2 Particle Dynamics in an Expanding Universe 5 2.1 the Friedmann Equations

Total Page:16

File Type:pdf, Size:1020Kb

2 Particle Dynamics in an Expanding Universe 5 2.1 the Friedmann Equations European Research Universität Hamburg Council DER FORSCHUNG I DER LEHRE | DER BILDUNG PRIMORDIAL NUCLEOSYNTHESIS IN THE PRESENCE OF MEV-SCALE DARK SECTORS Dissertation zur Erlangung des Doktorgrades an der Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Physik der Universitat Hamburg vorgelegt von Marco Hufnagel aus Hamburg 2020 Gutachter der Dissertation: Dr. Kai Schmidt-Hoberg Prof. Dr. Geraldine Servant Zusammensetzung der Prüfungskommission: Dr. Kai Schmidt-Hoberg Prof. Dr. Geraldine Servant Prof. Dr. Jochen Liske Prof. Dr. Gudrid Moortgat-Pick Dr. Torben Ferber Vorsitzender der Prüfungskommission: Prof. Dr. Jochen Liske Datum der Disputation: 15.06.2020 Vorsitzender des Fach-Promotionsausschusses PHYSIK: Prof. Dr. Günter H. W. Sigl Leiter des Fachbereichs PHYSIK: Prof. Dr. Wolfgang Hansen Dekan der Fakultät MIN: Prof. Dr. Heinrich Graener “Come on, Rory! It isn't rocket science, it's just quantum physics!” - The Doctor “This is not the time for vanity. It's the time to show the universe how amazingly awesome I am!” - Captain Qwark Dedicated to all the equations I have solved before. i Abstract In this thesis, we perform a comprehensive study of Big Bang nucleosynthesis constraints on different dark-sector models with MeV-scale particles which are neither fully relativistic nor fully non-relativistic during all relevant temperatures. To this end, we derive a generic set of equations that can be used to determine the light-element abundances for many different dark-sector scenarios. In particular, we take into account all relevant effects that might alter the creation of light elements in the early universe, including modifications to the Hubble rate and time-temperature relation, an adjusted best-fit value for the baryon-to-photon ratio due to an altered effective number of neutrinos, a modified neutrino-decoupling temperature as well as late-time modifications of the nuclear abundances due to photodisintegration. We then solve these equations for the case of dark sectors with MeV-scale particles that are created in the early universe and later decay into either dark or electromagnetic radiation. In the former case, the dark and the visible sectors are completely decoupled, and we show that even such scenarios can be severely constrained if the initial temperature ratio of both sectors is suffi­ ciently large. In the latter case, the particle decay can instead lead to a severe entropy injection into the SM heat bath, and we show that the final constraints can be very different from the naive order-of-magnitude estimates that are usually employed for such scenarios. We then turn to the case of MeV-scale dark matter that can annihilate into all kinematically available SM states, including electrons/positrons, photons, and neutrinos. In this context, we first up­ date the lower bound on the mass of thermal dark matter using improved determinations of the nuclear abundances. Afterwards, we calculate the corresponding constraints on the an­ nihilation cross-section of dark matter and show that, for p-wave suppressed annihilations, the bounds from nucleosynthesis are much stronger than the ones from the CMB and even competitive with the strongest bounds from other indirect searches. Finally, we apply our results to models with self-interacting dark matter as well as to models with axion-like par­ ticles. In the former case, we show that for scalar mediators, most parts of parameter space leading to sizable self-interactions are already excluded by a combination of direct-detection experiments and constraints from nucleosynthesis. In the latter case, we further