Preparation of Edible Non-Wettable Coating with Soybean Wax for Repelling Liquid Foods with Little Residue

Total Page:16

File Type:pdf, Size:1020Kb

Preparation of Edible Non-Wettable Coating with Soybean Wax for Repelling Liquid Foods with Little Residue materials Article Preparation of Edible Non-wettable Coating with Soybean Wax for Repelling Liquid Foods with Little Residue Tianyu Shen, Shumin Fan *, Yuanchao Li, Guangri Xu and Wenxiu Fan * School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; [email protected] (T.S.); [email protected] (Y.L.); [email protected] (G.X.) * Correspondence: [email protected] (S.F.); [email protected] (W.F.) Received: 17 June 2020; Accepted: 20 July 2020; Published: 24 July 2020 Abstract: Liquid food adhesion on containers has increased food waste and pollution, which could be effectively alleviated with a superhydrophobic surface. In this research, the superhydrophobic coating was fabricated with edible soybean wax on different substrates by a spraying method. The coated surface showed excellent superhydrophobicity due to its microstructure formed by self-roughening, which could repel a variety of viscous liquid food with the apparent contact angle of 159 2 . ± ◦ The coated surface was still liquid-repellent after hot water immersion (45 ◦C), abrasion test with sandpaper, water impact, finger touch and immersion into yogurt. The liquid-repellent coating with soybean wax, which is natural and green, is promising for application in the food industry to reduce waste. Keywords: non-wettable coating; edible; soybean wax; residue 1. Introduction With the development of the economy, people’s living standards improved, especially in food demand. In daily life, viscous liquid food (such as yogurt, honey, milk, coffee, et al.) residue remain adhering to the container after drinking, which has given us a great deal of inconvenience and resulted in huge waste (up to 15% of liquid food products) [1]. Food adhesion problems could be effectively alleviated by using a superhydrophobic surface. Superhydrophobic surfaces have become a popular topic due to their application in oil/water separation [2–4], anti-corrosion [5], drag reduction [6], reproductive medicine and cryobiology [7] et al. Superhydrophobic surfaces, characterized by high apparent contact angles (> 150◦) and low contact angle hysteresis (the difference between the advancing and receding contact angles, which could lead to a low sliding angle), have tremendous practical applications, including self-cleaning and drag reduction. The non-wetting coatings could eliminate liquid food residue, avoiding the adhesion of viscous liquid to packaging material [8–14]. Superhydrophobic coatings are fabricated through surface texture and low solid surface energy [15] or modification of surface microstructure without using low surface-energy reagents [16,17]. Microscale structure, nanoscale structure and hierarchical structure turned out to be important for surface texture fabrication. So far, most of the studies to fabricate water-repellent surfaces use nanoparticles combined with fluorine-containing reagents. Vahabi et al. [18] prepared flexible non-wettable films by creating coatings of polyurethane and fluorinated silica particles on a substrate, which repelled varieties of liquids. Pan et al. [19] fabricated superhydrophobic stainless-steel wire meshes by creating coatings of cross-linked poly(dimethylsiloxane) and fluorodecyl polyhedral oligomeric silsequioxane. The fluorocarbon materials could decompose to perfluorooctanoic acid (PFOA), whose toxicity is biocumulative and persistent to humans. Thus, the fluorocarbon materials, classified as contaminants, are unfit for the preparation of edible non-wettable coatings. Materials 2020, 13, 3308; doi:10.3390/ma13153308 www.mdpi.com/journal/materials Materials 2020, 13, x FOR PEER REVIEW 2 of 11 Materials(PFOA),2020 whose, 13, 3308 toxicity is biocumulative and persistent to humans. Thus, the fluorocarbon materials,2 of 11 classified as contaminants, are unfit for the preparation of edible non-wettable coatings. To make a non-wettable coating on packaging material, the most important factor is safety: not allowingTo make toxicity a non-wettable when contacting coating food. on A packagingsuperhydrophobic material, surface the most could important be prepared factor by spraying is safety: nota mixture allowing of toxicitya non-polar when compound contacting food.and solvent A superhydrophobic [20,21]. Wang surface et al. [22] could