United States Patent (10) Patent No.: US 8,957,148 B2 Addcox Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (10) Patent No.: US 8,957,148 B2 Addcox Et Al US008957.148B2 (12) United States Patent (10) Patent No.: US 8,957,148 B2 Addcox et al. (45) Date of Patent: Feb. 17, 2015 (54) POLYMER COMPOSITIONS HAVING 2008.0118749 A1 5/2008 Aubee et al. IMPROVED BARRIER PROPERTIES 2013/00591.03 A1* 3/2013 Yang et al. ................. 428,36.92 2013/0068134 A1* 3/2013 Yang et al. .................... 106,270 (71) Applicant: Chevron Phillips Chemical Company FOREIGN PATENT DOCUMENTS LP, The Woodlands, TX (US) EP 1152025 11, 2001 (72) Inventors: Jim H. Addcox, The Woodlands, TX EP 1152025 A1 11, 2001 (US); Guylaine St. Jean, Bartlesville, WO 9903673 A1 1, 1999 OK (US) (73) Assignee: Chevron Phillips Chemical Company OTHER PUBLICATIONS LP, The Woodlands, TX (US) Alphaplus material safety data sheet entitled "Alphaplus(R) C30+ c - Sales Specifications.” Jul. 2010, 1 page, Chevron Phillips Chemical (*) Notice: Subject to any disclaimer, the term of this Company LP patent is extended or adjusted under 35 Alphaplus material safety data sheetentitled “Alphaplus(R) Oxidized U.S.C. 154(b) by 24 days. C30+ Wax Sales Specifications,” Jul. 2010, 1 page, Chevron Phillips Chemical Company LP (21) Appl. No.: 13/753,132 Bird. R. Bvron,yron, et al., “Dvinamicsy of polympolvmeric liquids.'C Fluid 1-1. Mechanics, 1987, pp. 171-172 plus 8 pages including cover, publish (22) Filed: Jan. 29, 2013 ing, and contents information, vol. 1. Second Edition, John Wiley & O O Sons, Inc. (65) Prior Publication Data ChemWatch material safety data sheet entitled “Paraffin.” Nov. 14. US 2014/02126O7 A1 Jul. 31, 2014 2009, pp. 1-12. “Group notation revised in periodic table.” Feb. 4, 1985, pp. 26-27. (51) Int. Cl. C&EN. CSK5/0 (2006.01) Hieber, C. A., et al., “Shear-rate-dependence modeling of polymer COSL23/06 (2006.01) melt viscosity.” Polymer Engineering and Science, Jul. 1992, pp. 46F 3/54 (2006.01) 931-938, vol. 32, No. 14. C08.5/18 (2006.01) Hieber, C.A., et al., “Some correlations involving the shear viscosity COSL23/08 (2006.01) of polystyrene melts.” Rheologica Acta, 1989, pp. 321-332, vol. 28. COSL23/04 (2006.01) No. 4. (52) U.S. Cl. McNaught, Alan D. et al., "Compendium of chemical terminology.” CPC ........... C08L 23/06 (2013.01); A61F 13/51462 International Union of Pure and Applied Chemistry, Second edition, (2013.01); C08.J.5/18 (2013.01); C08L 23/08 1997, 1 page cover and publishing information, Wiley-Blackwell. (2013.01); C08L 23/04 (2013.01); C08L STRUKTOL brochure entitled “STRUKTOLOR Montan Wax OP.” 2203/16 (2013.01) Oct. 4, 2000, 1 page. USPC ........................................... 524/487; 524/587 STRUKTOL technical data sheet entitled “STRUKTOL(R) TR016.” (58) Field of Classification Search May 4, 2005, 2 pages, Struktol Company of America. USPC .......................................................... 524/487 International Search Report for PCT/US2014/01 1972 dated Jan. 4. See application file for complete search history. 2014. Foreign communication from a related counterpart application— (56) References Cited International Search Report, PCT/US2014/01 1972, Apr. 1, 2014, 3 pageS. U.S. PATENT DOCUMENTS * cited by examiner 3.248,179 A 4, 1966 Norwood 4,501,885 A 2f1985 Sherk et al. 4,588,790 A 5/1986 Jenkins, III et al. 5,141,801 A 8, 1992 Takeshita et al. Primary Examiner — Hui Chin 5,155,160 A * 10/1992 Yeh et al. ...................... 524/487 (74) Attorney, Agent, or Firm — Conley Rose, P.C.; Rodney 5,352,749 A 10, 1994 DeChellis et al. 5,436,304 A 7, 1995 Griffin et al. B. Carroll; Cheryl L. Huseman 5,455,314 A 10, 1995 Burns et al. 5,565,175 A 10/1996 Hottovy et al. 5,575,979 A 11/1996 Hanson (57) ABSTRACT 6,033,771 A * 3/2000 Heffelfinger ............... 