Advancing Safe and Sustainable Water Reuse in Minnesota 2018 REPORT of the INTERAGENCY WORKGROUP on WATER REUSE

Total Page:16

File Type:pdf, Size:1020Kb

Advancing Safe and Sustainable Water Reuse in Minnesota 2018 REPORT of the INTERAGENCY WORKGROUP on WATER REUSE Advancing Safe and Sustainable Water Reuse in Minnesota 2018 REPORT OF THE INTERAGENCY WORKGROUP ON WATER REUSE ADVANCING SAFE AND SUSTAINABLE WATER REUSE IN MINNESOTA Advancing Safe and Sustainable Water Reuse in Minnesota Minnesota Department of Health Environmental Health Division PO Box 64975 St. Paul, MN 55164-0975 651-201-4700 [email protected] www.health.state.mn.us/waterreuse As requested by Minnesota Statute 3.197: This report cost approximately $50,000 to prepare, including staff time, printing and mailing expenses. Upon request, this material will be made available in an alternative format such as large print, Braille or audio recording. Printed on recycled paper. 1 ADVANCING SAFE AND SUSTAINABLE WATER REUSE IN MINNESOTA Contents Advancing Safe and Sustainable Water Reuse in Minnesota ......................................................... 0 Figures ......................................................................................................................................... 4 Tables .......................................................................................................................................... 5 Acronyms .................................................................................................................................... 6 Report Contributors .................................................................................................................... 7 Executive Summary ..................................................................................................................... 8 Introduction ................................................................................................................................ 9 Why Consider Water Reuse in Minnesota? ............................................................................ 9 Increasing Interest in Reuse .................................................................................................. 10 Benefits, Costs and Risks of Water Reuse............................................................................. 12 Workgroup Establishment/Goal, Objectives, and Activities................................................. 14 Definition of Successful Water Reuse ................................................................................... 16 State Agencies’ Current Roles in Water Reuse ..................................................................... 16 I. Recommendations ............................................................................................................. 21 Recommendation a. Create an expanded workgroup with practitioners, advisors and stakeholders .......................................................................................................................... 23 Recommendation b. Prioritize research needs and integrate ongoing research ................. 23 Recommendation c. Define roles and responsibilities ......................................................... 24 Recommendation d. Establish an information and collaboration hub on the web ............. 25 Recommendation e. Develop a risk-based management system ........................................ 26 Recommendation f. Develop water quality criteria for a variety of reuse systems based on the log reduction target approach for pathogens ................................................................ 29 Recommendation g. Resolve unique issues related to graywater reuse ............................. 30 Recommendation h. Provide education and training ........................................................... 31 II. Water Reuse in Minnesota................................................................................................. 32 Wastewater Reuse ................................................................................................................ 33 Stormwater and Rainwater – Outdoor Reuse ...................................................................... 39 Stormwater and Rainwater – Indoor Reuse ......................................................................... 43 Graywater Reuse ................................................................................................................... 45 Additional Reuse Categories ................................................................................................. 47 Variances for Indoor Stormwater, Wastewater and Graywater Reuse................................ 50 Funding Sources for Reuse.................................................................................................... 51 2 ADVANCING SAFE AND SUSTAINABLE WATER REUSE IN MINNESOTA III. Water Reuse in other Jurisdictions ................................................................................ 53 States..................................................................................................................................... 53 Counties and Municipalities.................................................................................................. 56 International ......................................................................................................................... 57 IV. Managing the Human Health Risks of Nonpotable Water Reuse .................................. 59 Reasons to Consider Human Health ..................................................................................... 59 An Approach for Addressing Human Health Risk ................................................................. 