Evolutionary Inference from Endogenous Retrovirus Distribution and Diversity

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Inference from Endogenous Retrovirus Distribution and Diversity Evolutionary Inference from Endogenous Retrovirus Distribution and Diversity Robert James Moncreiff Gifford University of London Imperial College of Science, Technology and Medicine Department of Biology Silwood Park A thesis submitted for the degree of Doctor of Philosophy in the year 2002 1 Preface PREFACE The work in this thesis carried out between October 1998 and August 2002. My research was supported by a studentship from the Natural Environment Research Council (NERC) and supervised by Dr M. Tristem. This thesis is the result of my own work except where explicitly stated in the text. The contents have not been previously submitted for any degree, diploma, or any other qualification at Imperial College or at any other university. 2 Acknowledgements ACKNOWLEDGEMENTS I would like to thank my friends and colleagues at Silwood Park for their support and understanding. Equally I would like to thank my friends elsewhere, and my family, for offering some respite from retroviruses and from science in general, and for their encouragement and unaccountable faith in me. Special thanks to Paul-Michael Agapow for his invaluable guidance and supervision in the realm of programming and bioinformatics, and to Vicki and her family for their wonderful hospitality during my stint in post-grant purgatory. Above all I would like to thank my supervisor, Dr Mike Tristem, for his support, guidance, and his remarkable patience and generosity. 3 Abstract ABSTRACT Endogenous retroviruses (ERVs) are the relics of germline infections by ancient retroviruses. ERVs are widespread elements within the genomic DNA of vertebrates, and show great potential as markers of evolutionary processes. The work reported here is an exploration of the distribution and diversity of ERVs throughout vertebrate genomes, and of the kind of evolutionary inference that can be made from it. PCR screening and automated sequencing were used to amplify and characterise novel ERV fragments, and phylogenetic reconstruction was used to infer the relationships between them. A computer simulation model was developed and used to explore how ERV distribution and diversity is generated in response to varying ecological and evolutionary parameters. Simulation provided an experimental environment in which to model the relationship between the evolutionary history of host/ERV lineages, and patterns of ERV distribution. Investigations using simulation suggested a general pattern for ERV evolution and indicated how events in the evolution of the host/virus lineage might shape ERV distribution and diversity. 4 Table of Contents TABLE OF CONTENTS Preface 2 Acknowledgements 3 Abstract 4 Contents 5 Index of Figures 9 Index of Tables 11 Abbreviations 12 Retrovirus nomenclature 13 Aims 15 1) Introduction 1.1 Retroviruses 16 1,1,1 The Retroviridae 16 1.1.2 Retroviruses and medical science 16 1.1.3 Endogenous retroviruses 17 1.2 Reverse transcription - a unique genetic strategy 19 1.3 Retrovirus structure and genomic organisation 21 1.4 The retrovirus life cycle 25 1.4.1 Attachment and penetration 25 1.4.2 Reverse transcription 25 1.4.3 Nuclear entry and integration 30 1.4.4 Expression: Transcription 33 1.4.5 Expression: Translation 34 1.4.6 Assembly and budding 35 1.5 Retrovirus evolution 38 1.5.1 Rapid evolution of retroviral sequences 38 1.5.2 Mechanisms for gene exchange 39 1.5.3 Endogenous retroviruses 40 1.5.4 Reconstructing retrovirus relationships 43 1.6 Retrovirus distribution and diversity 49 1.6.1 Exogenous retrovirus diversity 49 1.6.2 Human endogenous retrovirus (HERV) diversity 49 1.6.3 ERV diversity throughout vertebrates 54 1.7 Analysis of ERV distribution and diversity 58 1.7.1 ERV host range 58 1.7.2 Cospeciation and horizontal transmission of retroviruses 58 1.7.3 ERV copy