evaluate the robustness of our constraints by allowing various additional effects that may weaken the bounds of the standard scenario. We find that, while the bounds can indeed be weakened, very relevant robust constraints remain. ii Zusammenfassung In dieser Arbeit betrachten wir Modelle mit verschiedenen dünklen Sektoren ünd üntersü- chen die Verwendbarkeit von Vorhersagen der primordialen Nukleosynthese zur Einschrän- küng des jeweiligen Parameterbereiches dieser Modelle. Dabei konzentrieren wir üns aüf Modelle mit Teilchen nahe der MeV-Skala, welche im Bereich der relevanten Temperatu­ ren weder ultra-relativistisch noch nicht-relativistisch sind. Zu diesem Zweck leiten wir ein generisches System von Gleichungen her, welches anschließend verwendet werden kann, um die Häufigkeit der leichten, im frühen Universum erzeugten, Elemente für verschiede­ ne Szenarien vorherzusagen. Dabei berücksichtigen wir alle Effekte, welche die Erzeugung dieser Elemente potenziell beeinflussen können, einschließlich einer möglichen Modifikati­ on der Hubble Rate und der Zeit-Temperatur-Beziehung, einer Änderung des Verhältnisses der Baryonen- und Photonenzahl aufgrund einer geänderten Anzahl effektiver Neutrinos, ei­ ner modifizierten Entkopplungstemperatur der Neutrinos und die nachträgliche Änderung der Änzahl leichter Elemente mittels Photodesintegration. In einem ersten Schritt wenden wir diese Gleichungen dann auf Modelle mit Teilchen nahe der MeV-Skala an, welche im frühen Universum zunächst erzeugt werden und anschließend entweder in dunkle oder elek­ tromagnetische Strahlung zerfallen. Im ersten Fall sind der dunkle und der sichtbare Sektor komplett entkoppelt und wir zeigen, dass auch der Parameterraum solcher Modelle deut­ lich eingeschrankt werden kann, solange das Verhältnis der Temperaturen beider Sektoren ausreichend groß ist. Im zweiten Fall führt der Teilchenzerfall zu einer deutlichen Entropie­ injektion in das Warmebad des SMs und wir zeigen, dass sich die Ergebnisse unserer umfas­ senden Analyse deutlich von den einfachen Abschätzungen unterscheiden konnen, welche normalerweise für solche Szenarien herangezogen werden. Anschließend betrachten wir Mo­ delle mit einem Dunkle-Materie-Kandidaten nahe der MeV-Skala, welcher zusätzlich in die kinematisch erlaubten SM-Teilchen, sprich Elektronen/Positronen, Photonen und Neutrinos, annihilieren kann. In diesem Zusammenhang aktualisieren wir zunächst die unter Schran­ ke an die Masse thermischer Dunkler Materie unter Verwendung aktuellster Messergebnisse. Nachfolgend berechnen wir, welche Einschränkungen sich für den Ännihilationswirkungs- querschnitt ergeben und zeigen, dass diese im Fall von p-Wellen unterdrückten Annihilatio­ nen, deutlich starker sind als jene vom CMB, und sogar vergleichbar mit den Ergebnissen anderer indirekter Suchen. Abschließend betrachten wir Modelle mit selbstwechselwirken­ der Dunkler Materie, sowie Modelle mit Axion-ahnlichen Teilchen. Im ersten Fall zeigen wir, dass für skalare Teilchen die meisten Bereiche mit phänomenologisch relevanten Selbstwech­ selwirkungen bereits durch eine Kombination indirekter und direkter Suchen ausgeschlossen sind. Im zweiten Fall untersuchen wir zusätzlich die Robustheit unserer Ergebnisse und zei­ gen, dass unterschiedliche Effekte die Resultate zwar abschwachen konnen, in jedem Fall aber deutliche Einschrankungen des Parameterraums verbleiben. iii THIS THESIS IS BASED ON THE FOLLOWING PUBLICATIONS: M. Hufnagel, K. Schmidt-Hoberg, and S. Wild, BBN constraints on MeV-scale dark sectors. Part I. Sterile decays, JCAP 1802 (2018) 044, [arXiv:1712.03972] M. Hufnagel, K. Schmidt-Hoberg, and S. Wild, BBN constraints on MeV-scale dark sectors. Part II. Electromagnetic decays, JCAP 1811 (2018) 032, [arXiv:1808.09324] P. F. Depta, M. Hufnagel, K. Schmidt-Hoberg, and