60 Applications of the Log Reduction Approach ....................................................................... 60 What the Log Reduction Approach Looks Like to End Users ................................................ 62 Protecting Health through Proper Storage and Distribution................................................ 64 References................................................................................................................................. 65 Resources .................................................................................................................................. 67 US Resources ......................................................................................................................... 68 International Resources ........................................................................................................ 70 Other Jurisdictions in the US (States, Counties, and Municipalities) ................................... 70 Appendix A. Surveys.................................................................................................................. 73 Minnesota Technical Assistance Program Survey ................................................................ 73 Municipal Separate Storm Sewer System (MS4) Survey ...................................................... 73 Water Reuse Interagency Workgroup Survey ...................................................................... 73 Appendix B. Stakeholder Participation ..................................................................................... 88 Stakeholder List..................................................................................................................... 88 Stakeholder Meeting Summaries.......................................................................................... 89 Appendix C. Liability Risks ......................................................................................................... 96 Insurance Companies ............................................................................................................ 96 Attorney Perspective ............................................................................................................ 96 States and Local Governments ............................................................................................. 96 3 ADVANCING SAFE AND SUSTAINABLE WATER REUSE IN MINNESOTA Figures Figure 1. Some Factors to Consider in Exploring Reuse................................................................ 12 Figure 2. Potential Exposure Pathways......................................................................................... 14 Figure 3. Common types of water reuse projects in Minnesota by source and end use (estimations) ................................................................................................................................. 33 Figure 4. Treated wastewater used for golf course irrigation, Shakopee Mdewakanton Sioux Community .................................................................................................................................... 34 Figure 5. Nonpotable Wastewater Reuse: Current Regulatory Path............................................ 36 Figure 6. Stormwater irrigation system for residential landscape irrigation in city of Carver, Carver County. Homeowners’ association will manage system. .................................................. 40 Figure 7. Large stormwater pond in Waconia will serve new commercial lots along Highway 5 as part of a regional reuse system the city will manage. Water will also be used for street sweeping. ...................................................................................................................................... 42 Figure 8. Schematic of rainwater/stormwater harvesting system from Minnesota Stormwater Manual .........................................................................................................................................
Recommended publications
  • Inclusive Business Models for Wastewater Treatment
    INCLUSIVE INNOVATIONS Inclusive Business Models for Wastewater Treatment Enterprises have developed integrated, affordable wastewater treatment solutions for industries and households to encourage reuse or safe disposal HIGHLIGHTS • Wastewater treatment enterprises treat water before disposal or recycle the water so that it can be reused. • Enterprises provide household wastewater treatment systems that are modular, have low operating costs in terms of electricity and maintenance, have silent operation and less odor and offer quick returns on investment. • Enterprises focusing on industrial wastewater treatment solutions offer efficiency and cost effectiveness. They are quickly commissioned, fully automatic, have remote monitoring, require minimal hazardous chemicals, and treat water for reuse. Summary Wastewater sources include domestic wastewater—pertaining to liquid outflow from toilets, bathrooms, basins, laundry, kitchen sinks and floor washing, and industrial wastewater—effluent water that is discharged during manufacturing processes in factories or by-products from chemical reactions. There are significant operational and financial challenges associated with wastewater treatment in marginalized residential communities, where domestic wastewater does not get treated at source, but instead is discharged to local municipal facilities or directly into water bodies. Similarly, industrial wastewater is heavily contaminated and leads to pollution and diseases, if disposed without treatment. It may also contain metals that have high market value and could potentially be recovered. Social enterprises have introduced unique technologies and integrated solutions to treat such wastewater either for safe disposal or for reuse. These solutions aim to be efficient, affordable and convenient. There are two major types of wastewater treatment plants—household (residential) systems and industrial systems. This series on Inclusive Innovations explores business models that improve the lives of those living in extreme poverty.
