Ecology and Distribution......................................................................... -
Endangered Species
Not logged in Talk Contributions Create account Log in Article Talk Read Edit View history Endangered species From Wikipedia, the free encyclopedia Main page Contents For other uses, see Endangered species (disambiguation). Featured content "Endangered" redirects here. For other uses, see Endangered (disambiguation). Current events An endangered species is a species which has been categorized as likely to become Random article Conservation status extinct . Endangered (EN), as categorized by the International Union for Conservation of Donate to Wikipedia by IUCN Red List category Wikipedia store Nature (IUCN) Red List, is the second most severe conservation status for wild populations in the IUCN's schema after Critically Endangered (CR). Interaction In 2012, the IUCN Red List featured 3079 animal and 2655 plant species as endangered (EN) Help worldwide.[1] The figures for 1998 were, respectively, 1102 and 1197. About Wikipedia Community portal Many nations have laws that protect conservation-reliant species: for example, forbidding Recent changes hunting , restricting land development or creating preserves. Population numbers, trends and Contact page species' conservation status can be found in the lists of organisms by population. Tools Extinct Contents [hide] What links here Extinct (EX) (list) 1 Conservation status Related changes Extinct in the Wild (EW) (list) 2 IUCN Red List Upload file [7] Threatened Special pages 2.1 Criteria for 'Endangered (EN)' Critically Endangered (CR) (list) Permanent link 3 Endangered species in the United -
The 2008 IUCN Red Listings of the World's Small Carnivores
The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals). -
Pest Risk Assessment
PEST RISK ASSESSMENT Meerkat Suricata suricatta (Photo: Fir0002. Image from Wikimedia Commons under a GNU Free Documentation License, Version 1.2) March 2011 Department of Primary Industries, Parks, Water and Environment Resource Management and Conservation Division Department of Primary Industries, Parks, Water and Environment 2011 Information in this publication may be reproduced provided that any extracts are acknowledged. This publication should be cited as: DPIPWE (2011) Pest Risk Assessment: Meerkat (Suricata suricatta). Department of Primary Industries, Parks, Water and Environment. Hobart, Tasmania. About this Pest Risk Assessment This pest risk assessment is developed in accordance with the Policy and Procedures for the Import, Movement and Keeping of Vertebrate Wildlife in Tasmania (DPIPWE 2011). The policy and procedures set out conditions and restrictions for the importation of controlled animals pursuant to s32 of the Nature Conservation Act 2002. This pest risk assessment is prepared by DPIPWE for the use within the Department. For more information about this Pest Risk Assessment, please contact: Wildlife Management Branch Department of Primary Industries, Parks, Water and Environment Address: GPO Box 44, Hobart, TAS. 7001, Australia. Phone: 1300 386 550 Email: [email protected] Visit: www.dpipwe.tas.gov.au Disclaimer The information provided in this Pest Risk Assessment is provided in good faith. The Crown, its officers, employees and agents do not accept liability however arising, including liability for negligence, for any loss resulting from the use of or reliance upon the information in this Pest Risk Assessment and/or reliance on its availability at any time. Pest Risk Assessment: Meerkat Suricata suricatta 2/22 1. -
Notes on Mating Behaviour of Two Small Carnivores in Bangladesh
Notes on mating behaviour of two small carnivores in Bangladesh Hassan AL-RAZI, Shayer Mahmood Ibney ALAM*, Mohammad Abdul BAKI and Nadim PARVES Abstract Small Asian Mongoose Herpestes javanicus is a common yet poorly documented species in Bangladesh. A pair was observed mating near a small bush on an island in the Buriganga River at 11h10 on 14 January 2014. Nine successive copulations were separated by about 20 to 50 seconds. Masked Palm Civet Paguma larvata is believed to be rare in Bangladesh and its behaviour is very poorly known. A pair up a tree in Satchari National Park at 07h43 on 25 April 2014 was observed copulating (two bouts) and its post- mating behaviour documented. Keywords: breeding behaviour, copulation, Herpestes auropunctatus, Herpestes javanicus, Masked Palm Civet, Paguma larvata, Small Asian Mongoose Introduction 1 m from its mate, pushing the female away for about 20–50 Direct observations of wild tropical Asian carnivores mating seconds each time. Then the male approached the female to are rarely reported. This paper describes from Bangladesh mount again. Both animals shook their bodies during this in- single observations of mating in Small Asian Mongoose Her- terval on four occasions. No aggressive behaviour, such as bit- pestes javanicus and Masked Palm Civet Paguma larvata. Co- ing, was observed during the mating. We saw the pair run out of the bushes, mate in the open, then return to the bushes, but Earth. we do not know whether they also mated in the bushes before ordinates and approximate altitudes are derived from Google Small Asian Mongoose Herpestes javanicus about 10–12 minutes, some 2–2½ m from the den. -
The Return of the Iberian Lynx to Portugal: Local Voices Margarida Lopes-Fernandes1,2* , Clara Espírito-Santo3,4 and Amélia Frazão-Moreira2
Lopes-Fernandes et al. Journal of Ethnobiology and Ethnomedicine (2018) 14:3 DOI 10.1186/s13002-017-0200-9 RESEARCH Open Access The return of the Iberian lynx to Portugal: local voices Margarida Lopes-Fernandes1,2* , Clara Espírito-Santo3,4 and Amélia Frazão-Moreira2 Abstract Background: Ethnographic research can help to establish dialog between conservationists and local people in reintroduction areas. Considering that predator reintroductions may cause local resistance, we assessed attitudes of different key actor profiles to the return of the Iberian lynx (Lynx pardinus) to Portugal before reintroduction started in 2015. We aimed to characterize a social context from an ethnoecological perspective, including factors such as local knowledge, perceptions, emotions, and opinions. Methods: We conducted semi-structured interviews (n = 131) in three different protected areas and observed practices and public meetings in order to describe reintroduction contestation, emotional involvement with the species, and local perceptions about conservation. Detailed content data analysis was undertaken and an open-ended codification of citations was performed with the support of ATLAS.ti. Besides the qualitative analyses, we further explored statistic associations between knowledge and opinions and compared different geographical areas and hunters with non-hunters among key actors. Results: Local ecological knowledge encompassed the lynx but was not shared by the whole community. Both similarities and differences between local and scientific knowledge about the lynx were found. The discrepancies with scientific findings were not necessarily a predictor of negative attitudes towards reintroduction. Contestation issues around reintroduction differ between geographical areas but did not hinder an emotional attachment to the species and its identification as a territory emblem. -
Herpestes Ichneumon, Egyptian Mongoose
The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T41613A45207211 Herpestes ichneumon, Egyptian Mongoose Assessment by: Do Linh San, E., Maddock, A.H., Gaubert, P. & Palomares, F. View on www.iucnredlist.org Citation: Do Linh San, E., Maddock, A.H., Gaubert, P. & Palomares, F. 2016. Herpestes ichneumon. The IUCN Red List of Threatened Species 2016: e.T41613A45207211. http://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T41613A45207211.en Copyright: © 2016 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: BirdLife International; Botanic Gardens Conservation International; Conservation International; Microsoft; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; Wildscreen; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the