Assessment of Multiple Cardiocentesis in Ball Pythons (<I

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of Multiple Cardiocentesis in Ball Pythons (<I Assessment of Multiple Cardiocentesis in Ball Pythons (Python regius) RAMIRO ISAZA, DVM, MS, DIPLOMATE, ACZM,1,* GORDON A. ANDREWS, DVM, PHD,2 DIPLOMATE, ACVP, ROB L. COKE, DVM,1 AND ROBERT P. HUNTER, MS, PHD3 This study evaluated the gross and microscopic effects of serial blood collection from six ball pythons (Python regius) by using cardiocentesis. We collected 39 blood samples from each snake over a 120-day period. Cardiocentesis was performed on manually restrained snakes, with each sample requiring ∼15 sec to collect. No clinically apparent complications were noted in any of the snakes after the cardiocentesis procedures, and all snakes survived until they were euthanized 73 days after the last blood sample. Minimal gross lesions were noted at necropsy; faint brown pigmentation of the pericardium was present in five of six snakes, and three snakes had ∼0.5 ml dark pigmented fluid in the pericardial space. One snake had a small, organized hematoma in the pericardial space. Microscopic findings were limited to moderate and regularly arranged collagen fibrosis and focal thickening of the epicardium. The pericardial sac in all snakes had a mild infiltrate of hemosiderin-laden macrophages and small numbers of heterophils. The results suggest that serial cardiocentesis is well tolerated in ball pythons. During the evaluation of the protocol for a pharmacokinetic study in Materials and Methods snakes (1, 2), our Institutional Animal Care and Use Committee Animals. Six ball pythons (two male and four female; weight, 0.81 (IACUC) questioned the use of multiple cardiocentesis as a safe and to 0.85 kg) were used for this study. The snakes were housed indi- humane method of collection of multiple blood samples from con- vidually in 114-L aquaria with newspaper substrate and screen tops. scious snakes. When studies are proposed that include the collection of The snakes had ad libitum access to a hide-box and water bowl. The multiple cardiocentesis samples in mammals, legitimate questions of cages were housed in a thermostatically controlled room at 30°C cardiac damage, risks of the procedure, and stress and pain are often with a 12:12-h light:dark cycle. Physical examinations were performed raised. Similar concerns can be applied to experiments involving snakes, prior to the start of the study, after every cardiocentesis, and daily but to the authors knowlege no studies that assess the effects of mul- during the rest phase prior to euthanasia. This study was part of a tiple cardiocentesis in snakes had been published previously. Members pharmacokinetic and drug metabolism study approved by the IACUC of our IACUC suggested that after the conclusion of the studies, an of Kansas State University (1, 2). assessment of the effects of multiple cardiocentesis in snakes would help Cardiocentesis procedure. Over a 120-day period, we collected address these concerns and provide valuable information. 39 blood samples from each snake. Cardiocentesis was performed Superficial blood vessels in snakes are neither visibly apparent on manually restrained snakes, with each sample taking approxi- nor easy to palpate. This situation provides a challenge to the phle- mately 15 sec to collect. The location of the heart was estimated by botomist that must collect multiple blood samples from snakes in measuring 20% to 40% the length of the body from the tip of the an experimental study. Of the described methods of collecting per- rostrum. The exact location of the heart was then identified by ei- cutaneous blood samples from snakes, cardiocentesis is described as ther direct observation of beating through the ventral scutes, the method of choice in seven reptile medicine textbooks (3-9). In palpation of the heart within the ceolomic cavity, or detection of contrast, the authors of two articles have claimed that cardiocentesis blood flow by using Doppler ultrasonography. Prior to the start of sampling in snakes is stressful and dangerous (10, 11). None of the the study, the location of the heart was marked on each snake to references commented on the chronic effects of multiple help with subsequent blood collection. cardiocentesis. An assistant manually restrained the snakes in dorsal recumbency, A review of published pharmacokinetic drug studies in snakes found and the skin was aseptically cleaned with repeated applications of both that 9 of 11 used multiple cardiocentesis as the method of collecting 2% chlorhexidene solution and 10% isopropyl alcohol. Because the blood samples (12-22). In these studies, all cardiocentesis were per- heart is movable within the ceolomic cavity, the sample-taker placed formed on manually restrained, nonanesthetized, or sedated snakes, a thumb caudal to the heart