    [Show full text]
  • Biosolids Management at South East Water
    BIOSOLIDS MANAGEMENT AT SOUTH EAST WATER Aravind Surapaneni 22 February 2012 OVERVIEW • South East Water • Biosolids Management • Biosolids HACCP • Challenges 2 SOUTH EAST WATER • Commenced operation in 1995 • Provides water, sewerage and recycled water services in the south-east region of Melbourne • One of 3 water retailers in the Melbourne metropolitan area • 1.5 million people served in a 3640 square kilometre area • 8 STPs 3 SOUTH EAST WATER PRODUCTS • Drinking Water • Recycled Water • Biosolids • Effluent for environmental discharge • Sewage (as an ingredient of recycled water) • IWMS products (eg. Sewer mining, Storm water) SOUTH EAST WATER PRODUCT QUALITY OBJECTIVES 1.That our products be safe, sustainable and satisfy customer need. 2. That our products are backed by quality systems that emphasise optimal performance and accountability. SOUTH EAST WATER QUALITY SYSTEM BUSINESS WIDE ISO9000 ISO14000 AS4801 HACCP & ISO22000 PRODUCTS Drinking Water – IWMS (alternative sources) Raw Sewage – Discharge Effluent – Recycled Water – Biosolids 6 South East Water Sewage Treatment Plants Eastern Treatment Port Phillip Plant Bay Pakenham Longwarry Blind Bight Koo Wee Rup Lang Lang Mt Martha Western Port Somers Melbourne Water Boneo Sewage Treatment Plant South East Water Sewage Treatment Plant 2010-11 ESC REPORTING DATA (tDS) South East Water STP Sludge Produced Sludge Stored Biosolids Used Boneo 529 5150 789 Somers 225 2367 835 Mt Martha 665 2198 349 Pakenham 433 3608 194 Blind Bight 29 225 0 Koo Wee Rup 27 261 0 Longwarry 33 467 0 Lang Lang
    [Show full text]
  • Community Decision Making for Decentralized Wastewater Systems Rocky Mountain Institute Snowmass, Colorado
    National Decentralized Water Resources Capacity Development Project Case Studies of Economic Analysis and Community Decision Making for Decentralized Wastewater Systems Rocky Mountain Institute Snowmass, Colorado December 2004 Case Studies of Economic Analysis and Community Decision Making for Decentralized Wastewater Systems Submitted by Rocky Mountain Institute Snowmass, Colorado NDWRCDP Project Number: WU-HT-02-03 National Decentralized Water Resources Capacity Development Project (NDWRCDP) Research Project Final Report, December 2004 NDWRCDP, Washington University, Campus Box 1150 One Brookings Drive, Cupples 2, Rm. 11, St. Louis, MO 63130-4899 DISCLAIMER This work was supported by the National Decentralized Water Resources Capacity Development Project (NDWRCDP) with funding provided by the U.S. Environmental Protection Agency through a Cooperative Agreement (EPA No. CR827881-01-0) with Washington University in St. Louis. This report has not been reviewed by the U.S. Environmental Protection Agency. This report has been reviewed by a panel of experts selected by the NDWRCDP. The contents of this report do not necessarily reflect the views and policies of the NDWRCDP, Washington University, or the U.S. Environmental Protection Agency, nor does the mention of trade names or commercial products constitute endorsement or recommendation for use. CITATIONS This report was prepared by Richard Pinkham Booz Allen Hamilton Jeremy Magliaro Michael Kinsley Rocky Mountain Institute 1739 Snowmass Creek Road Snowmass, CO 80002 The final report was edited and produced by ProWrite Inc., Reynoldsburg, OH. This report is available online at www.ndwrcdp.org. This report is also available through the National Small Flows Clearinghouse P.O. Box 6064 Morgantown, WV 26506-6065 Tel: (800) 624-8301 WWCDCS25 This report should be cited in the following manner: Pinkham, R.
    [Show full text]
  • Reuse: a Safe and Effective Way to Save Water
    SOUTH FLORIDA WATER MANAGEMENT DISTRICT Water Reuse: A safe and effective way to save water ON THE INSIDE The demand for water is projected to increase over the long term in n Reclaimed water and reuse explained South Florida. Urban populations, agricultural operations and the environment depend on adequate water supplies. Fresh ground n Reuse success stories water and surface water will not be sufficient to satisfy all future n Reuse on a regional level demands. Meeting this growing thirst hinges on efforts to develop How water is reclaimed n alternative water sources. This brochure looks at one of the ways to n Purple pipes signify conserve Florida’s water resources — reclaiming water for reuse. reclaimed water Consider what happens to the water used inside the home. Once down the drain, this water is piped to the local wastewater treatment plant where it undergoes treatment to meet state standards for disposal. Historically, most of the water was disposed by injecting it deep underground or by discharging to surrounding waters or to the ocean. This is a wasteful way to treat such a valuable resource. More and more communities are finding that wastewater need not be wasted. They are reclaiming this water for irrigation of residential lots, golf courses, sports fields and orange groves; industrial cooling; car washing; fire protection; and Reclaimed water sign in Collier County groundwater recharge. Reuse is also beneficial to the environment. Success Stories During times of drought, reclaimed water •Pompano Beach – The city takes is a dependable source of water because wastewater being piped to the ocean, its availability is not dependent on rainfall.