S. Wild, BBN constraints on the anni­ hilation of MeV-scale dark matter, JCAP 1904 (2019) 029, [arXiv:1901.06944] K. Bondarenko, A. Boyarsky, T. Bringmann, M. Hufnagel, K. Schmidt-Hoberg, and A. Sokolenko, Direct detection and complementary constraints for sub-GeV dark matter, JHEP 03 (2020) 118, [arXiv:1909.08632] P. F. Depta, M. Hufnagel, and K. Schmidt-Hoberg, Robust cosmological constraints on axion-like particles, JCAP 05 (2020) 009, [arXiv:2002.08370] OTHER PUBLICATIONS THAT ARE NOT PART OF THIS THESIS: M. Garny, J. Heisig, M. Hufnagel, and B. Lülf, Top-philic dark matter within and beyond the WIMP paradigm, Phys. Rev. D97 (2018), no. 7 075002, [arXiv:1802.00814] M. Garny, J. Heisig, M. Hufnagel, B. Lülf, and S. Vogl, Conversion-driven freeze-out: Dark matter genesis beyond the WIMP paradigm, PoS CORFU2018 (2019) 092, [arXiv:1904.00238] iv v Contents Contents 1 Introduction 1 2 Particle dynamics in an expanding universe 5 2.1 The Friedmann equations .................................................................................................. 5 2.2 The relativistic Boltzmann equation ............................................................................... 6 2.2.1 The Boltzmann equation in an expanding universe .................................... 7 2.2.2 The collision operator in its general form ........................................................ 8 2.2.3 Thermodynamical quantities ............................................................................... 11 2.2.4 Local thermal equilibrium ..................................................................................... 13 2.2.5 A note on Maxwell-Boltzmann distributions ................................................. 17 3 Big Bang Nucleosynthesis 19 3.1 Particle evolution during nucleosynthesis ..................................................................... 19 3.1.1 Electromagnetic radiation ..................................................................................... 20 3.1.2 Neutrinos ..................................................................................................................
Recommended publications
  • Naturally Light Sterile Neutrinos in Gauge Mediated Supersymmetry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server hep-ph/9810257 IC/98/163 WIS-98/25/Oct-DPP Naturally Light Sterile Neutrinos in Gauge Mediated Sup ersymmetry Breaking a b Gia Dvali and Yosef Nir a ICTP, Trieste, 34100, Italy b Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel Mo duli are generic in string (M) theory. In a large class of gauge-mediated Sup ersymmetry breaking mo dels, the fermionic comp onents of such elds havevery light masses, around the eV scale, and non-negligible mixing with 4 active neutrinos, of order 10 . Consequently, these fermions could play the role of sterile neutrinos to which active neutrinos oscillate, thus a ecting measurements of solar neutrinos or of atmospheric neutrinos. They could also provide warm dark matter, thus a ecting structure formation. 10/98 1. Intro duction Light sterile neutrinos are o ccasionally invoked by theorists to explain various hints of neutrino masses which cannot b e accommo dated in a framework of only three light active neutrinos (see e.g. refs. [1-26]). There are, however, three puzzles related to the hyp othesis that light sterile neutrinos may play a role in various observations: (i) The Ma jorana mass term of a sterile neutrino is not protected byany Standard Mo del (SM) gauge symmetry and can, therefore, be arbitrarily large. The mass that is relevant to the various exp eriments is at or b elow the eV scale. (ii) The Dirac mass term that mixes a sterile neutrino with an active one is protected by the electroweak breaking scale and is exp ected to b e in the range m m .