and gently advanced it forward. The index and each snake underwent 4 to 14 (mean, 8) cardiocentesis blood finger of the same hand then was placed cranial to the heart so that the collections. None of these studies reported morbidity or mortality heart was further fixed in position. A 22 or 25 gauge needle attached to data from the blood collection technique, and no follow-up observa- a 3-ml syringe was placed between and under ventral scutes located a tions or histopathologic assessments of the hearts were reported. few millimeters cranial to the thumb and over the ventricle of the The purpose of the present study was to observe a group of ball heart. The needle was advanced cranially and dorsally until it en- pythons undergoing multiple cardiocentesis procedures during a ter- tered the ventral aspect of the ventricle. Blood usually entered the minal pharmacokinetic study and then to document the gross and syringe slowly, often only during diastole of the heart. Approximately microscopic long-term effects of multiple cardiocentesis in these animals. 0.75 ml of blood was collected for each sample. After the procedure the snakes were returned to their cages for observation. Department of Clinical Sciences,1 Department of Diagnostic Medicine and Pathobiology,2 Necropsy and histological preparations. The snakes were and Zoological Pharmacology Laboratory, Department of Anatomy and Physiology,3 Col- euthanized on day 120 of the study (73 days after the last lege of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506 cardiocentesis sample). All the snakes were submitted for complete *Corresponding author: Ramiro Isaza, DVM, MS, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, P.O. Box 100126, University of Florida, gross necropsy; three of the six snakes were unavailable for histo- Gainesville, Florida 32610-0126 pathologic evaluation. The heart, epicardium, and pericardial sac were Volume 43, No. 6 / November 2004 CONTEMPORARY TOPICS © 2004 by the American Association for Laboratory Animal Science 35 Figure 1. Photograph of a ball python heart after collection of 39 cardiocentesis blood samples over a 120-day period. P, pericardium; V, ventricle. placed into buffered formalin and submitted for routine histopatho- logical evaluation. The hearts from three ball pythons of similar size and age that had no cardiocentesis performed were examined as nor- mal control tissues. Tissues submitted for microscopic examination were formalin-fixed (10% buffered neutral formalin), routinely processed, sectioned at 4µm, and stained with hematoxylin and eosin. Sections also were stained with Massons trichrome stain to evaluate the degree of fibro- sis present in the myocardium, epicardium, and pericardial sac. Results All snakes were normal upon physical examination prior to the beginning of the study, they remained clinically normal throughout the study, and all snakes survived to the end of the study. No clini- cally apparent complications were noted in any of the snakes after the cardiocentesis procedures. Figure 2. Photomicrographs of the heart from an unmanipulated control Gross lesions in the six snakes were confined to the heart. Abnor- (A) and an experimental (B) ball python after collection of 39 cardiocentesis malities included faint brown pigmentation of the pericardium in blood samples over a 120-day period. E, epicardium; M, myocardium. five of the snakes, and the presence of approximately 0.1 ml of dark Massons trichrome stain; magnification, 10×. pigmented fluid in the pericardial space in three of the snakes (Fig. 1). Focal adhesions of the pericardium to the ventricles were found in two of the snakes. A small, well-organized hematoma was found blood cells, and foci of crystallized hemoglobin pigment surrounded in the pericardial space of one snake. by multinucleated giant-cell macrophages suspended in fine fibrous Histologically, the pericardial sac in the control snakes was a thin connective tissue. membrane composed of parallel arrays of collagen with small num- In the experimental snakes the filamentous attachments between the bers of fibroblasts and lined by a single layer of mesothelial cells. The epicardium and myocardium were more pronounced, wider, and com- pericardial sac of the three experimental snakes contained a mild in- posed of more mature collagen than those in the control animals. filtrate of hemosiderin-laden macrophages and small numbers of Frequently fibrosis extending into the myocardium was present at the heterophils. No differences in thickness or amount of collagen in the point of attachment of these filaments. Neither the myocardium nor pericardial sacs were seen between the control and experimental snakes. endocardium differed histologically between the two groups of snakes. The epicardium
Recommended publications