    [Show full text]
  • Wastewater-Based Resource Recovery Technologies Across Scale a Review
    Resources, Conservation & Recycling 145 (2019) 94–112 Contents lists available at ScienceDirect Resources, Conservation & Recycling journal homepage: www.elsevier.com/locate/resconrec Wastewater-based resource recovery technologies across scale: A review T ⁎ Nancy Diaz-Elsayed, Nader Rezaei, Tianjiao Guo1, Shima Mohebbi2, Qiong Zhang Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA ARTICLE INFO ABSTRACT Keywords: Over the past few decades, wastewater has been evolving from a waste to a valuable resource. Wastewater can Water reuse not only dampen the effects of water shortages by means of water reclamation, but it also provides themedium Energy recovery for energy and nutrient recovery to further offset the extraction of precious resources. Since identifying viable Nutrient recovery resource recovery technologies can be challenging, this article offers a review of technologies for water, energy, Wastewater treatment and nutrient recovery from domestic and municipal wastewater through the lens of the scale of implementation. System scale The system scales were classified as follows: small scale (design flows3 of17m /day or less), medium scale (8 to 20,000 m3/day), and large scale (3800 m3/day or more). The widespread implementation of non-potable reuse (NPR) projects across all scales highlighted the ease of implementation associated with lower water quality requirements and treatment schemes that resembled conventional wastewater treatment. Although energy re- covery was mostly achieved in large-scale plants from biosolids management or hydraulic head loss, the highest potential for concentrated nutrient recovery occurred in small-scale systems using urine source separating technologies. Small-scale systems offered benefits such as the ability for onsite resource recovery and reusethat lowered distribution and transportation costs and energy consumption, while larger scales benefited from lower per unit costs and energy consumption for treatment.
    [Show full text]
  • Redesign. Rethink. Reduce. Reuse. Go Beyond Recycling
    REDESIGN. RETHINK. REDUCE. REUSE. GO BEYOND RECYCLING. WHAT IS ZERO WASTE? the entire lifecycle of products used within a facility. With TRUE, your facility can demonstrate to the world what you’re doing to minimize Zero waste is a philosophy that encourages the redesign of resource your waste output. life cycles so that all products are reused; a process that is very similar to the way that resources are reused in nature. Although recycling is HOW DOES CERTIFICATION WORK? the first step in the journey, achieving zero waste goes far beyond. By focusing on the larger picture, facilities and organizations can reap The TRUE Zero Waste certification program is an Assessor-based financial benefits while becoming more resource efficient. program that rates how well facilities perform in minimizing their non-hazardous, solid wastes and maximizing their efficient in the use According to the EPA, the average American generates 4.4 pounds of of resources. A TRUE project’s goal is to divert 90 percent or greater trash each day, and according to the World Bank, global solid waste overall diversion from the landfill, incineration (waste-to-energy) and generation is on pace to increase 70 percent by 2025. For every can of the environment for solid, non-hazardous wastes for the most recent garbage at the curb, for instance, there are 87 cans worth of materials 12 months. that come from extraction industries that manufacture natural resources into finished products—like timber, agricultural, mining and Certification is available for any physical facility and their operations, petroleum. This means that while recycling is important, it doesn’t including facilities owned by: companies, property managers, address the real problem.
    [Show full text]
  • Reduce, Reuse and Recycle (The 3Rs) and Resource Efficiency As the Basis for Sustainable Waste Management
    CSD-19 Learning Centre “Synergizing Resource Efficiency with Informal Sector towards Sustainable Waste Management” 9 May 2011, New York Co-organized by: UNCRD and UN HABITAT Reduce, Reuse and Recycle (the 3Rs) and Resource Efficiency as the basis for Sustainable Waste Management C. R. C. Mohanty UNCRD 3Rs offer an environmentally friendly alternatives to deal with growing generation of wastes and its related impact on human health, eco nomy and natural ecosystem Natural Resources First : Reduction Input Reduce waste, by-products, etc. Production (Manufacturing, Distribution, etc.) Second : Reuse Third : Material Recycling Use items repeatedly. Recycle items which cannot be reused as raw materials. Consumption Fourth : Thermal Recycling Recover heat from items which have no alternatives but incineration and which cannot Discarding be recycled materially. Treatment (Recycling, Incineration, etc.) Fifth : Proper Disposal Dispose of items which cannot be used by any means. (Source: Adapted from MoE-Japan) Landfill disposal Stages in Product Life Cycle • Extraction of natural resources • Processing of resources • Design of products and selection of inputs • Production of goods and services • Distribution • Consumption • Reuse of wastes from production or consumption • Recycling of wastes from consumption or production • Disposal of residual wastes Source: ADB, IGES, 2008 Resource efficiency refers to amount of resource (materials, energy, and water) consumed in producing a unit of product or services. It involves using smaller amount of physical
    [Show full text]
  • The Role of Water Reclamation in Water Resources Management in the 21St Century