prepared be prepared water-repellent by spraying acoatings mixture using of a non-polarbeeswax and compound carnauba and wax. solvent The coatings [20,21]. were Wang non-wettable et al. [22] prepared towards water-repellentdifferent liquid coatingsfood, which using was beeswax edible and carnaubanatural. Liu wax. et Theal. [23] coatings created were liquid-repellent non-wettable coatings towards using different rice liquid bran food,wax and which candelilla was edible wax and by natural. a one step Liu etspraying al. [23] createdmethod liquid-repellent on polypropylene coatings (PP) using substrates, rice bran which wax andcould candelilla be used wax for byeliminating a one step sprayingliquid waste method of food on polypropylene containers. Zhang (PP) substrates, et al. [24] which fabricated could bea usedsuperhydrophobic for eliminating paper liquid surface waste with of food good containers. transparency Zhang and et stability al. [24] fabricatedproperties a via superhydrophobic mixture coating paperof beeswax surface and with carnauba good transparency wax. The wax and mixture stability was properties emulsified via mixtureand coated coating on a of paper beeswax surface, and carnaubafollowed by wax. annealing The wax at mixture different was temperatures. emulsified and Su coatedbmicrometer on a paper structure surface, was followed generated by annealing on the base at diofff erentmicrometer temperatures. spherical Submicrometer wax particles. structure Yang was generatedet al. [25] on theprepared base of micrometerthree kinds spherical of edible wax particles.superhydrophobic Yang et al. surfaces [25] prepared by fumigating three kinds lard, of ediblefood grade superhydrophobic paraffin and beeswax surfaces on by fumigatingcalcined Fe lard,foil. foodAll samples grade para showedffin and excellent beeswax superhydrophobicity on calcined Fe foil. All and samples effectively showed repelled excellent starch superhydrophobicity slurries and liquid andfoods eff withoutectively repelledobservable starch residues. slurries The and used liquid sample foods withoutcould be observable recovered residues. by re-fumigation. The used sample These couldresearches be recovered have promoted by re-fumigation. the preparation These of researches edible non-wettable have promoted materials, the preparation which should of edible be non-wettableenvironmentally materials, friendly whichand should should not be contai environmentallyn toxic chemicals friendly and unapproved and should additives. not contain toxic chemicalsSoybean and wax unapproved is made additives.from natural soybeans, which are abundant. Thus, the soybean wax is cheap,Soybean natural wax and isbiodegradable made from natural without soybeans, environm whichental pollution, are abundant. which Thus, has great the soybean advantages wax in is cheap,terms of natural health and and biodegradable environmental without protection environmental [26,27]. The pollution, main ingredient which has of greatsoybean advantages wax is intriacylglyceride terms of health composed and environmental of stearic acid. protection Herein, superhydrophobic [26,27]. The main ingredientcoatings were of soybeanfabricated wax with is triacylglyceridesoybean wax by spray composed coating of stearicof a wax acid. suspension Herein, in superhydrophobic ethanol. This low-cost coatings and weresimple fabricated non-wettable with soybeancoating exhibited wax by spray excellent coating liquid of a waxrepelling suspension properties in ethanol. against This a variety low-cost of andnon-Newtonian simple non-wettable viscous coatingfood liquids exhibited or hot excellent water solution liquid repellingon different properties food packaging against a materials variety of (glass, non-Newtonian paper, plastic viscous and foodceramics). liquids The or coating hot water provided solution excellent on different resistan foodce packagingto hot water materials immersion, (glass, sandpaper paper, plastic abrasion, and ceramics).water impact, The finger coating touching provided and excellent yogurt immersio resistancen. toThus, hot waterthe non-wettable immersion, coating sandpaper with abrasion,soybean waterwax could impact, be used finger to touchingreduce liquid and yogurtfood residue immersion. on different Thus, thesubstrates, non-wettable including coating glass with slide, soybean paper, waxplastic could and beceramic. used to reduce liquid food residue on different substrates, including glass slide, paper, plastic and ceramic. 