Published for SISSA by Springer Received: November 13, 2020 Accepted: January 29, 2021 Published: March 15, 2021 Long-lived sterile neutrinos at the LHC in effective field theory JHEP03(2021)148 Jordy de Vries,a;b Herbert K. Dreiner,c Julian Y. G¨unther,c Zeren Simon Wangd;e and Guanghui Zhoua aAmherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts, Amherst, MA 01003, U.S.A. bRIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973-5000, U.S.A. cBethe Center for Theoretical Physics & Physikalisches Institut der Universit¨atBonn, Nußallee 12, 53115 Bonn, Germany dDepartment of Physics, National Tsing Hua University, Hsinchu 300, Taiwan eAsia Pacific Center for Theoretical Physics (APCTP), Headquarters San 31, Hyoja-dong, Nam-gu, Pohang 790-784, South Korea E-mail:
[email protected],
[email protected],
[email protected],
[email protected],
[email protected] Abstract: We study the prospects of a displaced-vertex search of sterile neutrinos at the Large Hadron Collider (LHC) in the framework of the neutrino-extended Standard Model Effective Field Theory (νSMEFT). The production and decay of sterile neutrinos can proceed via the standard active-sterile neutrino mixing in the weak current, as well as through higher-dimensional operators arising from decoupled new physics. If sterile neu- trinos are long-lived, their decay can lead to displaced vertices which can be reconstructed. We investigate the search sensitivities for the ATLAS/CMS detector, the future far-detector experiments: AL3X, ANUBIS, CODEX-b, FASER, MATHUSLA, and MoEDAL-MAPP, and at the proposed fixed-target experiment SHiP.