428,320.2 6,239,235 B1 5/2001 Hottovy et al. A composition comprising a polymer and a wax wherein the 6,262,191 B1 7/2001 Hottovy et al. 6,312,825 B1 1 1/2001 Su et al. polymer has a melt index of from about 0.5 g/10 minto about 6,528,572 B1 3/2003 Patel et al. 4 g/10 min, a density of equal to or greater than about 0.945 6,833,415 B2 12/2004 Kendricket al. g/cc which when formed into a film displays a moisture vapor 7,064.225 B2 6, 2006 Thornet al. transmission rate of less than about 0.55g-mil/100 in in 24 7,222,886 B2 5, 2007 Kim et al. 7,517,939 B2 4/2009 Yang et al. hours as determined in accordance with ASTM F 1249. 8, 188, 190 B2 5/2012 Vignola 8.436,085 B2 5, 2013 Borke et al. 2008, OOO391.0 A1 1/2008 Hughes et al. 19 Claims, 6 Drawing Sheets U.S. Patent Feb. 17, 2015 Sheet 1 of 6 US 8,957,148 B2 Figure 1A U.S. Patent Feb. 17, 2015 Sheet 2 of 6 US 8,957,148 B2 Figure 1B U.S. Patent Feb. 17, 2015 Sheet 3 of 6 US 8,957,148 B2 Figure 1C s c s s s w U.S. Patent Feb. 17, 2015 Sheet 4 of 6 US 8,957,148 B2 Figure 1D res s g s Es U.S. Patent Feb. 17, 2015 Sheet 5 of 6 US 8,957,148 B2 Figure 2 Dynastic let Wiscosity vs. Frequency Af -- . --- k--- Ailt, 4.5% ----- All-2, 4.5% ---W-A1-3, 4.5% ----- Al-4, 2% t . - Ai-ii, 4.5% s t " s SE e go Fretreicy radis U.S. Patent Feb. 17, 2015 Sheet 6 of 6 US 8,957,148 B2 Figure 3 ,3 -------------------------------------------------------------------------------------------------------------------------------------------------------------- : A8 A8-2 A8-3 'A- : : , --- - - - - - - - - - - - - - -, - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ----, US 8,957,148 B2 1. 2 POLYMER COMPOSITIONS HAVING FIG. 2 is a plot of the dynamic melt viscosity as a function IMPROVED BARRIER PROPERTIES of frequency for the samples from example 1. FIG.3 is a plot of the moisture vapor transmission rate as a TECHNICAL FIELD function of the percent additive for films formed from the polymer samples of example 1. The present disclosure relates to polymeric compositions, more specifically polyethylene (PE) compositions, and DETAILED DESCRIPTION articles made from same. To define more clearly the terms used herein, the following BACKGROUND 10 definitions are provided. Unless otherwise indicated, the fol lowing definitions are applicable to this disclosure. If a term Polyolefins are plastic materials useful for making a wide is used in this disclosure but is not specifically defined herein, variety of valued products due to their combination of stiff the definition from the IUPAC Compendium of Chemical ness, ductility, barrier properties, temperature resistance, Terminology, 2" Ed (1997) can be applied, as long as that 15 definition does not conflict with any other disclosure or defi optical properties, availability, and low cost. One of the most nition applied herein, or render indefinite or non-enabled any valued products is plastic films. In particular, PE is the one of claim to which that definition is applied. To the extent that any the largest Volume polymers consumed in the world. It is a definition or usage provided by any document incorporated versatile polymer that offers high performance relative to herein by reference conflicts with the definition or usage other polymers and alternative materials such as glass, metal provided herein, the definition or usage provided herein con or paper. Plastic films such as PE films are mostly used in trols. packaging applications but they also find utility in the agri Groups of elements of the table are indicated using the cultural, medical, and engineering fields. numbering scheme indicated in the version of the periodic PE films are manufactured in a variety