  • Investigations Into the Presence of Nidoviruses in Pythons Silvia Blahak1, Maria Jenckel2,3, Dirk Höper2, Martin Beer2, Bernd Hoffmann2 and Kore Schlottau2*
    Blahak et al. Virology Journal (2020) 17:6 https://doi.org/10.1186/s12985-020-1279-5 RESEARCH Open Access Investigations into the presence of nidoviruses in pythons Silvia Blahak1, Maria Jenckel2,3, Dirk Höper2, Martin Beer2, Bernd Hoffmann2 and Kore Schlottau2* Abstract Background: Pneumonia and stomatitis represent severe and often fatal diseases in different captive snakes. Apart from bacterial infections, paramyxo-, adeno-, reo- and arenaviruses cause these diseases. In 2014, new viruses emerged as the cause of pneumonia in pythons. In a few publications, nidoviruses have been reported in association with pneumonia in ball pythons and a tiger python. The viruses were found using new sequencing methods from the organ tissue of dead animals. Methods: Severe pneumonia and stomatitis resulted in a high mortality rate in a captive breeding collection of green tree pythons. Unbiased deep sequencing lead to the detection of nidoviral sequences. A developed RT-qPCR was used to confirm the metagenome results and to determine the importance of this virus. A total of 1554 different boid snakes, including animals suffering from respiratory diseases as well as healthy controls, were screened for nidoviruses. Furthermore, in addition to two full-length sequences, partial sequences were generated from different snake species. Results: The assembled full-length snake nidovirus genomes share only an overall genome sequence identity of less than 66.9% to other published snake nidoviruses and new partial sequences vary between 99.89 and 79.4%. Highest viral loads were detected in lung samples. The snake nidovirus was not only present in diseased animals, but also in snakes showing no typical clinical signs.
    [Show full text]
  • P. 1 AC27 Inf. 7 (English Only / Únicamente En Inglés / Seulement
    AC27 Inf. 7 (English only / únicamente en inglés / seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Twenty-seventh meeting of the Animals Committee Veracruz (Mexico), 28 April – 3 May 2014 Species trade and conservation IUCN RED LIST ASSESSMENTS OF ASIAN SNAKE SPECIES [DECISION 16.104] 1. The attached information document has been submitted by IUCN (International Union for Conservation of * Nature) . It related to agenda item 19. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat or the United Nations Environment Programme concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. AC27 Inf. 7 – p. 1 Global Species Programme Tel. +44 (0) 1223 277 966 219c Huntingdon Road Fax +44 (0) 1223 277 845 Cambridge CB3 ODL www.iucn.org United Kingdom IUCN Red List assessments of Asian snake species [Decision 16.104] 1. Introduction 2 2. Summary of published IUCN Red List assessments 3 a. Threats 3 b. Use and Trade 5 c. Overlap between international trade and intentional use being a threat 7 3. Further details on species for which international trade is a potential concern 8 a. Species accounts of threatened and Near Threatened species 8 i. Euprepiophis perlacea – Sichuan Rat Snake 9 ii. Orthriophis moellendorfi – Moellendorff's Trinket Snake 9 iii. Bungarus slowinskii – Red River Krait 10 iv. Laticauda semifasciata – Chinese Sea Snake 10 v.
    [Show full text]
  • AC27 Inf. 17 (Rev.1) (English Only / Únicamente En Inglés / Seulement En Anglais)
    AC27 Inf. 17 (Rev.1) (English only / únicamente en inglés / seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Twenty-seventh meeting of the Animals Committee Veracruz (Mexico), 28 April – 3 May 2014 INSPECTION MANUAL FOR USE IN COMMERCIAL REPTILE BREEDING FACILITIES IN SOUTHEAST ASIA 1. The attached information document has been submitted by the Secretariat and has been prepared by TRAFFIC* in relation to agenda item 9. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat or the United Nations Environment Programme concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. AC27 Doc. 17 (Rev.1) – p. 1 Inspection Manual for use in Commercial Reptile Breeding Facilities in Southeast Asia EU- CITES Capacity - building project N o . S - 408 2013 CITES Secretariat About the EU-CITES Capacity-building project The project Strengthening CITES implementation capacity of developing countries to ensure sustainable wildlife management and non-detrimental trade was approved for funding by the European Union in 2009. A major challenge for many countries is the difficulty in meeting the requirements for trade in CITES-listed species, ranging from legal sourcing and sustainability requirements, to the effective control of legal trade and deterrence of illegal trade. Mechanisms exist in CITES and in both exporting and importing countries that promote and facilitate compliance – although Parties are often hampered by a lack of capacity or a lack of current biological or trade information with respect to certain species.