2. Materials & Methods 2. Materials & Methods 2.1. Materials 2.1. Materials Ethanol was purchased from Tianjin Hengxing Chemical Reagent Manufacturing co, LTD, Ethanol was purchased from Tianjin Hengxing Chemical Reagent Manufacturing co, LTD, Tianjin, Tianjin, China. Soybean wax was purchased from Hubei Xinghe Chemical co, LTD, Hubei, China. China. Soybean wax was purchased from Hubei Xinghe Chemical co, LTD, Hubei, China. Milk, fruit Milk, fruit juice, Coca Cola, honey and black tea were purchased from local supermarkets, Xinxiang, juice, Coca Cola, honey and black tea were purchased from local supermarkets, Xinxiang, China. Glass China. Glass slides, paper, plastic and ceramic were available at local markets, Xinxiang, China. slides, paper,
Recommended publications
  • United States Patent Office Patented Apr
    3,508,933 United States Patent Office Patented Apr. 28, 1970 1. 2 3,508,933 R’ in the above formulae can be any alkyl radical con AUTOMOBILE POLISH taining from 1 to 4 carbon atoms. Illustrative examples Gerald P. Yates, Midland, Mich., assignor to Dow Cor of R' include the methyl, ethyl, propyl and butyl radi ning Corporation, Midland, Mich., a corporation of cals. Preferably R' is a methyl radical. Michigan R The R radical in the above formula can be any divalent No Drawing. Filed Feb. 20, 1967, Ser. No. 617,064 hydrocarbon radical free of aliphatic unsaturation which Int, C. C08h 9/06, C09a 1/08 contains 3 or 4 carbon atoms. As those skilled in the U.S. C. 106-10 10 Claims art know, there must be at least three carbon atoms between the silicon atom and the nitrogen atom joined ABSTRACT OF THE DISCLOSURE O by the R radical. Specific examples of R are the Wax containing automobile polishes are made deter gent resistant by incorporating therein the reaction prod and -CH2CH(CH3)CH2- radicals. uct of a hydroxyl endblocked polydimethylsiloxane having The weight ratios of the siloxane and silane used in a viscosity in the range of 10 to 15,000 cs., and a silane preparing the reaction product should be in the range of selected from the group consisting of those having the 1:1 to 20:1 in order to obtain a polish having good general formulae R' (R'O)3-Si(CH2)NHR'' and gloss, and the desired detergent resistance.
    [Show full text]
  • Development of a Pigmented Wax/Resin Fill Formulation for the Conservation of Paintings
    ART CONSERVATION DEPARTMENT BUFFALO STATE COLLEGE DEVELOPMENT OF A PIGMENTED WAX/RESIN FILL FORMULATION FOR THE CONSERVATION OF PAINTINGS CNS 695 SPECIALIZATION PROJECT Christine McIntyre May 13, 2011 Faculty Supervisor: James Hamm TABLE OF CONTENTS I. Abstract 3 II. Introduction 3 III. Project Presentation 4 3.1 Overview 4 3.2 Background of Wax Fills Used in Art Conservation 4 3.3 Results From Email Questionnaire 5 3.4 Experimental Procedure 5 IV. Results and Discussion 17 V. Conclusion 20 VI. Acknowledgements 21 VII. References Cited 21 VIII. Appendices 22 Appendix 1: Pigmented Wax Fill Formulas Submitted by Questionnaire Participants 22 Appendix 2: Pigmented Wax/Resin Fill Formulations (Parts by Mass) 24 Appendix 3: Properties of Components in Pigmented Wax/Resin Fill Formulations 25 Appendix 4: Evaluations Based on Frederick Wallace’s Research, Conducted in 1990 27 IX. Footnotes 28 2 I. ABSTRACT Pigmented wax/resin fills are made and used by painting conservators to fill losses in oil paintings. It is an ideal material because textures, such as canvas weave, can be impressed into the fills to match the painted surface. The Buffalo State College Art Conservation program employs a successful pigmented wax/resin fill formula that uses beeswax, microcrystalline wax, resin, and pigments. One of the components, Laropal® K-80, a resin, is no longer manufactured. The purpose of this investigation was to research and find an alternative resin that would yield an equal or better wax fill formula. To gain more information, aged pigmented wax samples were examined from a report written by Frederick Wallace. In addition, a questionnaire was emailed to conservators to discover what, if any, wax fills they were using, and in what manner.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0021385 A1 SMITH Et Al