of grades that are table of elements published in Chemical and Engineering usually differentiated by the polymer density such that PE 25 News, 63(5), 27, 1985. In some instances, a group of elements films can be designated for example, low density polyethyl can be indicated using a common name assigned to the group; ene (LDPE), linear low density polyethylene (LLDPE), for example alkali earth metals (or alkali metals) for Group 1 medium density polyethylene (MDPE), and high density elements, alkaline earth metals (or alkaline metals) for Group polyethylene (HDPE), wherein each density range has a 2 elements, transition metals for Group 3-12 elements, and unique combination of properties making it suitable for a 30 halogens for Group 17 elements. particular application. Regarding claim transitional terms or phrases, the transi Despite the many positive attributes of PE, the film product tional term "comprising, which is synonymous with "includ remains permeable to gases Such as oxygen or carbon dioxide ing.” “containing.” “having,” or “characterized by is inclu and/or moisture (e.g., water). Thus, it would be desirable to sive or open-ended and does not exclude additional, unrecited develop a PE film product exhibiting improved bather prop 35 elements or method steps. The transitional phrase “consisting erties. of excludes any element, step, or ingredient not specified in the claim. The transitional phrase “consisting essentially of SUMMARY limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel Disclosed herein is a composition comprising a polymer 40 characteristic(s) of the claimed invention. A "consisting and a wax wherein the polymer has a melt index offrom about essentially of claim occupies a middle ground between 0.5 g/10 minto about 4 g/10 min, a density of equal to or closed claims that are written in a "consisting of format and greater than about 0.945 g/cc which when formed into a film fully open claims that are drafted in a “comprising format.
Recommended publications
  • US5523508.Pdf
    |||||I|| US005523508A United States Patent (19) 11 Patent Number: 5,523,508 Krawczyk et al. 45) Date of Patent: Jun. 4, 1996 (54) PROCESS FOR LINEAR ALPHA-OLEFIN 4,689,437 8/1987 Murray ... ... 585/526 PRODUCTION: ELMINATING WAX 4,716,138 12/1987 Murray ... ... 502/117 PRECIPITATION 4,822,915 4/1989 Murray ...................................... 568/13 4,879,428 11/1989 Harandi et al. ......................... 585/533 75) Inventors: Mark A. Krawczyk, Chicago; Richard OTHER PUBLICATIONS E. Marinangeli; R. Joe Lawson, both of Arlington Heights, all of Ill. Ullman's Encyclopedia of Industrial Chemistry, 5th Ed., V. A13, pp. 245 et. ff., VCH (1989). (month unknown). 73) Assignee: UOP, Des Plaines, Ill. Primary Examiner–Shrive Beck Assistant Examiner-Timothy H. Meeks (21) Appl. No.: 366,153 Attorney, Agent, or Firm-Thomas K. McBride; Eugene I. 22 Filed: Dec. 29, 1994 Snyder (51} int. Cl. ............................................. CO7C 2/24 57 ABSTRACT 52 U.S. Cl. ... - - 585/523; 585/315; 585/316; Linear alpha-olefin formation via oligomerization of ethyl 585/329; 585/522; 585/526; 585/527 ene using transition metal catalysis leads to a Schultz-Flory 58) Field of Search ..................................... 585/315, 316, distribution of oligomers. At modest temperatures formation 585/329, 522, 523, 526, 527 of heavy oligomers which are waxy solids only partly soluble in the LAO product mix causes reactor plugging and I56) References Cited curtailing the time of continuous runs. Recycling a portion U.S. PATENT DOCUMENTS of a lighter oligomeric fraction obviates this problem and 3,641,191 2/1972 Fernald et al.................... 260/683.150 permits runs uninterrupted by solids formation.