    [Show full text]
  • The Discovery of XY Sex Chromosomes in a Boa and Python
    Current Biology, Volume 27 Supplemental Information The Discovery of XY Sex Chromosomes in a Boa and Python Tony Gamble, Todd A. Castoe, Stuart V. Nielsen, Jaison L. Banks, Daren C. Card, Drew R. Schield, Gordon W. Schuett, and Warren Booth Figure S1. PCR validation of male-specific RAD markers in boa and python. Related to Figure 1. A. Male-biased amplification of RAD marker TCBoa_2918 in eleven male and eleven female Boa imperator. Individual specimen ID numbers are listed below the gel image. B. Male-biased amplification of RAD marker TCBoa_2918 in an additional eight male and eleven female Boa imperator. Individual specimen ID numbers are listed below the gel image. C. Photograph of South American Boa (Boa constrictor) from Goiás, Brazil. D. Male-biased amplification of RAD marker TCBoa_2918 in three male and three female Boa constrictor. Individual specimen ID numbers are listed below the gel image. E. Male-biased amplification of RAD marker M3 in twelve male and twelve female Python bivittatus. Individual specimen ID numbers are listed below the gel image in panel F. F. Male-specific restriction digest of PCR amplicon (PCR-RFLP) from RAD marker M10 in twelve male and twelve female Python bivittatus. Individual specimen ID numbers are listed below the gel image. G. Cartoon illustrating PCR amplicons from the python RAD marker M10. The X and Y alleles are illustrated including the approximate position of the Y chromosome-specific SpeI restriction site. H. Gel image of python RAD marker M10 showing difference between digested and undigested PCR amplicons from a male Python bivittatus.
    [Show full text]
  • Phylogeography of the Reticulated Python (Malayopython Reticulatus Ssp.): Conservation Implications for the Worlds’ Most Traded Snake Species
    Edinburgh Research Explorer Phylogeography of the reticulated python (Malayopython reticulatus ssp.): Conservation implications for the worlds’ most traded snake species Citation for published version: Murray-dickson, G, Ghazali, M, Ogden, R, Brown, R, Auliya, M & Chiang, T (ed.) 2017, 'Phylogeography of the reticulated python (Malayopython reticulatus ssp.): Conservation implications for the worlds’ most traded snake species', PLoS ONE, vol. 12, no. 8, e0182049. https://doi.org/10.1371/journal.pone.0182049 Digital Object Identifier (DOI): 10.1371/journal.pone.0182049 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: PLoS ONE Publisher Rights Statement: This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing
    [Show full text]
  • G Iant Snakes
    Copyrighted Material Some pages are omitted from this book preview. Giant Snakes Giant Giant Snakes A Natural History John C. Murphy & Tom Crutchfield Snakes, particularly venomous snakes and exceptionally large constricting snakes, have haunted the human brain for a millennium. They appear to be responsible for our excellent vision, as well as the John C. Murphy & Tom Crutchfield & Tom C. Murphy John anxiety we feel. Despite the dangers we faced in prehistory, snakes now hold clues to solving some of humankind’s most debilitating diseases. Pythons and boas are capable of eating prey that is equal to more than their body weight, and their adaptations for this are providing insight into diabetes. Fascination with snakes has also drawn many to keep them as pets, including the largest species. Their popularity in the pet trade has led to these large constrictors inhabiting southern Florida. This book explores what we know about the largest snakes, how they are kept in captivity, and how they have managed to traverse ocean barriers with our help. Copyrighted Material Some pages are omitted from this book preview. Copyrighted Material Some pages are omitted from this book preview. Giant Snakes A Natural History John C. Murphy & Tom Crutchfield Copyrighted Material Some pages are omitted from this book preview. Giant Snakes Copyright © 2019 by John C. Murphy & Tom Cructhfield All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means including information storage and retrieval systems, without permission in writing from the publisher. Printed in the United States of America First Printing March 2019 ISBN 978-1-64516-232-2 Paperback ISBN 978-1-64516-233-9 Hardcover Published by: Book Services www.BookServices.us ii Copyrighted Material Some pages are omitted from this book preview.