number 60 1.7.4 Age distribution of ERV insertions 60 1.7.5 ERV distribution within genomes 61 1.7.6 ERVs as Glade markers 63 1.9 The aims of this study 64 5 Table of Contents TABLE OF CONTENTS 2) The Distribution and Diversity of Class II Retroviruses 2.1 Introduction - A review of Class II diversity 65 2.1.1 Class II diversity: Alpharetroviruses 65 2.1.2 Class II diversity: Betaretroviruses 70 2.1.3 Class II diversity: Lentiviruses 73 2.1.4 Class II diversity: Deltaretroviruses 78 2.1.5 Class II diversity: IAP Elements 81 2.1.6 Class II diversity: Class II HERVs 82 2.1.7 Class II diversity: Divergent Class II ERVs 85 2.1.8 Using PCR screening to investigate the diversity of Class II ERVs 87 2.2 Materials 88 2.2.1 Media, plates and buffers 88 2.2.2 Vectors and bacterial strains 88 2.2.3 Enzymes 88 2.2.4 Gels, running buffers, and molecular weight markers 89 2.2.5 Oligonucleotide primers 89 2.2.6 Other reagents, kits and consumables 90 2.2.7 Equipment 90 2.3 Methods 91 2.3.1 DNA extraction 91 2.3.2 Polymerase chain reaction 91 2.3.3 Cloning - Ligation 93 2.3.4 Cloning - Transformations 94 2.3.5 Cloning - Plasmid DNA Preparation 95 2.3.6 Sequencing 96 2.3.7 Sequence identification and alignment 97 2.3.8 Phylogenetic analysis 98 2.3.9 Confirming sequence origin using PCR 99 2.4 Results 100 2.4.1 Design of novel primer pairs 100 2.4.2 Isolation of viruses 104 2.4.3 Confirmation of fragment origin 105 2.4.4 Sequence alignment 110 2.4.5 g-patch domain 112 2.4.6 Nonsense mutations (stop codons and frameshifts) 114 2.4.7 Phylogenetic analysis 119 2.4.8 The status of recognised Class II groups 124 2.4.9 Novel divergent groups 131 2.4.10 Distribution of nonsense mutations across phylogeny 133 2.4.11 Distribution of env types across mammalian Class II retroviruses 135 2.4.12 Avian class II retroviruses and host geographic range 139 6 Table of Contents TABLE OF CONTENTS 2.5 Discussion 141 2.5.1 Phylogenetic analysis 141 2.5.2 Novel retrovirus groups 144 2.5.3 Horizontal transfer between host classes 145 2.5.4 Horizontal transfer within host classes 146 3) Simulation Modelling of ERV Evolution 3.1 Introduction 148 3.1.1 ERV distribution and diversity within species 148 3.1.2 Computer simulation of ERV evolution using an individual-based 150 model 3.2 Approach 151 3.2.1 Model components 152 3.2.2 Input data 154 3.2.3 Output data 155 3.2.4 Model structure 155 3.3 Implementation 160 3.3.1 Materials - Software development environment 160 3.3.2 Random number generator 160 3.3.3 General features of the design and implementation process 161 3.3.4 Simulation components 161 3.4 Demonstration 166 3.4.1 TEST 1 — Population size and fixation frequency 166 3.4.2 TEST 2 — Gene density and fixation frequency 167 3.4.3 TEST 3 — Transposition rate and element population size 167 3.4.4 TEST 4 - Recombination 170 3.5 Application 172 3.5.1 Fixation and persistence of TE lineages 172 3.5.2 ERV Glade growth 172 3.5.3 The effect of incomplete sampling on evolutionary inference 174 3.5.4 Consequences of sharing gene products 175 4) The Generation of ERV Distribution and Diversity 4.1 Introduction 177 4.1.1 The `lifecycle of ERV lineages 177 4.1.2 Colonisation, ERV diversity and host/virus ecology 177 4.1.3 Post-colonisation ERV evolution 178 4.2 Methods 180 4.2.1 The Passengers simulation 180 7 Table of Contents TABLE OF CONTENTS 4.3 Results 180 4.3.1 Simulating colonisation 180 4.3.2 Persistence of ERV activity following fixation 185 4.3.3 Frequency of fixation 189 4.4 Discussion 192 4.4.1 Colonisation, the pace of amplification, and loss versus persistence of 192 ERV lineages 4.4.2 The ERV lineage `lifecycle' and the dynamics of ERV Glade growth 195 4.4.3 Fixation frequency 198 5) Conclusions 5.1 The distribution and diversity of retroviruses 202 5.1.1 ERVs as evolutionary markers 202 5.1.2 ERVs as markers of exogenous retrovirus evolution 202 5.1.3 Class II retrovirus distribution and diversity 204 5.1.4 The generation of ERV diversity 190 