    US 20170021385A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0021385 A1 SMITH et al. (43) Pub. Date: Jan. 26, 2017 (54) METHODS OF PREPARING SOLID Publication Classification PARTICLE SOLUTIONS FOR FORMING (51) Int. Cl. TEXTURED SURFACES BSD L/12 (2006.01) (71) Applicant: LiquiGlide Inc., Cambridge, MA (US) BOSD 3/02 (2006.01) (52) U.S. Cl. (72) Inventors: J. David SMITH, Arlington, MA (US); CPC ............... B05D 1/12 (2013.01); B05D3/0254 Tao CONG, Quincy, MA (US); (2013.01); B05D 2320/00 (2013.01) Ravikumar VASUDEVAN, Somerville, MA (US); Hamideh Mohammad (57) ABSTRACT ALIPOUR, Cambridge, MA (US); Embodiments described herein relate to methods of forming JiaPeng XU, Newton, MA (US); liquid-impregnated Surfaces, and in particular to methods of Charles W. HIBBEN, Darien, CT preparing Solid particle solutions for forming textured Sur (US); Brian John JORDAN, faces which can be impregnated with an impregnating liquid Winchester, MA (US) to form a liquid-impregnated Surface. In some embodiments, a method of forming a textured Surface includes dissolving (21) Appl. No.: 15/053,660 a solid in a solvent to form a solution. The solid has a concentration, which is less than a first Saturation concen (22) Filed: Feb. 25, 2016 tration of the solid in the solvent at a first temperature and greater than a second saturation concentration of the solid in the solvent at a second temperature. The solution is allowed Related U.S. Application Data to form a solid particle solution. The solid particle solution (60) Provisional application No. 62/120,630, filed on Feb.
    [Show full text]
  • Add-On Rice-Bran-Wax-2018.Pdf [Pdf]Download
    SPECIALTY WAXES FROM KAHL WAX Rice bran is covered by a waxy layer which protects the rice grain against humidity and other environmental influences. In the extraction process of rice bran oil the wax arises as byproduct and would be disposed of if not used as a raw material. Rice bran wax is suitable for a wide variety of color cosmetics, skin and hair care products. KahlWax offers this finest specialty wax in three different forms: 2811 Rice Bran Wax, 2811P Rice Bran Wax Beads, and 2811P7 Rice Powder. The new KahlWax product 2811P7 Rice Powder is a very mild scrubbing ingredient for extremely gentle deep-cleansing of the skin without causing any redness or irritation. Even formulations with 2811P7 Rice Powder which are used daily just carefully polish the skin, giving a healthy radiance and a perfect complexion. 2811P7 Rice Powder can also be used as a natural, soft-focus agent. It has a strong mattifying effect thanks to its influence on light reflection. Additionally it reduces skin gloss by absorbing sebum. Used in a cream or foundation it optically reduces wrinkles and blurs perfectly, allowing claims such as porcelain-like complexion and camera-ready look. The powder particles are round-shaped and roll over the skin leaving a pleasant, dry, and velvety skin feel. 2811P7 Rice Powder should be added to formulations at temperatures below 50 °C to avoid melting. RECOMMENDED FORMULATION WITH RICE POWDER IT'S NO CRIME TO PRIME | FACE PRIMER | SC-FAC-007-02 | TUBE Applying this face primer smoothes texture, boosts coverage and improves wear and lasting.
    [Show full text]
  • Anti-Oxidant and Anti-Bacterial Properties of 1-Octacosanol
    chem io ist t B ry n & la P P h f y Sengupta et al., J Plant Biochem Physiol 201, 6:1 o s l i Journal of a o l n DOI: 10.4172/2329-9029.1000206 o r g u y o J ISSN: 2329-9029 Plant Biochemistry & Physiology Research Article Article Open Access Anti-Oxidant and Anti-Bacterial Properties of 1-Octacosanol Isolated from Rice Bran Wax Sengupta S1*, Nandi I1, Bhattacharyya DK2 and Ghosh M1 1Department of Chemical Technology, University College of Science and Technology, University of Calcutta, Kolkata, West Bengal, India 2School of Community Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur (BESUS), Howrah, India Abstract Octacosanol, a primary alcohol, was isolated from rice bran wax and characterized by GCMS and XRD techniques, which confirmed the identity and purity of the isolated octacosanol. Five different concentrations of the compound ranging from 0.01 mg/ml, 0.05 mg/ml, 0.1 mg/ml, 0.5 mg/ml to 1.0 mg/ml were prepared in isopropanol. The antioxidant activities of octacosanol were studied at these concentrations for four in vitro assay systems including DPPH radical scavenging activity, reducing activity, metal chelation activity and inhibition of lipid peroxidation. Maximum antioxidant potency was displayed at 1.0 mg/ml for all the assays except the metal-chelation assay which demonstrated highest activity at 0.5 mg/ml. Octacosanol also showed anti-bacterial activities against Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis as observed by disc assay against concentrations of 1 mg/ml and 2 mg/ml.