    [Show full text]
  • Meeting Handout
    CONGRESSIONAL BUDGET OFFICE COST ESTIMATE October 9, 2009 H.R.2811 A bill to amend title 18, United States Code, to include constrictor snakes of the species Python genera as an inj urious animal As ordered reported by the House Committee on the Judicimy on July 29, 2009 CBO estimates that implementing H.R. 2811 would have no significant cost to the federal government. Enacting the bill could affect direct spending and revenues, but CBO estimates that any such effects would not be significant. H.R. 2811 would make it a federal crime to impOli or ship certain snakes into the United States. Because the bill would establish a new offense, the government would be able to pursue cases that it otherwise would not be able to prosecute. We expect that H.R. 2811 would apply to a relatively small number of offenders, so any increase in costs for law enforcement, court proceedings, or prison operations would not be significant. Any such costs would be subject to the availability of appropriated funds. Because those prosecuted and convicted under H.R. 2811 could be subject to criminal [mes, the federal government might collect additional fines if the legislation is enacted. Criminal fines are recorded as revenues, deposited in the Crime Victims Fund, and later spent. CBO expects that any additional revenues and direct spending would not be significant because of the small number of cases likely to be affected. Under H.R. 2811, entities such as zoos would need permits to import or transport the affected species of snakes. Based on information provided by the U.S.
    [Show full text]
  • Molecular Systematics of Australian and New Guinea Pythons
    zbl -úìa 'aa'.iü Molecular Systematics of Australian and New Guinea Pythons Lesley H. Rawlings A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Department of Genetics The University of Adelaide March 2001 rll Abstract Mitochondrial control region and cytochrome b gene sequence comparisons were used to investigate the molecular systematics of pythons. Duplicate, non-tandem copies of control region sequence from single mitochondrial genomes were compared for divergent genera and within populations of pythons. There was almost total sequence identity between the two regions within individuals but there were diflerences in copy number of an -88 bp repeat between the two regions within individuals. Structures such as conserved sequence blocks and termination sequences previously documented in vertebrate control regions were present and there was a \RNAIL paralogue and a large 5' haþin in the Australasian pythons that was not present in the Afro-Asiatic pythons, boids, colubrids or viperids. A range of squamate reptiles was tested for the presence of the duplication, which was found to be absent in all the squamate reptiles tested and present in all the snake lineages tested except Scolecophidians. Phylogenetic analyses of python species suggested that the genus Python is paraphyletic and the Afro-Asian Python species formed the sister lineage to all other pythons. Aspidites was nested amongst the Australo-Papuan pythons, albeit without strong statistical support for this arrangement. There was low genetic divergence among all taxa, and there was monophyly of the genera Antaresia, Aspidites and Ziasis only' Two studies focused on phylogenetic relationships at the population level.
    [Show full text]
  • Phylogeography of the Reticulated Python (Malayopython Reticulatus Ssp.): Conservation Implications for the Worlds’ Most Traded Snake Species
    Edinburgh Research Explorer Phylogeography of the reticulated python (Malayopython reticulatus ssp.): Conservation implications for the worlds’ most traded snake species Citation for published version: Murray-dickson, G, Ghazali, M, Ogden, R, Brown, R, Auliya, M & Chiang, T (ed.) 2017, 'Phylogeography of the reticulated python (Malayopython reticulatus ssp.): Conservation implications for the worlds’ most traded snake species' PLoS One, vol. 12, no. 8, pp. e0182049. DOI: 10.1371/journal.pone.0182049 Digital Object Identifier (DOI): 10.1371/journal.pone.0182049 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: PLoS One Publisher Rights Statement: This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing
    [Show full text]
  • Conservation Genetics of Boelen's
    Conserv Genet (2010) 11:889–896 DOI 10.1007/s10592-009-9931-z RESEARCHARTICLE Conservation genetics of Boelen’s python (Morelia boeleni) from New Guinea: reduced genetic diversity and divergence of captive and wild animals Christopher C. Austin Æ Marc Spataro Æ Stacy Peterson Æ Joshua Jordan Æ John D. McVay Received: 1 August 2008 / Accepted: 15 April 2009 / Published online: 26 May 2009 Ó Springer Science+Business Media B.V. 2009 Abstract Boelen’s python (Morelia boeleni) is a mon- Keywords Indonesia MC1R mtDNA tane New Guinea endemic found in highlands above Population structure SnakeÁ Á Á Á 1000 m and below the tree line. The ecology, natural his- tory, distribution, population size, and conservation status of this species are largely unknown. It has a protected Introduction status in Papua New Guinea but not in Indonesian Papua and several US and European zoos have active captive The tropical island of New Guinea has been identified as breeding programs that have been largely unsuccessful. To one of the world’s five High Biodiversity Wilderness Areas understand the degree of genetic diversity in wild and (Mittermeier et al. 2003). New Guinea occupies less than captive animals we undertook a genetic analysis of 90 M. 0.6% of global land area yet harbors 5–7% of the world’s boeleni for which we sequenced two mtDNA loci and one biodiversity (Beehler 1993; Dinerstein and Wikramanyake nuclear locus for a total of 1,418 bp of sequence data per 1993; Myers et al. 2000). The herpetofauna of New Guinea individual. All 16 wild-caught M.