    [Show full text]
  • Alfa Olefins Cas N
    OECD SIDS ALFA OLEFINS FOREWORD INTRODUCTION ALFA OLEFINS CAS N°:592-41-6, 111-66-0, 872-05-9, 112-41-4, 1120-36-1 UNEP PUBLICATIONS 1 OECD SIDS ALFA OLEFINS SIDS Initial Assessment Report For 11th SIAM (Orlando, Florida, United States 1/01) Chemical Name: 1-hexene Chemical Name: 1-octene CAS No.: 592-41-6 CAS No.: 111-66-0 Chemical Name: 1-decene Chemical Name: 1-dodecene CAS No.: 872-05-9 CAS No.: 112-41-4 Chemical Name: 1-tetradecene CAS No.: 1120-36-1 Sponsor Country: United States National SIDS Contract Point in Sponsor Country: United States: Dr. Oscar Hernandez Environmental Protection Agency OPPT/RAD (7403) 401 M Street, S.W. Washington, DC 20460 Sponsor Country: Finland (for 1-decene) National SIDS Contact Point in Sponsor Country: Ms. Jaana Heiskanen Finnish Environment Agency Chemicals Division P.O. Box 140 00251 Helsinki HISTORY: SIDS Dossier and Testing Plan were reviewed at the SIDS Review Meeting or in SIDS Review Process on October 1993. The following SIDS Testing Plan was agreed: No testing ( ) Testing (x) Combined reproductive/developmental on 1-hexene, combined repeat dose/reproductive/developmental on 1-tetradecene and acute fish, daphnid and algae on 1- tetradecene. COMMENTS: The following comments were made at SIAM 6 and have been incorporated in this version of the SIAR: 2 UNEP PUBLICATIONS OECD SIDS ALFA OLEFINS 1. The use of QSAR calculations for aquatic toxicity, 2. More quantitative assessment of effects; and 3. Provide more details for each endpoint. The following comments were made at SIAM 6, but were not incorporated into the SIAR for the reasons provided: 1.
    [Show full text]
  • Wide Range Linear Alpha Olefin Processes
    IHS Chemical Process Economics Program Consolidated Report CR001 Wide Range Linear Alpha Olefin Processes By Marianna Asaro July 2014 ihs.com/chemical IHS Chemical Process Economics Program Consolidated Report | CR001 IHS Chemical agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither IHS Chemical nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold IHS Chemical, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by IHS Chemical pursuant to this agreement. For detailed marketing data and information, the reader is referred to one of the IHS Chemical programs specializing in marketing research. The IHS CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced throughout the world. In addition the IHS DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Europe, East Asia, China, India, South & Central America, the Middle East & Africa, Canada, and Mexico. July 2014 ii © 2014 IHS IHS Chemical Process Economics Program Consolidated Report | CR001 PEP Report CR001 Wide Range Linear Alpha Olefin Processes By Marianna Asaro July 2014 Abstract This report consolidates and updates the Process Economics Program’s technical and economic analyses of wide-range linear alpha olefins (LAO) manufacturing technologies since PEP first reported on the subject in the 1960s.
    [Show full text]
  • United States Patent (19) 11 3,968,133 Knifton (45) July 6, 1976
    United States Patent (19) 11 3,968,133 Knifton (45) July 6, 1976 54 CARBOXYLATION PROCESS FOR 3,723,486 3/1973 Kajimoto...................... 260/410.9 R PREPARING LINEAR FATTY ACDS OR 3,776,929 12/1973 Mrowca....................... 260/410.9 R ESTERS 3,819,669 6/1974 Knifton........................ 260/410.9 R 3,832,391 8/1974 Parshall........................ 260/410.9 R (75) Inventor: John F. Knifton, Poughouag, N.Y. Primary Examiner-Patrick P. Garvin 73 Assignee: Texaco Inc., New York, N.Y. Assistant Examiner-John F. Niebling 22) Filed: Nov. 25, 1974 Attorney, Agent, or Firm-T. H. Whaley; C. G. Ries; (21) Appl. No.: 526,867 Bernard Marlowe 52) U.S. C. ......................... 260/410.9 R; 260/413; 57 ABSTRACT 260/497 A; 260/488 K; 260/491; 260/.532; This invention concerns a process for preparing linear 260/533 A fatty (carboxylic) acids and esters from the reaction of 51 Int. Cl’............................................ C11C 3/02 olefins, alcohols (or water) and carbon monoxide. The (58) Field of Search......... 260/410.9 R, 413, 497 A, process is catalyzed by catalytic amounts of disper 260/488 K, 491, 532,533 A sions of ligand-stabilized, palladium(II) halide com plexes, in quaternary ammonium, phosphonium or ar 56 References Cited sonium salts of trihalostannate(II) or trihaloger UNITED STATES PATENTS manate(II). These empirically selected palladium cata 3,437,676 4/1969 Kutepow...................... 260/410.9 R lysts can be recycled with fresh olefin feed several 3,530, 155 9/1970 Fenton......................... 260/410.9 R times before substantial loss of catalytic activity is 3,530,168 9/1970 Biale.....