    [Show full text]
  • Cosmology Falling in Love with Sterile Neutrinos
    Cosmology Falling in Love with Sterile Neutrinos Jörn Kersten Based on Torsten Bringmann, Jasper Hasenkamp, JK, JCAP 07 (2014) [arXiv:1312.4947] Outline 1 Introduction 2 Self-Interacting Dark Matter 3 Dark Matter Interacting with Neutrinos 3 / 23 1 Introduction 2 Self-Interacting Dark Matter 3 Dark Matter Interacting with Neutrinos 4 / 23 Or does it? Tensions in ΛCDM cosmology The Universe after Planck Flat ΛCDM cosmology fits data perfectly Planck, arXiv:1303.5062 5 / 23 The Universe after Planck Flat ΛCDM cosmology fits data perfectly Planck, arXiv:1303.5062 Or does it? Tensions in ΛCDM cosmology 5 / 23 Measurements of Cosmic Microwave Background (CMB): ∆Neff = 1:51 ± 0:75 at 68% CL ACT, ApJ 739 (2011) ∆Neff = 0:81 ± 0:42 at 68% CL SPT, ApJ 743 (2011) +0:68 ∆Neff = 0:31−0:64 at 95% CL Planck, arXiv:1303.5076 Hints for Dark Radiation Dark radiation: relativistic particles 6= γ; νSM Parameterized via radiation energy density " # 7 T 4 ρ ≡ 1 + N ν ρ rad eff 8 T γ T ≡ Tγ Neff: effective number of neutrino species Standard Model: Neff = 3:046 Existence of dark radiation , ∆Neff ≡ Neff − 3:046 > 0 6 / 23 Hints for Dark Radiation Dark radiation: relativistic particles 6= γ; νSM Parameterized via radiation energy density " # 7 T 4 ρ ≡ 1 + N ν ρ rad eff 8 T γ T ≡ Tγ Neff: effective number of neutrino species Standard Model: Neff = 3:046 Existence of dark radiation , ∆Neff ≡ Neff − 3:046 > 0 Measurements of Cosmic Microwave Background (CMB): ∆Neff = 1:51 ± 0:75 at 68% CL ACT, ApJ 739 (2011) ∆Neff = 0:81 ± 0:42 at 68% CL SPT, ApJ 743 (2011) +0:68
    [Show full text]
  • Cosmological Anomalies Shed Light on the Dark Sector
    COSMOLOGICAL ANOMALIES SHED LIGHT ON THE DARK SECTOR by Tanvi Karwal A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy. Baltimore, Maryland June, 2019 c 2019 Tanvi Karwal ⃝ All rights reserved Abstract Little is known about dark energy and dark matter; but their simple descriptions in the ΛCDM model of cosmology fit numerous datasets well. Recently however, tensions have emerged between the results of different datasets, as have certain unex- pected results. These anomalies may indicate new physics beyond ΛCDM; a revision of how we describe the dark sector. My work uses cosmological anomalies to explore the dark sector. My research resolves perhaps the most exciting tension in cosmology, the Hubble tension, with early dark energy (EDE). I developed two physical models for EDE and find that these models not only solve the Hubble tension, but also fit mostcosmolog- ical datasets well. No other solution to the Hubble tension proposed thus far can do both - fully solve the tension while still fitting early and late-time measurements of the Universe. The model that succeeds ΛCDM should solve not only the Hubble tension but ii ABSTRACT also other cosmological tensions such as the S8 anomaly. My research investigates a decaying dark matter model to address both tensions simultaneously but finds the constraints from late-universe observations too stringent to permit a full resolution. I am also building a phenomenological tool to model the dark sector in a widely- used cosmological code. This tool, generalised dark matter, is a powerful formalism capable of emulating the effects of a wide variety of dark matter and dark energy models, simplifying placing constraints on different fundamentally-motivated models.