    THE ROLE OF WATER RECLAMATION IN WATER RESOURCES MANAGEMENT IN THE 21ST CENTURY K. Esposito1*, R. Tsuchihashi2, J. Anderson1, J. Selstrom3 1*: Metcalf & Eddy, 60 East 42nd Street, 43rd Floor, New York, NY 10165 2: Metcalf & Eddy, 719 2nd Street, Suite 11, Davis, CA 95616 3: Metcalf & Eddy, 2751 Prosperity Ave Suite 200, Fairfax, VA 22031 ABSTRACT In recognition of the existing and impending stress to traditional water supply, water planners must look beyond structural developments and interbasin water transfers to secure supply into the future. In this process, it is becoming evident that various issues related to water must be integrated into a whole system approach, including water supply, water use, wastewater treatment, stormwater management, and management of surrounding water environment. In bringing disparate water assets together, alternatives to traditional water supply should arise. Integrated water resources management can provide a realistic framework for examining the feasibility of water reuse. This paper evaluates how water reuse can become a strategic alternative in water resources management. The key challenges that limit water reclamation as one of the key elements in integrated water resources management scheme are discussed, including limitations with typical centralized wastewater treatment systems and public health protection, particularly the implications of trace contaminants. The key considerations to address these challenges are presented including (1) selection of appropriate treatment processes and reuse applications, (2) scientific and engineering solutions to emerging concerns, (3) consideration for cost effective and sustainable system, and (4) public acceptance. Recent water reclamation projects are presented to illustrate the response of the engineering community to the challenges of making water reclamation and reuse a real and sustainable solution to water supply system management planning.
    [Show full text]
  • Modeling the Effects of Sewer Mining on Odour and Corrosion in Sewer Systems
    20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013 www.mssanz.org.au/modsim2013 Modeling the Effects of Sewer Mining on Odour and Corrosion in Sewer Systems N. Marleni a, S. Gray b, A. Sharma c, S. Burn c and N. Muttil a a College of Engineering and Science, Victoria University, Melbourne b Institute of Sustainability and Innovation (ISI), Victoria University, Melbourne c Commonwealth of Scientific, Industrial and Research Organization (CSIRO) Email: [email protected] Abstract: Increasing demand has led to shortage of potable water in many countries. The use of alternative water sources is one of the solutions undertaken to overcome this issue. Alternative water sources can be derived from either collected rainwater, treated greywater or treated wastewater. Sewer Mining is known as an efficient technology which can reduce the cost of wastewater infrastructure required to transport wastewater because the Sewer Mining facility is usually installed close to the site that is using the treated wastewater. The treated water from Sewer Mining has been used as one of the sources of alternative water, particularly to supply water for public open spaces, garden irrigation and toilet flushing. It is conducted by extracting the sewage from sewer pipes and most of the times, disposing the sludge back to sewer pipes. The sewage extraction and sludge disposal back to sewer network is suspected to trigger sewer problems such as blockages. Several applications of Sewer Mining facility have proved to contribute to the increase of blockages in sewer pipes. Furthermore, the changes in the sewage composition after the sewage extraction and sludge disposal location lead to alteration of the sewage biochemical transformation processes, which finally were suspected to change the state of hydrogen sulphide build up.
    [Show full text]
  • Designing out Waste: a Design Team Guide for Buildings
    Uniclass A42: N462 CI/SfB (Ajp) (T6) Designing out Waste: A design team guide for buildings LESS WASTE, SHARPER DESIGN Halving Waste to Landfill “ Clients are making construction waste reduction a priority and design teams must respond. This stimulating guide to designing out construction waste clearly illustrates how design decisions can make a significant and positive difference, not only through reducing environmental impact but also making the most of resources. It’s a promising new opportunity for design teams, which I urge them to take up.” Sunand Prasad, RIBA President 1.0 Introduction 6 Contents 2.0 The case for action 8 2.1 Materials resource efficiency 10 2.2 Drivers for reducing waste 13 3.0 The five principles of Designing out Waste 14 3.1 Design for Reuse and Recovery 18 3.2 Design for Off Site Construction 20 3.3 Design for Materials Optimisation 23 3.4 Design for Waste Efficient Procurement 24 3.5 Design for Deconstruction and Flexibility 27 4.0 Project application of the five Designing out Waste principles 28 4.1 Client brief and designers’ appointments 31 4.2 RIBA Stage A/B: Appraisal and strategic brief 32 4.3 RIBA Stage C: Outline proposal 34 4.4 RIBA Stage D: Detailed proposals 38 4.5 RIBA Stage E: Technical design 40 5.0 Design review process 42 6.0 Suggested waste reduction initiatives 46 6.1 Design for Reuse and Recovery 48 6.2 Design for Off Site Construction 50 6.3 Design for Materials Optimisation 51 6.4 Design for Waste Efficient Procurement 52 6.5 Design for Deconstruction and Flexibility 53 Appendix A - The Construction Commitments: Halving Waste to Landfill 56 Appendix B - Drivers for reducing waste 57 Written by: Davis Langdon LLP ◀ Return to Contents This document provides information on the key principles that designers can use during the design process and how these Section 2.0 principles can be applied to projects to maximise opportunities Case for action – Presents to the construction industry the to Design out Waste.