    [Show full text]
  • Process Economics Program (PEP): Wide Range Linear Alpha Olefin Processes & On-Purpose Linear Alpha Olefin Processes PEP CR001 & CR002 Prospectus
    IHS CHEMICAL Process Economics Program (PEP): Wide Range Linear Alpha Olefin Processes & On-Purpose Linear Alpha Olefin Processes PEP CR001 & CR002 Prospectus IHS CHEMICAL PROSPECTUS PEP CR001 & CR002 Contents Contents ..................................................................................................................................... 2 Introduction ................................................................................................................................ 3 Abstract ...................................................................................................................................... 5 Key Questions Addressed in the Reports .................................................................................. 6 Deliverables ............................................................................................................................... 6 Process Technologies Reviewed in CR001 & CR002 ................................................................ 6 Table of Contents ....................................................................................................................... 7 CR001 - Wide Range Linear Alpha Olefin Processes ................................................................ 7 CR002 - On-Purpose Linear Alpha Olefin Processes .............................................................. 10 Meet the Author........................................................................................................................ 15 About the IHS Chemical Process
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,787,576 B2 Kiss Et Al
    USOO6787576B2 (12) United States Patent (10) Patent No.: US 6,787,576 B2 Kiss et al. (45) Date of Patent: Sep. 7, 2004 (54) LINEAR ALPHAOLEFINS FROM NATURAL 5,210,060 A 5/1993 Radlowski et al. ......... 502/202 GAS-DERVED SYNTHESIS GAS OVERA 5.248,701 A 9/1993 Soled et al. ................ 518/700 NONSHIFTING COBALT CATALYST 6,166.262 A 12/2000 Connor ....................... 568/460 (75) Inventors: Gabor Kiss, Hampton, NJ (US); Rocco FOREIGN PATENT DOCUMENTS Anthony Fiato, Basking Ridge, NJ GB 21696.14 A 7/1986 ............. CO7C/1/04 (US); Frank Hershkowitz, Liberty JP 61O18433 A 1/1986 ............ B01J/21/16 Corner, NJ (US); David Chester Long, NL 7712952 A 5/1979 ............ BO1J/23/74 Ashburn, VA (US) OTHER PUBLICATIONS (73) Assignee: ExxonMobil Research and R. Madon et al., “Primary and Secondary Reaction Path Engineering Company, Annandale, NJ ways in Ruthenium-Catalyzed Hydrocarbon Synthesis”, (US) The Journal of Physical Chemistry, 1991, 95, pp. 7795-7804. (*) Notice: Subject to any disclaimer, the term of this E. Iglesia et al., “Transport-Enhanced C-Olefin Readsorp patent is extended or adjusted under 35 tion Pathways in Ru-Catalyzed Hydrocarbon Synthesis', U.S.C. 154(b) by 0 days. Journal of Catalysis, vol. 129, pp. 238-256 (1991). R. J. Madon et al., “Non-Flory Product Distributions in (21) Appl. No.: 10/330,860 Fischer-Tropsch Synthesis Catalyzed by Ruthenium, Cobalt, and Iron”, ACS Symposium Series Selectivity in (22) Filed: Dec. 27, 2002 Catalysis, Editors: M. E. Davis and S. L. Suib, New York, (65) Prior Publication Data Aug. 25–30, 1991.