    [Show full text]
  • Dark Radiation and Dark Matter from Primordial Black Holes
    DARK RADIATION AND DARK MATTER FROM PRIMORDIAL BLACK HOLES Dan Hooper – Fermilab and the University of Chicago Next Frontiers in the Search for Dark Matter, GGI September 26, 2019 Dan Hooper – Dark Radiation & Dark Matter from PBHs This talk is based on Dark Radiation and Superheavy Dark Matter from Black Hole Domination With Gordan Krnjaic and Sam McDermott, JHEP 1908 (2019) 001, arXiv:1905.01301 For related work, see Morrison and Profumo, arXiv:1812.10606 and Lennon et al, arXiv:1712.07664 Dan Hooper – Dark Radiation & Dark Matter from PBHs Was the Early Universe Dominated by Black Holes? § Inhomogeneities in the early universe can led to the formation of primordial black holes § Very roughly, we expect the mass of these black holes to be similar to the energy enclosed within the horizon at or near the end of inflation: § In this mass range, black holes evaporate very rapidly, disappearing well before BBN § If even a small fraction of the energy density after inflation was in the form of black holes, this fraction would grow as the universe expands -3 (black holes evolve as matter, �BH � a , rather -4 than radiation, �rad � a ); § From this perspective, it is well-motivated to consider scenarios in which the early universe included an era in which the energy density was dominated by black holes Dan Hooper – Dark Radiation & Dark Matter from PBHs Was the Early Universe Dominated by Black Holes? § Quantitatively, the density of black holes will ultimately exceed the energy density in SM radiation (before the black holes evaporate) if the
    [Show full text]
  • Phenomenology of Gev-Scale Heavy Neutral Leptons Arxiv:1805.08567
    Prepared for submission to JHEP INR-TH-2018-014 Phenomenology of GeV-scale Heavy Neutral Leptons Kyrylo Bondarenko,1 Alexey Boyarsky,1 Dmitry Gorbunov,2;3 Oleg Ruchayskiy4 1Intituut-Lorentz, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands 2Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia 3Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia 4Discovery Center, Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK- 2100 Copenhagen, Denmark E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: We review and revise phenomenology of the GeV-scale heavy neutral leptons (HNLs). We extend the previous analyses by including more channels of HNLs production and decay and provide with more refined treatment, including QCD corrections for the HNLs of masses (1) GeV. We summarize the relevance O of individual production and decay channels for different masses, resolving a few discrepancies in the literature. Our final results are directly suitable for sensitivity studies of particle physics experiments (ranging from proton beam-dump to the LHC) aiming at searches for heavy neutral leptons. arXiv:1805.08567v3 [hep-ph] 9 Nov 2018 ArXiv ePrint: 1805.08567 Contents 1 Introduction: heavy neutral leptons1 1.1 General introduction to heavy neutral leptons2 2 HNL production in proton fixed target experiments3 2.1 Production from hadrons3 2.1.1 Production from light unflavored and strange mesons5 2.1.2
    [Show full text]
  • Dark Radiation from the Axino Solution of the Gravitino Problem
    21st of July 2011 Dark radiation from the axino solution of the gravitino problem Jasper Hasenkamp II. Institute for Theoretical Physics, University of Hamburg, Hamburg, Germany [email protected] Abstract Current observations of the cosmic microwave background could confirm an in- crease in the radiation energy density after primordial nucleosynthesis but before photon decoupling. We show that, if the gravitino problem is solved by a light axino, dark (decoupled) radiation emerges naturally in this period leading to a new upper 11 bound on the reheating temperature TR . 10 GeV. In turn, successful thermal leptogenesis might predict such an increase. The Large Hadron Collider could en- dorse this opportunity. At the same time, axion and axino can naturally form the observed dark matter. arXiv:1107.4319v2 [hep-ph] 13 Dec 2011 1 Introduction It is a new opportunity to determine the amount of radiation in the Universe from obser- vations of the cosmic microwave background (CMB) alone with precision comparable to that from big bang nucleosynthesis (BBN). Recent measurements by the Wilkinson Mi- crowave Anisotropy Probe (WMAP) [1], the Atacama Cosmology Telescope (ACT) [2] and the South Pole Telescope (SPT) [3] indicate|statistically not significant|the radi- ation energy density at the time of photon decoupling to be higher than inferred from primordial nucleosynthesis in standard cosmology making use of the Standard Model of particle physics, cf. [4,5]. This could be taken as another hint for physics beyond the two standard models. The Planck satellite, which is already taking data, could turn the hint into a discovery. We should search for explanations from particle physics for such an increase in ra- diation [6,7], especially, because other explanations are missing, if the current mean values are accurate.
