Analysis of Human Embryos from Zygote to Blastocyst Reveals Distinct Gene Expression Patterns Relative to the Mouse
Developmental Biology 375 (2013) 54–64 Contents lists available at SciVerse ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse Kathy K. Niakan a,b,n, Kevin Eggan a,nn a The Howard Hughes Medical Institute, Harvard Stem Cell Institute and the Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA b Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, West Forvie Building, Robinson Way, Cambridge CB2 0SZ, UK article info abstract Article history: Early mammalian embryogenesis is controlled by mechanisms governing the balance between Received 21 July 2012 pluripotency and differentiation. The expression of early lineage-specific genes can vary significantly Received in revised form between species, with implications for developmental control and stem cell derivation. However, the 29 November 2012 mechanisms involved in patterning the human embryo are still unclear. We analyzed the appearance Accepted 11 December 2012 and localization of lineage-specific transcription factors in staged preimplantation human embryos Available online 19 December 2012 from the zygote until the blastocyst. We observed that the pluripotency-associated transcription Keywords: factor OCT4 was initially expressed in 8-cell embryos at 3 days post-fertilization (dpf), and restricted to Human embryo the inner cell mass (ICM) in 128–256 cell blastocysts (6 dpf), approximately 2 days later than the Human embryonic stem cell derivation mouse. The trophectoderm (TE)-associated transcription factor CDX2 was upregulated in 5 dpf Primitive endoderm blastocysts and initially coincident with OCT4, indicating a lag in CDX2 initiation in the TE lineage, Epiblast progenitor Trophectoderm relative to the mouse.
[Show full text]