    [Show full text]
  • Linear Alpha-Olefins (681.5030)
    IHS Chemical Chemical Economics Handbook Linear alpha-Olefins (681.5030) by Elvira O. Camara Greiner with Yoshio Inoguchi Sample Report from 2010 November 2010 ihs.com/chemical November 2010 LINEAR ALPHA-OLEFINS Olefins 681.5030 B Page 2 The information provided in this publication has been obtained from a variety of sources which SRI Consulting believes to be reliable. SRI Consulting makes no warranties as to the accuracy completeness or correctness of the information in this publication. Consequently SRI Consulting will not be liable for any technical inaccuracies typographical errors or omissions contained in this publication. This publication is provided without warranties of any kind either express or implied including but not limited to implied warranties of merchantability fitness for a particular purpose or non-infringement. IN NO EVENT WILL SRI CONSULTING BE LIABLE FOR ANY INCIDENTAL CONSEQUENTIAL OR INDIRECT DAMAGES (INCLUDING BUT NOT LIMITED TO DAMAGES FOR LOSS OF PROFITS BUSINESS INTERRUPTION OR THE LIKE) ARISING OUT OF THE USE OF THIS PUBLICATION EVEN IF IT WAS NOTIFIED ABOUT THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES THE ABOVE LIMITATION MAY NOT APPLY TO YOU. IN SUCH STATES SRI CONSULTING’S LIABILITY IS LIMITED TO THE MAXIMUM EXTENT PERMITTED BY SUCH LAW. Certain statements in this publication are projections or other forward-looking statements. Any such statements contained herein are based upon SRI Consulting’s current knowledge and assumptions about future events including without limitation anticipated levels of global demand and supply expected costs trade patterns and general economic political and marketing conditions.
    [Show full text]
  • Metallocene Polyalpha Olefins (Mpaos) Process Economics Program Report 296
    ` IHS CHEMICAL Metallocene Polyalpha Olefins (mPAOs) Process Economics Program Report 296 December 2016 ihs.com PEP Report 296 Metallocene Polyalpha Olefins (mPAOs) Gajendra Kumar Principal Analyst Tony Pavone Sr. Principal Analyst Downloaded 20 December 2016 10:10 AM UTC by Ellen Blue, IHS INC ([email protected]) IHS Chemical | PEP Report 296 Metallocene Polyalpha Olefins (mPAOs) PEP Report 296 Metallocene Polyalpha Olefins (mPAOs) Gajendra Kumar, Principal Analyst Tony Pavone, Sr. Principal Analyst Abstract Polyalpha olefins (PAOs) represent a family of primarily decene-1 oligomers (mostly trimers) that have found wide use as a fully synthetic lubricant base oil component. PAOs provide superior lubricant properties in viscosity, viscosity index, cold cranking capability, emulsion resistance, lower pour point, lubricity, friction reduction, low volatility in use, higher flash temperature, and thermal and oxidative stability. The downside is lower solvency and biodegradation, poorer seal swell, and higher cost. The American Petroleum Institute (API) designates PAO components as Group-4 fully synthetic basestock. Periodic shortages in decene-1 LAO (linear alpha olefin) feedstock availability have forced PAO producers to occasionally blend C10 with both lighter (C8) and heavier (C12) LAO feedstocks to produce PAO with adequate physical and performance properties. The oligomerization process is not very selective, and produces a reactor product containing LAO dimers, trimers, tetramers, and pentamers, plus unreacted feedstock. While originally developed to produce fully synthetic basestock for conventional motor oil requiring 4 centistoke (cSt) viscosity, additional product grades with different viscosities have been supplemented with newer PAO components of much higher viscosity (100+ cSt) that have found widespread use as blend stock components in heavy duty gear boxes, transfer cases, and transmissions, such as those found in wind turbine generators.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,961,775 B2 Joshi Et Al
    US008961775B2 (12) United States Patent (10) Patent No.: US 8,961,775 B2 Joshi et al. (45) Date of Patent: Feb. 24, 2015 (54) HIGH PRODUCTIVITY KOLBE REACTION (2013.01): CI0G 3/42 (2013.01): CI0G 3/44 PROCESS FORTRANSFORMATION OF (2013.01): CI0G 3/48 (2013.01); C25B 3/10 FATTY ACDS DERVED FROM PLANT OIL (2013.01): CI0G 45/58 (2013.01): CI0G 45/64 AND ANIMAL EAT (2013.01); Y02T 50/678 (2013.01); Y02E 50/13 (2013.01); C07C 2521/04 (2013.01); C07C (71) Applicant: Altranex Corporation, Scarborough 2521/08 (2013.01); C07C2523/28 (2013.01); (CA) (Continued) (72) Inventors: Chandrashekhar H. Joshi, Kingston (58) Field of Classification Search (CA); Graham Thomas Thornton USPC ............................... 585/1: 205/413, 415, 462 Gibson, Kingston (CA); Dzmitry See application file for complete search history. Malevich, Kingston (CA); Michael (56) References Cited Glenn Horner, West Roxbury, MA (US) U.S. PATENT DOCUMENTS (73) Assignee: Altranex Corporation (CA) 4,018,844 A 4, 1977 MereSZ et al. (*) Notice: Subject to any disclaimer, the term of this 7,198,710 B2 4/2007 Miller et al. patent is extended or adjusted under 35 (Continued) U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 14/331,390 B.C.L. Weedon, "Anodic Syntheses With Carboxylic Acids,” Quar (22) Filed: Jul. 15, 2014 terly Reviews of Chemical Society, 1952, vol. 6 pp. 380-398. (Continued) (65) Prior Publication Data US 2014/O323784 A1 Oct. 30, 2014 Primary Examiner — Ellen McAvoy (74) Attorney, Agent, or Firm — American Patent Agency Related U.S.