    [Show full text]
  • The Early Universe As a Laboratory for Particle Physics
    The Early Universe as a Laboratory for Particle Physics Nikita Blinov April 6, 2021 York University Triumph of the Standard Model Standard Model describes properties and interactions of leptons, quarks and force carriers 100+ years of science !"#N $ift Shop 2 Triumph of the Standard Model Standard Model describes properties and interactions of leptons, quarks and force carriers 100+ years of science !"#N $ift Shop Enormous dynamic range when combined with gravity ,ar)e Hadron Collider probes ~10-20 m Cosmic Micro(ave Background: ~10+24 m 3 The Cosmological Fine Print 4n largest scales, the universe is (ell-described by a %andf l of para'eters Planck ‘18 Only 'eas red indirectly 2%y not 03 .nconsistent (it% q ant m estimates No candidate in Standard Model 4 The Expanding Universe 6ar-a(ay ob7ects (like )alaxies) are receding fro' s - bble (1929) "arlier estimates by Lemaitre (1927) and #obertson (1928) 5 The Expanding Universe 6ar-a(ay ob7ects (like )alaxies) are receding fro' s - bble (1929) 6 #iess et al 2019 Expansion in General Relativity $eneral #elativity relates expansion rate to t%e contents of the niverse Hotter and denser in the past! 7 Early Universe Primer =%e niverse e9panded from a %ot dense state "volution described by C>1 $yr 1 !o'pare (it%* Solar s rface* = ~ 0>? e@ #oo' te'p* = ~ 1AB0 e@ Galaxy formation, life etc 8 Early Universe Primer =%e niverse e9panded from a %ot dense state "volution described by C10 000 yr 1C>1 $yr !o'pare (it%* Solar s rface* = ~ 0>? e@ #oo' te'p* = ~ 1AB0 e@ -ydrogen recombination: Galaxy formation,
    [Show full text]
  • Strategic Overview of Fermilab Particle Astrophysics Program
    Strategic Overview of Fermilab Particle Astrophysics Program Craig Hogan PAC 16 January 2015 Particle Astrophysics at Fermilab Fermilab (and HEP) mission: study the fundamental nature of matter, energy, space and time Cosmic studies uniquely probe deep mysteries: dark matter, cosmic acceleration, neutrino mass, gravity Challenging experiments require capabilities of national laboratories: technologies, development, engineering, scale, management DOE labs share effort on most cosmic experiments Program is planned with University community Fermilab’s plan is based on the scientific drivers in the HEPAP P5 report, as shaped by community support needs, agency funding opportunities, and unique laboratory capabilities 2 Craig Hogan | Particle Astrophysics Program 1/8/15 Fermilab Center for Par0cle Astrophysics Strategic Plan - January 2015 P5 Driver Experiments Dark Maer G1: SuperCDMS Soudan, COUPP/PICO, Darkside, DAMIC G2: SuperCDMS SNOLAB, LZ, ADMX G3: R&D towards advanced WIMP and Axion experiments Dark Energy DES, DESI, LSST CMB SPT-3G, CMB-S4 Exploring the Holometer, Pierre Auger Unknown Detector R&D R&D on new techniques for par0cle astrophysics experiments Astrophysics Strong coupling with par0cle astrophysics experiments Theory Dark Matter Astrophysical evidence suggests that most of our Galaxy is made of a new form of matter Theory suggests that it may be detectable in this decade Weakly Interacting Massive Particles (WIMPs) Axions (solution to CP problem of strong interactions) P5: diverse program for direct detection of WIMPs and axions
    [Show full text]
  • Arxiv:1801.08947V2 [Hep-Ph] 24 May 2018