    [Show full text]
  • Unrestricted Species
    UNRESTRICTED SPECIES Actinopterygii (Ray-finned Fishes) Atheriniformes (Silversides) Scientific Name Common Name Bedotia geayi Madagascar Rainbowfish Melanotaenia boesemani Boeseman's Rainbowfish Melanotaenia maylandi Maryland's Rainbowfish Melanotaenia splendida Eastern Rainbow Fish Beloniformes (Needlefishes) Scientific Name Common Name Dermogenys pusilla Wrestling Halfbeak Characiformes (Piranhas, Leporins, Piranhas) Scientific Name Common Name Abramites hypselonotus Highbacked Headstander Acestrorhynchus falcatus Red Tail Freshwater Barracuda Acestrorhynchus falcirostris Yellow Tail Freshwater Barracuda Anostomus anostomus Striped Headstander Anostomus spiloclistron False Three Spotted Anostomus Anostomus ternetzi Ternetz's Anostomus Anostomus varius Checkerboard Anostomus Astyanax mexicanus Blind Cave Tetra Boulengerella maculata Spotted Pike Characin Carnegiella strigata Marbled Hatchetfish Chalceus macrolepidotus Pink-Tailed Chalceus Charax condei Small-scaled Glass Tetra Charax gibbosus Glass Headstander Chilodus punctatus Spotted Headstander Distichodus notospilus Red-finned Distichodus Distichodus sexfasciatus Six-banded Distichodus Exodon paradoxus Bucktoothed Tetra Gasteropelecus sternicla Common Hatchetfish Gymnocorymbus ternetzi Black Skirt Tetra Hasemania nana Silver-tipped Tetra Hemigrammus erythrozonus Glowlight Tetra Hemigrammus ocellifer Head and Tail Light Tetra Hemigrammus pulcher Pretty Tetra Hemigrammus rhodostomus Rummy Nose Tetra *Except if listed on: IUCN Red List (Endangered, Critically Endangered, or Extinct
    [Show full text]
  • Toward a Tree-Of-Life for the Boas and Pythons: Multilocus Species-Level Phylogeny with Unprecedented Taxon Sampling ⇑ R
    Molecular Phylogenetics and Evolution 71 (2014) 201–213 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Toward a Tree-of-Life for the boas and pythons: Multilocus species-level phylogeny with unprecedented taxon sampling ⇑ R. Graham Reynolds a, ,1, Matthew L. Niemiller b,2, Liam J. Revell a a Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125-3393, USA b Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem St., New Haven, CT 06520, USA article info abstract Article history: Snakes in the families Boidae and Pythonidae constitute some of the most spectacular reptiles and com- Received 10 July 2013 prise an enormous diversity of morphology, behavior, and ecology. While many species of boas and Revised 10 November 2013 pythons are familiar, taxonomy and evolutionary relationships within these families remain contentious Accepted 20 November 2013 and fluid. A major effort in evolutionary and conservation biology is to assemble a comprehensive Tree- Available online 6 December 2013 of-Life, or a macro-scale phylogenetic hypothesis, for all known life on Earth. No previously published study has produced a species-level molecular phylogeny for more than 61% of boa species or 65% of Keywords: python species. Using both novel and previously published sequence data, we have produced a spe- Alethinophidia cies-level phylogeny for 84.5% of boid species and 82.5% of pythonid species, contextualized within a lar- Boidae Evolution ger phylogeny of henophidian snakes. We obtained new sequence data for three boid, one pythonid, and Phylogenetics two tropidophiid taxa which have never previously been included in a molecular study, in addition to Pythonidae generating novel sequences for seven genes across an additional 12 taxa.
    [Show full text]