    [Show full text]
  • Selective Production of Bio-Based Linear Alpha-Olefin from Wasted
    polymers Article Selective Production of Bio-Based Linear Alpha-Olefin from Wasted Fatty Alcohol on Al2O3 for Bio-Based Chemicals Hye-Jin Lee 1,2, Il-Ho Choi 1 , Seung-Wook Kim 2 and Kyung-Ran Hwang 1,* 1 Energy Resource Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon 34129, Korea; [email protected] (H.-J.L.); [email protected] (I.-H.C.) 2 Department of Chemical and Biological Engineering, Korea University, Seoul 136701, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-42-860-3504 Abstract: The catalytic dehydration of a bio-based fatty alcohol was performed using Al2O3 prepared by solvothermal synthesis for selective production of long-chain linear-alpha-olefins (LAO). The effect of the synthesis temperature of alumina precursors on the dehydration of 1-octadecanol (C18H38O) was examined based on the textural properties and Lewis acid–base properties of the catalysts. Amorphous alumina synthesized at 325 ◦C showed the highest surface area (233.07 m2/g) and total pore volume (1.237 cm3/g) among the catalysts and the best dehydration results: 93% conversion, 62% selectivity of 1-octadecene (C18H36), and 89% LAO purity. This was attributed to the increased Al/O ratio and atomic concentration of surface O in alumina, which were important factors in the catalytic dehydration of 1-octadecanol through the synergistic catalysis of acid–base pairs. The produced bio-based LAO can be key intermediates for synthesis of oxo alcohols and poly-alpha-olefins, as alternatives to petroleum-based LAO to achieve carbon neutrality in chemical industry.
    [Show full text]
  • Light Linear Alpha Olefin Market Study
    IHS CHEMICAL Light Linear Alpha Olefin Market Study Special Report Prospectus IHS CHEMICAL Contents Contents ..................................................................................................................................... 2 Introduction ................................................................................................................................ 3 Study Scope ............................................................................................................................... 5 Key Questions Addressed in the Study ...................................................................................... 7 Deliverables ............................................................................................................................... 8 Proposed Table of Contents ...................................................................................................... 9 Methodology ............................................................................................................................ 11 Study Team .............................................................................................................................. 15 Qualifications............................................................................................................................ 18 About IHS Chemical ................................................................................................................. 21 About IHS ................................................................................................................................
    [Show full text]
  • Light Linear Alpha Olefin Market Study
    Light Linear Alpha Olefin Market Study Chemical Strategic Report Prospectus Light Linear Alpha Olefin Market Study Light Linear Alpha Ole n Market Study Light Linear Alpha Ole n Market Study Contents Introduction The linear alpha olefin (“LAO”) business is complex, serving a broad range of industries and Introduction ............................................................................................. 3 applications therein from commodity plastics to small volume fine and performance chemicals. Study Scope ............................................................................................. 5 A simplified map of the LAO value chain is given below: Key Questions Addressed in the Study ............................................... 7 Deliverables .............................................................................................. 8 Alpha Olefins Supply Chain Proposed Table of Contents ................................................................. 9 Full Range Ethylene Polybutene-1 Processes Butene-1 Methodology .......................................................................................... 11 PE/PP Hexene-1 Study Team ............................................................................................ 15 Comnomer Dimerization Plasticizer Alcohols Qualifications ......................................................................................... 18 Octene-1 Polyolefin Elastomers Trimerization About Chemical at IHS Markit ............................................................. 21
    [Show full text]