6) References References 207 7) Appendices Appendix 1 Tissue and DNA sources 235 Appendix 2 Nucleotide alignment of Class II ERV pol fragments 239 Appendix 3 Characteristics of novel class II ERVs identified in this study 275 8 Index of Figures INDEX OF FIGURES Nomenclature Al) Retrovirus classification 14 1) Introduction 1.1 The retrovirus replication cycle 19 1.2 Reverse transcription and the central dogma 20 1.3 Schematic cross-section through a retroviral particle 21 1.4 Genome structure of a generalised retrovirus 23 1.5 The retrovirus life cycle 26 1.6 Reverse transcription 27-29 1.7 Integration 31 1.8 Fixation of an ERV insertion 41 1.9 DNA recombination events involving ERVs 41 1.10 An evolutionary tree of the retroelements 48 1.11 Taxonomy and sequence relationships of retroviruses 50 1.12 The relationships between exogenous retrovirus genera, HERV families, and some 56 non-human ERVs 1.13 Tanglegram showing host/virus relationships 62 1.14 Fixed ERVs track host phylogeny 62 2) The Distribution and Diversity of Class II Retroviruses 2.1 A phylogeny of the class II retroviruses 66 2.2 Rous sarcoma virus (RSV) genetic map 67 2.3 Mason-Pfizer monkey virus (MPMV) genetic map 71 2.4 Human immunodeficiency virus type-1 (HIV-1) genetic map 74 2.5 Human T-cell leukemia virus type-1 (HTLV-1) genetic map 79 2.6 Deltaretrovirus relationships 79 2.7 Novel Class II ERVs identified by PCR screening 86 2.8 Positions of target motifs for primers within PRO-RT coding domain 101 2.9 An alignment showing the conserved motif 'DIG/KDAY' in the lentivirus genome 101 2.10 Comparison of primer efficiencies 103 2.11 PCR products and marker 104 2.12 Alignment of retroviral G-patch domains with other G-patch domains 113 2.13 Distribution of G-patch domain across Class II taxa 113 2.14 Comparison of nucleotide composition
Recommended publications
  • Orangutan…Taxonomy…And…Nomenclature
    «««« ORANGUTAN…TAXONOMY…AND…NOMENCLATURE« « Craig«D em itros« « The«taxonom y«of«the«orangutan«has«been«confusing«and«is«still«the«subject«of« m uch«debate.«Q uestions«at«the«specific«and«subspecific«level«are«still«being« investigated«(Courtenay«et«al.«1988).«The«follow ing«taxonom ic«inform ation«is« taken«prim arily«from «G roves,«1971.« « H IG H ER«LEVEL«TAXO N O M Y:« O rder:«Prim ates« Suborder:«A nthropoidea« Superfam ily:«H om inoidea« Fam ily:«Pongidae«(Includes«extant«genera«Pan,…Gorilla…and…Pongo).« « H ISTO RICA L«TAXO N O M Y«AT«TH E«G EN U S«A N D «G EN U S«SPECIES«LEVEL:«« G enus« Pongo«Lacepede,«1799.« O urangus«Zim m erm an,«1777«(N am e«invalidated).« « G enus«species«(Pongo…pygm aeus«H oppius,«1763).« Sim ia…pygm aeus«H oppius,«1763.««Type«locality«Sum atra.« Sim ia…satyrus«Linnaeus,«1766.« O urangus…outangus«Zim m erm an,«1777.« Pongo…borneo«Lacepede,«1799.««Type«locality«Borneo.« Sim ia…Agrais«Schreber,«1779.««Type«locality«Borneo.« Pongo…W urm bii«Tiedem ann,«1808.««Type«locality«Borneo.« Pongo…Abelii«Lesson,«1827.««Type«locality«Sum atra.« Sim ia…M orio«O w en,«1836.««Type«locality«Borneo.« Pithecus…bicolor«I.«G eoffroy,«1841.««Type«locality«Sum atra.« Sim ia…Gargantica«Pearson,«1841.««Type«locality«Sum atra.« Pithecus…brookei«Blyth,«1853.««Type«locality«Saraw ak.« Pithecus…ow enii«Blyth,«1853.««Type«locality«Saraw ak.« Pithecus…curtus«Blyth,«1855.««Type«locality«Saraw ak.« Satyrus…Knekias«M eyer,«1856.««Type«locality«Borneo.« Pithecus…W allichii«G ray,«1870.««Type«locality«Borneo.« Pithecus…sum atranus«Selenka,«1896.««Type«locality«Sum atra.« Pongo…pygm aeus«Rothschild,«1904.««First«use«of«this«com bination.« Ptihecus…w allacei«Elliot,«1913.««Type«locality«Borneo.« « CURRENT…TAXONOMY« « The«current«and«m ost«accepted«taxonom y«of«the«G enus«Pongo«includes«one« species«Pongo…pygm aeus«and«tw o«subspecies«P.p.…pygm aeus«(the«Bornean« subspecies)«and«P.p.…abelii«(the«Sum atran«subspecies)«(Bem m el«1968;«Jones« 1969;«G roves«1971;«Jacobshagen«1979;«Seuarez«et«al.«1979«and«G roves«1993).« 5« « .
    [Show full text]