    UCI-TR-2017-18 Heavy Neutral Leptons at FASER Felix Kling1, ∗ and Sebastian Trojanowski1, 2, y 1Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575 USA 2National Centre for Nuclear Research, Ho_za 69, 00-681 Warsaw, Poland Abstract We study the prospects for discovering heavy neutral leptons at ForwArd Search ExpeRiment, or FASER, the newly proposed detector at the LHC. Previous studies showed that a relatively small 2 detector with ∼ 10 m length and . 1 m cross sectional area can probe large unconstrained parts of parameter space for dark photons and dark Higgs bosons. In this work we show that FASER will also be sensitive to heavy neutral leptons that have mixing angles with the active neutrinos that are up to an order of magnitude lower than current bounds. In particular, this is true for heavy neutral leptons produced dominantly in B-meson decays, in which case FASER's discovery potential is comparable to the proposed SHiP detector. We also illustrate how the search for heavy neutral leptons at FASER will be complementary to ongoing searches in high-pT experiments at the LHC and can shed light on the nature of dark matter and the process of baryogenesis in the early Universe. arXiv:1801.08947v2 [hep-ph] 24 May 2018 ∗Electronic address: [email protected] yElectronic address: [email protected] 1 I. INTRODUCTION In the past years, the Large Hadron Collider (LHC) has collected an impressive amount of data and placed constraints on a multitude of models for new physics. Most of these searches are targeting high-pT signatures corresponding to new strongly interacting heavy particles.
    [Show full text]
  • Cosmology in LARGE Volume String Models
    2013 Oct.24th@Tohoku Moduli-Induced Axion Problem Tetsutaro Higaki (KEK) 1208.3563 and 1304.7987 with K. Nakayama and F. Takahashi 2013 Oct.24th@Tohoku Moduli-Induced Axion Probe for extra dimensions Tetsutaro Higaki (KEK) 1208.3563 and 1304.7987 with K. Nakayama and F. Takahashi Cosmological test for string models CMB Ex-dim. + D-branes Axionic dark radiation (= relativistic DM): ΔNeff = O(0.1) Key: Moduli problem in reheating Φ: Moduli/Inflaton a: Axion Axionic dark radiation exists even for mΦ >> 100TeV. Dark radiation Dark radiation ΔNeff in ρrad ΔNeff: Dark radiation, Neff: Effective neutrino number, 3.046: The SM value Effective neutrino number Neff • Observations from Planck (95%): [Planck collaborations] (CMB) (CMB+BAO) (CMB+H0) Effective neutrino number Neff • Observations from Planck (95%): [Planck collaborations] (CMB) (CMB+BAO) (CMB+H0) Dark radiation is hinted, while tension between H0 measurement and CMB/BAO. See also [Hamann and Hasenkamp]: (CMB+HST+C+BAO+WL) Axions in string theory: Dark radiation candidates QCD axion: Strong CP and CDM Ultralight . Original motivations: • A solution of strong CP problem: θ < 10-10 • A candidate of CDM Motivation for string theory Unified theory including quantum gravity! Gauge Matter Gravity D-brane Axions in string theory • Axions via compactifications: C n: n-form gauge field for strings/branes. They can be ultralight and very weak – shift symmetry:aaaaaaaaaaaa; – solution of CP and/or CDM with Moduli Reheating field: • String moduli: Long lifetime: Light + 1/MPl (if SUSY) • Other possibilities: – Inflaton (also in non-SUSY if coupled to axions) – Open string state, e.g., SUSY-breaking fields [Coughlan et al.] Moduli oscillation Radiation Vinflation Vmoduli : moduli VEV : Inflaton potential The decay = Reheating + dark radiation.