    [Show full text]
  • United States Patent Off CC Patented Sept
    2,952,548 United States Patent Off CC Patented Sept. 13, 1960 2 it becomes possible to formulate commercial dry mixes with this modified protopectin composition. It is another object of the invention to provide a modi 2,952,548 fied protopectin composition suitable for use in dry mixes PROTOPECTN COMPOSITION AND METHOD 5 with flour of any kind, i.e., without regard to gluten con OF PREPARATION tent. - It is another object of the invention to provide a pro Lincoln T. Work, 36 W. 44th St, Maplewood, N.J. topectin mixture which will be water resistant over a No Drawing. Filed Oct. 5, 1956, Ser. No. 614,081 long shelf life as a dry mix. 0. It is a further object of the invention to provide a 6 Claims. (C. 99-90) protopectin composition which has a controlled resistance to water absorption and attains this resistance without the use of large amounts of fat. - Other objects and advantages of the invention will in This invention relates to an improved pectinous com 15 part be obvious and in part appear hereinafter. position and to an improvement in processing such water The invention is embodied in a protopectin composi sensitive organic components for use in food products tion blended with a water resistant edible material so and, in particular, to the preperation of pectinous mate that the resultant blend is a product which has substantial rials, such as protopectin, to delay their absorption of resistance to water absorption, but is compatible with Water, thereby to permit a comfortable time margin for 20 water to a degree sufficient to avoid segregation of the the handling and mixing of these materials as compo protopectin in the baking mix.
    [Show full text]
  • Products for Cosmetics and Personal Care
    About Us Products for Cosmetics and Personal Care THE INTERNATIONAL Products from the IGICares GROUP, INC. (IGI) is an portfolio international leader in technology, development and Microcrystalline waxes and manufacturing of wax based petrolatums products. Unique ISO-Polymer products We are a customer driven organization committed to Vegetable based petrolatum meeting our customer's needs replacement by supplying value-added Synthetic beeswax and candelilla products and services. We wax understand your demands for higher product quality (IGI is ISO 9001 registered) and IGI proudly offers the IGICares™ lineup of products for the cosmetic and personal care superior performance. We industries. want to contribute to your success by providing top Product Description Applications quality products supported by sound technical service that ISO-Polymers Branched polymer; creates network of crystalline Lip balms, deodorants, solid can help you produce better chains that allow for gelling characteristics and sunscreens, cosmetics, insect products cost effectively. control of syneresis. repellants, and solid fragrances. Petrolatums USP grade petrolatums Creams, lotions, lip care products, body washes Sebapet IGI Sebapet is a vegetable based petrolatum. Creams, lotions, lip care products, body washes. Microcrystalline Wax Complex mixtures of saturated aliphatic Creams, lotions, lipstick, eyeliners, hydrocarbons that are predominantly branched hair care products molecular chains Contact Us Synthetic Beeswax IGI Synthetic Beeswax has been developed for IGI Synthetic Beeswax forms use in cosmetic applications to replace stable cosmetic emulsions and 1-800-561-3509 Beeswax gives lasting protection in lip care 416-293-1555 products. [email protected] Synthetic Candelilla IGI Synthetic Candelilla Wax has been developed lipsticks, creams and lotions Wax for use in cosmetic applications to replace IGI Candelilla Wax with all the properties of candelilla 50 Salome Dr wax but without the resin.