  • Studbook Gibbons 07
    European Studbook Number 2 (data 31.12.2006) Edited by Pierre Moisson & Mélanie Berthet Northern White-cheeked Gibbon - Nomascus leucogenys Southern White-cheeked Gibbon - Nomascus siki Red-cheeked Gibbon - Nomascus gabriellae With Nutrition guidelines by David Gomis and a summary of Hylobatidae diseases 1 Nutrition guidelines for “Concolor” gibbons by David Gomis, DVM, with the collaboration of Sara De Michelis, PhD ; Thijs Flahou, DVM ; Lise Turner, DVM. These nutritional guidelines can also be used for other Hylobatidae species, except perhaps Siamangs. Part of this work was undertaken in 2005 by L. Turner for her veterinary thesis (Cf. 9- Ref. 84) and more recently in 2006-2007 with T. Flahou for the Mulhouse Zoo Dietary Manual publication. 1- Introduction: The present guidelines have been written in response to a lack of research and published informations on Nomascus subspecies diets. Meeting the nutritional needs of gibbons is essential to assure their survival and their reproduction in captivity. Present guidelines are not nutrition recommendations, but a first evaluation done in Mulhouse Zoo. Our Zoo has experience with keeping and breeding gibbons since 1961, and even if their nutrition doesn’t seem to represent a real difficulty compared to other non human primates, the diets have been improved over these 46 years. Therefore this work does not pretend to be exhaustive. Hopefully it would initiate some more nutrition research and coordination among zoos, with the objective of improving the database. Zoo animal nutrition is increasingly being recognised as a specialty: knowledge available is increasing too. The first aim of this study was to provide a database, useful for the development of diets for “Concolor” gibbons, as objectively as possible: with this purpose, we synthetized the few data we could collect on “Concolor” gibbons’ diets and nutrient requirements.
    [Show full text]
  • The Expression of Human Endogenous Retroviruses Is Modulated by the Tat Protein of HIV‐1
    The Expression of Human Endogenous Retroviruses is modulated by the Tat protein of HIV‐1 by Marta Jeannette Gonzalez‐Hernandez A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Immunology) in The University of Michigan 2012 Doctoral Committee Professor David M. Markovitz, Chair Professor Gary Huffnagle Professor Michael J. Imperiale Associate Professor David J. Miller Assistant Professor Akira Ono Assistant Professor Christiane E. Wobus © Marta Jeannette Gonzalez‐Hernandez 2012 For my family and friends, the most fantastic teachers I have ever had. ii Acknowledgements First, and foremost, I would like to thank David Markovitz for his patience and his scientific and mentoring endeavor. My time in the laboratory has been an honor and a pleasure. Special thanks are also due to all the members of the Markovitz laboratory, past and present. It has been a privilege, and a lot of fun, to work near such excellent scientists and friends. You all have a special place in my heart. I would like to thank all the members of my thesis committee for all the valuable advice, help and jokes whenever needed. Our collaborators from the Bioinformatics Core, particularly James Cavalcoli, Fan Meng, Manhong Dai, Maureen Sartor and Gil Omenn gave generous support, technical expertise and scientific insight to a very important part of this project. Thank you. Thanks also go to Mariana Kaplan’s and Akira Ono’s laboratory for help with experimental designs and for being especially generous with time and reagents. iii Table of Contents Dedication ............................................................................................................................ ii Acknowledgements ............................................................................................................. iii List of Figures ...................................................................................................................