    [Show full text]
  • Reduce Reuse Recycle Compost
    Loyola is committed to waste reduction as part of our sustainability efforts. For more information on how you can help reduce waste on campus, please review this summary of available programs. Reduce • Eliminate Disposables – Get out of the habit of single-use-items. With a set of reusable products (cutlery, mug, water bottle, bag), you can cut down on plastics and save money. • Sustainable Purchasing - Take time to implement thoughtful purchasing practices to conserve resources and save the university money. o Life-Cycle Considerations – Before you bring something to campus, think about the full impact of its use. How much energy or water will it consume? Is there a way to recycle it when it’s not needed? o Third-Party Certified – Considering purchasing equipment or materials that meet reputable certifications. o Change Your Use – Always print double-sided. Avoid purchasing what you don’t need. Eliminate packaging materials where you can. • Green Move-In – Consider what you bring to campus. Don’t bring ‘one-off’ or delicate items that become someone’s problem to dispose of. For more information on Sustainable Purchasing use the ‘Guide to Green Purchasing at Loyola’ or talk to Loyola’s Purchasing Department. Reuse • In Your Department – Many times we have materials that others can use. Set up a re-use center to share office supplies, conference left-overs, or other common materials. • Think Green and Give – At the end of each school year, Loyola student donate tons of clothes and household goods through this program in the Residence Halls. LUC.edu/thinkgreenandgive • Biodiesel Program – Loyola ‘upcycles’ waste vegetable oil into vehicle fuel, biosoap, and other products.
    [Show full text]
  • Sustainable Action Plan for County Operations 4890-012418 RTP-HT Table of Contents
    REPORT CARD: FY 2016/2017 Sustainable Action Plan for County Operations 4890-012418 RTP-HT Table of contents Table of contents . 3 . Report card: FY 2016/2017 . 4 . How to use this report . 4 Progress summary . 5. Chapter 1 Chapter 4 Chapter 7 Minimizing the Carbon Footprint Alternative Fuel Waste of County Operations 6 Vehicles 12 Reduction 18 Noteworthy accomplishments . 6 Noteworthy accomplishments . 12 Noteworthy accomplishments . 18 Benefits & Performance . 7 Benefits & Performance . 13 Benefits & Performance . 19 Chapter 2 Chapter 5 Chapter 8 Renewable Energy & Energy Water Conservation Green Efficiency 8 & Management 14 Purchasing 20 Noteworthy accomplishments . 8 Noteworthy accomplishments . 14 Noteworthy accomplishments . 20 Benefits & Performance . 9 Benefits & Performance . 15 Benefits & Performance . 21 Chapter 3 Chapter 6 Chapter 9 Green Land Conservation Health & Building 10 & Management 16 Wellness 22 Noteworthy accomplishments . 10 Noteworthy accomplishments . 16 Noteworthy accomplishments . 22 Benefits & Performance . 11 Benefits & Performance . 17 Benefits & Performance . 23 Glossary . 24 References . 26 . Sustainable Action Plan for County Operations • Report Card: FY 2016/2017 | 3 REPORT CARD: FY 2016/2017 Sustainable Action Plan for County Operations n May 17, 2014, the Pima County Board of Supervisors adopted the 2014 Sustainable O Action Plan for County Operations . This plan seeks to achieve a “balance between economic development, social well-being and environmental protection to ensure the needs of current generations can be met without compromising the ability of future generations to meet their own needs .” Measuring progress is crucial to the success of Pima County’s sustainability efforts . The purpose of this report card is to inform County decision makers and the broader community about Pima Construction workers restore and preserve the Pima County’s progress toward meeting the goals and County Historic Courthouse .
    [Show full text]