    [Show full text]
  • Celebrating the Rich History of Waxes Bladel, the Netherlands What’S Inside: Watertown, Connecticut, Usa
    CELEBRATING THE RICH HISTORY OF WAXES BLADEL, THE NETHERLANDS WHAT’S INSIDE: WATERTOWN, CONNECTICUT, USA 2-3 – HERITAGE 4-5 – INNOVATION 6-7 – WORLD RESOURCES 8-9 – NATURAL/ORGANIC 10-11 – SILICONYL WAXES 12-13 – CUSTOM BLENDS 14-15 – EMULSIFYING WAXES 16-17 – KESTER WAXES 18-19 – MILKS 20-41 – WAX SPECIFICATIONS 42 – WAX PROPERTIES KOSTER WAX FACT: Koster Keunen was founded in the Netherlands and is world renowned for supplying quality waxes. 1852 OUR HISTORY OF TRADITION AND INNOVATION Founded in 1852 as a family business, Koster Keunen has evolved into the world’s leading processor, refiner and marketer of natural waxes. From the early days of sun bleaching beeswax for the candle industry, we now specialize in processing and formulating quality waxes for cosmetics, pharmaceutical, food, coatings, and various other technical industries worldwide. For over 150 years we have sought perfection, constantly introducing new and innovative processes and waxes, while investing in experienced, knowledgeable people and the best equipment to help meet this goal. As a family business we believe very strongly in the need for developing 3 superior quality products, and supporting our customers with excellent service, throughout the formulation and marketing processes. From our two facilities, in the USA and Holland, we offer a huge range of natural waxes, synthetic waxes and wax derivatives, enabling our customers to produce thousands of products that look, feel and work superbly KOSTERKEUNEN.COM / 1 860.945.3333 KOSTER WAX FACT: Koster Keunen was the first natural wax company to manufacture waxes using a Sandvik Pastillator, starting in 1988. 1852 UNIQUELY KOSTER KEUNEN Our greatest strength is the experience and scientific expertise we have fostered for the development of new and innovative products.
    [Show full text]
  • Oxybenzone, Octinoxate, Petrolatum Stick
    ZINKA WATERMELON SPF 15 LIP BALM- oxybenzone, octinoxate, petrolatum stick Zinka Disclaimer: Most OTC drugs are not reviewed and approved by FDA, however they may be marketed if they comply with applicable regulations and policies. FDA has not evaluated whether this product complies. ---------- Drug Facts Active ingredient Octinoxate (7.5%), Oxybenzone (3.5%) Petrolatum (42%) Purpose Sunscreen, Sunscreen, Skin Protectant Keep Out of Reach of Children If swallowed get medical help or contact a Poison Control Center right away. Uses Helps prevent sunburn. Helps prevent and temporarily protects dry, chapped or windburned lips. Warnings Skin Cancer/Skin Aging Alert: Spending time in the sun increases your risk of skin cancer and early skin aging. This product has been shown only to prevent sunburn, not skin cancer or early aging. For external use only: Stop use and ask a doctor: if rash or irritation develops and lasts. Directions Apply liberally before sun exposure and as needed. Children under 6 months of age: Ask a doctor before use. Inactive Ingredients Ozokerite, Mineral Oil, PEG-8, Lanolin, Microcrystalline Wax, Flavor, Paraffin Wax, Copernicia Cerifera (Carnauba) Wax, Sucralose, Aloe Barbadenis Leaf Extract, Tocopherol, Methylparaben, Propylparaben. Package/Label Principal Display Panel ZINKA WATERMELON SPF 15 LIP BALM oxybenzone, octinoxate, petrolatum stick Product Information Product T ype HUMAN OTC DRUG Ite m Code (Source ) NDC:529 9 3-112 Route of Administration TOPICAL Active Ingredient/Active Moiety Ingredient Name Basis of Strength
    [Show full text]
  • Petroleum Waxes G.Ali Mansoori 1, H
    Petroleum Waxes G.Ali Mansoori 1, H. Lindsey Barnes 2, Glenn M. Webster3 Chapter 19, Pages 525-556, 2003 Manual 37 - Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing ASTM Manual Series: MNL37WCD ___________________________________ P.O. Box C700, ASTM International, West Conshohocken, PA 19428-2959 ____________________________________ WAXES ARE USUALLY SOLID AT ROOM TEMPERATURE because they contain linear paraffinic hydrocarbons with carbon chains of various lengths. Waxes can vary in consistency from easily try as a gelling agent for organic solvents·and as a raw mate­ kneadable to brittle. They exhibit relatively low viscosity at rial used. in lipstick formulations for the cosmetic market. temperatures slightly above their melting point. The Carnauba wax is recognized generally as safe by the United ap­pearance of waxes Can vary from translucent. to opaque, States Food and Drug Administration. but they are not glassy. The consistency (i.e., hardness) and Candelilla wax is harvested from the shrubs Eurplwrbiea solu­bility of waxes depends on the temperature at which they antisiphilitica, E. cerifera, and Pedilanthuspavonis in Mexico are observed. and southwest Texas. The candelilla wax is recovered after The use of waxes dates back more than 5000 years. As early the entire mature plant is uprooted and immersed in acidi­ as 4200 B.C. the Egyptians extracted a waxy �ubstance from fied boiling water. During the immersion, the candelilla wax the honeycomb of bees and used it to satw:ite · linen floats to the surface and is skimmedoff. The primarymarket wrap­pings of mummies [!]. The spulptured porittaffof the for candelilla wax is cosmetics where it is a component in lip­ de­ceased decorating a coffin cover was often modeled stick formulations.