    [Show full text]
  • VMC 321: Systematic Veterinary Virology Retroviridae Retro: from Latin Retro,"Backwards”
    VMC 321: Systematic Veterinary Virology Retroviridae Retro: from Latin retro,"backwards” - refers to the activity of reverse RETROVIRIDAE transcriptase and the transfer of genetic information from RNA to DNA. Retroviruses Viral RNA Viral DNA Viral mRNA, genome (integrated into host genome) Reverse (retro) transfer of genetic information Usually, well adapted to their hosts Endogenous retroviruses • RNA viruses • single stranded, positive sense, enveloped, icosahedral. • Distinguished from all other RNA viruses by presence of an unusual enzyme, reverse transcriptase. Retroviruses • Retro = reversal • RNA is serving as a template for DNA synthesis. • One genera of veterinary interest • Alpharetrovirus • • Family - Retroviridae • Subfamily - Orthoretrovirinae [Ortho: from Greek orthos"straight" • Genus -. Alpharetrovirus • Genus - Betaretrovirus Family- • Genus - Gammaretrovirus • Genus - Deltaretrovirus Retroviridae • Genus - Lentivirus [ Lenti: from Latin lentus, "slow“ ]. • Genus - Epsilonretrovirus • Subfamily - Spumaretrovirinae • Genus - Spumavirus Retroviridae • Subfamily • Orthoretrovirinae • Genus • Alpharetrovirus Alpharetrovirus • Species • Avian leukosis virus(ALV) • Rous sarcoma virus (RSV) • Avian myeloblastosis virus (AMV) • Fujinami sarcoma virus (FuSV) • ALVs have been divided into 10 envelope subgroups - A , B, C, D, E, F, G, H, I & J based on • host range Avian • receptor interference patterns • neutralization by antibodies leukosis- • subgroup A to E viruses have been divided into two groups sarcoma • Noncytopathic (A, C, and E) • Cytopathic (B and D) virus (ALV) • Cytopathic ALVs can cause a transient cytotoxicity in 30- 40% of the infected cells 1. The viral envelope formed from host cell membrane; contains 72 spiked knobs. 2. These consist of a transmembrane protein TM (gp 41), which is linked to surface protein SU (gp 120) that binds to a cell receptor during infection. 3. The virion has cone-shaped, icosahedral core, Structure containing the major capsid protein 4.
    [Show full text]
  • Effects of Retroviruses on Host Genome Function
    ANRV361-GE42-20 ARI 1 August 2008 18:2 V I E E W R S I E N C N A D V A Effects of Retroviruses on Host Genome Function Patric Jern and John M. Coffin Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111; email: [email protected], John.Coffi[email protected] Annu. Rev. Genet. 2008. 42:20.1–20.23 Key Words The Annual Review of Genetics is online at Human Endogenous Retrovirus, LTR, transcription, recombination, genet.annualreviews.org methylation This article’s doi: 10.1146/annurev.genet.42.110807.091501 Abstract Copyright c 2008 by Annual Reviews. For millions of years, retroviral infections have challenged vertebrates, All rights reserved occasionally leading to germline integration and inheritance as ERVs, 0066-4197/08/1201-0001$20.00 genetic parasites whose remnants today constitute some 7% to 8% of the human genome. Although they have had significant evolutionary side effects, it is useful to view ERVs as fossil representatives of retro- viruses extant at the time of their insertion into the germline, not as direct players in the evolutionary process itself. Expression of particu- lar ERVs is associated with several positive physiological functions as well as certain diseases, although their roles in human disease as etio- logical agents, possible contributing factors, or disease markers—well demonstrated in animal models—remain to be established. Here we discuss ERV contributions to host genome structure and function, in- cluding their ability to mediate recombination, and physiological effects on the host transcriptome resulting from their integration, expression, and other events.