    [Show full text]
  • Topics in Physics Beyond the Standard Model Phd Thesis
    Topics in Physics Beyond the Standard Model PhD Thesis Andrea Caputo IFIC - Universitat de València - CSIC Departamento de Física Teórica Programa de Doctorado en Física Under the supervision of Pilar Hernandez Gamazo Valencia, Julio 2020 Pilar Hernández Gamazo, catedrática del Departamento de Física Teórica de la Universidad de Valencia, Certifica: Que la presente memoria, ”Topics in physics Beyond The Standard Model” ,ha sido realizada bajo su dirección en el Instituto de Física Corpuscular, centro mixto de la Universidad de Valencia y del CSIC, por Andrea Caputo, y constituye su Tesis para optar al grado de Doctor en Ciencias Físicas. Y para que así conste, en cumplimiento de la legislación vigente, presenta en el Departamento de Física Teórica de la Universidad de Valencia la referida Tesis Doctoral, y firman el presente certificado. Valencia, Julio 2020 Pilar Hernández Gamazo List of Publications This PhD thesis is based on the following publications: • The seesaw path to leptonic CP violation [1] Caputo, A. and Hernandez, P. and Kekic, M. and Lopez-Pavon, J. and Salvado, J. Eur. Phys. J. C77 (2017) no.4, 258,[1611.05000]. • The seesaw portal in testable models of neutrino masses [2] Caputo, A. and Hernandez,P. and Lopez-Pavon, J. and Salvado, J. JHEP 1706 (2017) 112,[1704.08721]. • Looking for Axion Dark Matter in Dwarf Spheroidals [3] Caputo, A. and Garay, C. P and Witte, S.J. Phys.Rev. D 98 (2018) no.8, 083024,[1805.08780]. • Leptogenesis from oscillations and dark matter [4] Caputo, A. and Hernandez, P. and Rius, N. Eur.Phys.J. C 79 (2019) no.7, 574,[1807.03309].
    [Show full text]
  • Impact of Sterile Neutrinos in Lepton Flavour Violating Processes
    Valentina De Romeri UAM/IFT Madrid Impact of sterile neutrinos in lepton flavour violating processes based on JHEP 1504 (2015) 051 and JHEP 1602 (2016) 083 done in collaboration with Asmaa Abada2 and Ana Teixeira1 1) Laboratoire de Physique Corpusculaire Clermont-Ferrand 2) Laboratoire de Physique Theorique, Orsay 1 Valentina De Romeri - UAM/IFT Madrid Lepton flavour violation and new physics ‣ By construction, lepton flavour violation (LFV) is forbidden in the SM (Strict conservation of total lepton number (L) and lepton flavours (Li))" ! !BUT … neutral lepton flavour is violated through neutrino oscillations! (solar, atmospheric, reactor neutrino data)" ! !Flavour violation in the charged lepton sector: NEW PHYSICS beyond SMm# (SM with UPMNS)!" ! !Are neutral and charged LFV (cLFV) related?$ Does cLFV arise from #-mass mechanism? " ! !We will focus on the study of cLFV signals arising in minimal extensions of the SM by sterile fermion states 2 Valentina De Romeri - UAM/IFT Madrid Beyond the 3-neutrino paradigm: Sterile neutrinos ! From the invisible decay width of the Z boson [LEP]:" ⇒ extra neutrinos must be sterile (=EW singlets) or cannot be a Z decay product" Any singlet fermion that mixes with the SM neutrinos" ● Right-handed neutrinos ● Other singlet fermions" ! !Sterile neutrinos are SM gauge singlets - colourless, no weak interactions, electrically neutral. Interactions with SM fields: through mixings with active neutrinos (via Higgs)" !No bound on the number of sterile states, no limit on their mass scale(s)" !Phenomenological interest (dependent on the mass scale): 3 Valentina De Romeri - UAM/IFT Madrid Beyond the 3-neutrino paradigm: Sterile neutrinos ! From the invisible decay width of the Z boson [LEP]:" ⇒ extra neutrinos must be sterile (=EW singlets) or cannot be a Z decay product" Any singlet fermion that mixes with the SM neutrinos" ● Right-handed neutrinos ● Other singlet fermions" ! !Sterile neutrinos are SM gauge singlets - colourless, no weak interactions, electrically neutral.
    [Show full text]