    [Show full text]
  • Intentionally Added Microplastics in Products Final Report
    European Commission (DG Environment) Intentionally added microplastics in products Final report October 2017 Amec Foster Wheeler Environment & Infrastructure UK Limited 3 © Amec Foster Wheeler Environment & Infrastructure UK Limited Contents 1 Introduction 6 1.1 Purpose of this report 6 1.2 Background 6 1.3 Objectives of the study 6 1.4 Structure of this report 7 2 Substance identification 8 2.1 Introduction 8 2.2 Indicative definition of microplastics 8 2.3 Available definitions 8 Polymer 8 Plastic 9 Bioplastic and biodegradable plastic 10 Definitions of microplastics used in existing and proposed national bans 11 Definition of microplastics discussed in ISO 11 2.4 Working definition of microplastics 11 Developing the working definition 11 Reviewing the working definition 12 Comments on other polymers (not part of the working definition of microplastics) 14 2.5 List of microplastics 15 Microplastics suggested for further evaluation 19 2.6 Functions and shape/size 19 3 Market analysis 21 3.1 Introduction 21 3.2 Information sources 21 3.3 Scoping of products covered 23 3.4 Personal care products 25 Tonnage 25 Uses/product groups identified 27 Function of microplastics in products 29 3.5 Paints/coatings 29 Tonnage 29 Uses/product groups identified 31 Function of microplastics in products 31 3.6 Detergents 32 Tonnage 32 Uses/product groups identified 34 Function of microplastics in products 34 3.7 Oil and gas 35 Tonnage 35 Uses/product groups identified 35 Function of microplastics in products 35 3.8 Agriculture 36 Tonnage 36 Uses/product groups identified 36 Function of microplastics in products 37 3.9 Industrial abrasives 37 Tonnage 37 Uses/product groups identified 38 October 2017 Doc Ref.
    [Show full text]
  • PC18 Inf. 6 (English Only / Únicamente En Inglés / Seulement En Anglais)
    PC18 Inf. 6 (English only / Únicamente en inglés / Seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Eighteenth meeting of the Plants Committee Buenos Aires (Argentina), 17-21 March 2009 TRADE SURVEY STUDY ON SUCCULENT EUPHORBIA SPECIES PROTECTED BY CITES AND USED AS COSMETIC, FOOD AND MEDICINE, WITH SPECIAL FOCUS ON CANDELILLA WAX The attached document has been submitted by the Scientific Authority of Germany*. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat or the United Nations Environment Programme concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. PC18 Inf. 6 – p. 1 Trade survey study on succulent Euphorbia species protected by CITES and used as cosmetic, food and medicine, with special focus on Candelilla wax Dr. Ernst Schneider PhytoConsulting, D-84163 Marklkofen Commissioned by Bundesamt für Naturschutz CITES Scientific Authority, Germany February 2009 Content SUMMARY ................................................................................................................. 4 OBJECTIVE................................................................................................................ 5 CANDELILLA WAX, ITS USE AND THE PLANT SOURCE ....................................... 6 Candelilla wax
    [Show full text]