    [Show full text]
  • Lentiviral Integration Site Targeting: Host Determinants and Consequences
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Spring 2010 Lentiviral Integration Site Targeting: Host Determinants and Consequences Keshet Ronen University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Virology Commons Recommended Citation Ronen, Keshet, "Lentiviral Integration Site Targeting: Host Determinants and Consequences" (2010). Publicly Accessible Penn Dissertations. 174. https://repository.upenn.edu/edissertations/174 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/174 For more information, please contact [email protected]. Lentiviral Integration Site Targeting: Host Determinants and Consequences Abstract A necessary step in the retroviral lifecycle is integration, the covalent insertion of the viral cDNA into the genome of the infected cell. This means that retroviruses, for example HIV, establish life-long infection. It also means that retroviruses are used as gene-delivery vectors to treat genetic diseases. Integration events are distributed non-randomly in the genome of the infected cell, with characteristic genus-specific preferences. In this dissertation, we focus on the lentiviral class of retroviruses, and explore two aspects of their integration: the means by which integration is targeted to its favored sites, and the consequences of integration at these sites for the host cell. The host protein LEDGF/p75 has been shown to interact with lentiviral integrases and contribute to their preference for integration in genes. We sought to establish the extent to which integration site selection is determined by LEDGF/p75 tethering. We first asked whether LEDGF/p75 was an essential integration tether, by analyzing integration site distribution in cells stringently depleted for LEDGF/p75.
    [Show full text]
  • TNPO3-Mediated Nuclear Entry of the Rous Sarcoma Virus Gag Protein Is Independent
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.12.989608; this version posted April 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 TNPO3-mediated nuclear entry of the Rous sarcoma virus Gag protein is independent 2 of the cargo-binding domain 3 4 Breanna L. Ricea, Matthew S. Stakea*, and Leslie J. Parenta,b,# 5 6 aDivision of Infectious Diseases and Epidemiology, Department of Medicine, Penn State 7 College of Medicine, Hershey, PA, USA 8 bDepartment of Microbiology and Immunology, Penn State College of Medicine, 9 Hershey, PA, USA 10 11 Running Head: TNPO3-mediated nuclear entry of alpharetrovirus Gag 12 13 #Address correspondence to Leslie Parent, [email protected]. 14 *Present address: 15 Matthew S. Stake 16 UPMC Hanover Medical Group, Hanover, PA, USA 17 18 B.L.R and M.S.S. contributed equally to this work. 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.12.989608; this version posted April 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 21 Abstract 22 Retroviral Gag polyproteins orchestrate the assembly and release of nascent 23 virus particles from the plasma membranes of infected cells.
    [Show full text]
  • An Introduction to Viral Vectors: Safety Considerations
    An Introduction to Viral Vectors: Safety Considerations Dawn P. Wooley, Ph.D., SM(NRCM), RBP, CBSP Learning Objectives Recognize hazards associated with viral vectors in research and animal testing laboratories. Interpret viral vector modifications pertinent to risk assessment. Understand the difference between gene delivery vectors and viral research vectors. 2 Outline Introduction to Viral Vectors Retroviral & Lentiviral Vectors (+RNA virus) Adeno and Adeno-Assoc. Vectors (DNA virus) Novel (-)RNA virus vectors NIH Guidelines and Other Resources Conclusions 3 Increased Use of Viral Vectors in Research Difficulties in DNA delivery to mammalian cells <50% with traditional transfection methods Up to ~90% with viral vectors Increased knowledge about viral systems Commercialization has made viral vectors more accessible Many new genes identified and cloned (transgenes) Gene therapy 4 5 6 What is a Viral Vector? Viral Vector: A viral genome with deletions in some or all essential genes and possibly insertion of a transgene Plasmid: Small (~2-20 kbp) circular DNA molecules that replicates in bacterial cells independently of the host cell chromosome 7 Molecular Biology Essentials Flow of genetic information Nucleic acid polarity Infectivity of viral genomes Understanding cDNA cis- vs. trans-acting sequences cis (Latin) – on the same side trans (Latin) – across, over, through 8 Genetic flow & nucleic acid polarity Coding DNA Strand (+) 5' 3' 5' 3' 5' 3' 3' 5' Noncoding DNA Strand (-) mRNA (+) RT 3' 5' cDNA(-) Proteins (Copy DNA aka complementary DNA) 3' 5' 3' 5' 5' 3' mRNA (+) ds DNA in plasmid 9 Virology Essentials Replication-defective vs. infectious virus Helper virus vs. helper plasmids Pathogenesis Original disease Disease caused by transgene Mechanisms of cancer Insertional mutagenesis Transduction 10 Viral Vector Design and Production 1 + Vector Helper Cell 2 + Helper Constructs Vector 3 + + Vector Helper Constructs Note: These viruses are replication-defective but still infectious.
    [Show full text]
  • Reconstructing Human Evolution: Achievements, Challenges, and Opportunities
    Reconstructing human evolution: Achievements, challenges, and opportunities Bernard Wood1 George Washington University, Washington, DC 20052 This contribution reviews the evidence that has resolved the can then be used as the equivalent of a null hypothesis when branching structure of the higher primate part of the tree of life considering where to place newly discovered fossil great ape taxa. and the substantial body of fossil evidence for human evolution. It considers some of the problems faced by those who try to interpret The Human Fossil Record. The fossil record of the human clade the taxonomy and systematics of the human fossil record. How do consists of fossil evidence for modern humans plus that of all ex- you to tell an early human taxon from one in a closely related clade? tinct taxa that are hypothesized to be more closely related to How do you determine the number of taxa represented in the modern humans than to any other living taxon. Not so long ago human clade? How can homoplasy be recognized and factored into nearly all researchers were comfortable with according the human attempts to recover phylogeny? clade the status of a family, the Hominidae, with the nonhuman extant great apes (i.e., chimpanzees, bonobos, gorillas, and history | hominin orangutans) placed in a separate family, the Pongidae. But given the abundant evidence for a closer relationship between Pan and his contribution begins by considering two achievements rele- Homo than between Pan and Gorilla (see above), many research- Tvant to reconstructing human evolution: resolving the branch- ers have concluded that the human clade should be distinguished ing structure of the higher primate part of the tree of life and the beneath the level of the family in the Linnaean hierarchy.
    [Show full text]
  • Vmc 605: Systematic Animal Virology Retroviridae
    VMC 605: SYSTEMATIC ANIMAL VIROLOGY RETROVIRIDAE Dr Manoj Kumar Assistant Professor Department of Veterinary Microbiology Bihar Animal Sciences University Retro: from Latin retro,"backwards” - refers to the activity of reverse RETROVIRIDAE transcriptase and the transfer of genetic information from RNA to DNA. Retrovirus: A retrovirus is a lysogenic virus with an RNA genome that uses reverse transcriptase to make DNA for insertion into the host genome. Retroviruses • RNA viruses • single stranded, positive sense, enveloped, icosahedral. • Distinguished from all other RNA viruses by presence of an unusual enzyme, reverse transcriptase. Retroviruses • Retro = reversal • RNA is serving as a template for DNA synthesis. • One genera of veterinary interest • Alpharetrovirus • • Family - Retroviridae • Subfamily - Orthoretrovirinae [Ortho: from Greek orthos"straight" • Genus -. Alpharetrovirus • Genus - Betaretrovirus Family- • Genus - Gammaretrovirus • Genus - Deltaretrovirus Retroviridae • Genus - Lentivirus [ Lenti: from Latin lentus, "slow“ ]. • Genus - Epsilonretrovirus • Subfamily - Spumaretrovirinae • Genus - Spumavirus Retroviridae • Subfamily • Orthoretrovirinae • Genus • Alpharetrovirus Alpharetrovirus • Species • Avian leukosis virus(ALV) • Rous sarcoma virus (RSV) • Avian myeloblastosis virus (AMV) • Fujinami sarcoma virus (FuSV) • ALVs have been divided into 10 envelope subgroups - A , B, C, D, E, F, G, H, I & J based on • host range Avian • receptor interference patterns • neutralization by antibodies leukosis- • subgroup A to E viruses have been divided into two groups sarcoma • Noncytopathic (A, C, and E) • Cytopathic (B and D) virus (ALV) • Cytopathic ALVs can cause a transient cytotoxicity in 30- 40% of the infected cells 1. The viral envelope formed from host cell membrane; contains 72 spiked knobs. 2. These consist of a transmembrane protein TM (gp 41), which is linked to surface protein SU (gp 120) that binds to a cell receptor during infection.
    [Show full text]
  • Animal Models for HIV AIDS: a Comparative Review
    Comparative Medicine Vol 57, No 1 Copyright 2007 February 2007 by the American Association for Laboratory Animal Science Pages 33-43 Animal Models for HIV AIDS: A Comparative Review Debora S Stump and Sue VandeWoude* Human immunodeficiency virus (HIV), the causative agent for acquired immune deficiency syndrome, was described over 25 y ago. Since that time, much progress has been made in characterizing the pathogenesis, etiology, transmission, and disease syndromes resulting from this devastating pathogen. However, despite decades of study by many investigators, basic questions about HIV biology still remain, and an effective prophylactic vaccine has not been developed. This review provides an overview of the viruses related to HIV that have been used in experimental animal models to improve our knowledge of lentiviral disease. Viruses discussed are grouped as causing (1) nonlentiviral immunodeficiency-inducing diseases, (2) naturally occurring pathogenic infections, (3) experimentally induced lentiviral infections, and (4) nonpathogenic lentiviral infections. Each of these model types has provided unique contributions to our understanding of HIV disease; further, a comparative overview of these models both reinforces the unique attributes of each agent and provides a basis for describing elements of lentiviral disease that are similar across mammalian species. Abbreviations: AIDS, acquired immune deficiency syndrome; BIV, bovine immunodeficiency virus; CAEV, caprine arthritis-encephalitis virus; CRPRC, California Regional Primate Research
    [Show full text]
  • Hominid/Human Evolution
    Hominid/Human Evolution Geology 331 Paleontology Primate Classification- 1980’s Order Primates Suborder Prosimii: tarsiers and lemurs Suborder Anthropoidea: monkeys, apes, and hominids Superfamily Hominoidea Family Pongidae: great apes Family Hominidae: Homo and hominid ancestors Primate Classification – 2000’s Order Primates Suborder Prosimii: tarsiers and lemurs Suborder Anthropoidea: monkeys, apes, and hominids Superfamily Hominoidea Family Hylobatidae: gibbons Family Hominidae Subfamily Ponginae: orangutans Subfamily Homininae: gorillas, chimps, Homo and hominin ancestors % genetic similarity 96% 100% with humans 95% 98% 84% 58% 91% Prothero, 2007 Tarsiers, a primitive Primate (Prosimian) from Southeast Asia. Tarsier sanctuary, Philippines A Galago or bush baby, a primitive Primate (Prosimian) from Africa. A Slow Loris, a primitive Primate (Prosimian) from Southeast Asia. Check out the fingers. Lemurs, primitive Primates (Prosimians) from Madagascar. Monkeys, such as baboons, have tails and are not hominoids. Smallest Primate – Pygmy Marmoset, a New World monkey from Brazil Proconsul, the oldest hominoid, 18 MY Hominoids A lesser ape, the Gibbon from Southeast Asia, a primitive living hominoid similar to Proconsul. Male Female Hominoids The Orangutan, a Great Ape from Southeast Asia. Dogs: Hominoids best friend? Gorillas, Great Apes from Africa. Bipedal Gorilla! Gorilla enjoying social media Chimp Gorilla Chimpanzees, Great I’m cool Apes from Africa. Pan troglodytes Chimps are simple tool users Chimp Human Neoteny in Human Evolution.
    [Show full text]