Methods for Determining the Genetic Causes of Rare Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Methods for Determining the Genetic Causes of Rare Diseases View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Methods for Determining the Genetic Causes of Rare Diseases Daniel Greene MRC Biostatistics Unit University of Cambridge This dissertation is submitted for the degree of Doctor of Philosophy Clare College January 2018 Methods for Determining the Genetic Causes of Rare Diseases Daniel Greene Thanks to the affordability of DNA sequencing, hundreds of thousands of individuals with rare disorders are undergoing whole-genome sequencing in an effort to reveal novel disease aetiologies, increase our understanding of biological processes and improve patient care. However, the power to discover the genetic causes of many unexplained rare diseases is hindered by a paucity of cases with a shared molecular aetiology. This thesis presents research into statistical and computational methods for determining the genetic causes of rare diseases. Methods described herein treat important aspects of the nature of rare diseases, including genetic and phenotypic heterogeneity, phenotypes involving multiple organ systems, Mendelian modes of inheritance and the incorporation of complex prior information such as model organism phenotypes and evolutionary conservation. The complex nature of rare disease phenotypes and the need to aggregate patient data across many centres has led to the adoption of the Human Phenotype Ontology (HPO) as a means of coding patient phenotypes. The HPO provides a standardised vocabulary and captures relationships between disease features. The use of such ontologically encoded data is widespread in bioinformatics, with ontologies defining relationships between concepts in hundreds of subfields. However, there has been a dearth of tools for manipulating and analysing ontological data. I developed a suite of software packages dubbed ‘ontologyX’ in order to meet these needs, simplify visualisation of such data, and enable them to be incor- porated into complex analysis methods. An important aspect of the analysis of ontological data is quantifying the semantic similarity between ontologically annotated entities, which is implemented in the ontologyX software. We employed this functionality in a phenotypic similarity regression framework, ‘SimReg’, which models the relationship between ontologi- cally encoded patient phenotypes of individuals and rare variation in a given genomic locus. It does so by evaluating support for a model under which the probability that a person carries rare alleles in a locus depends on the similarity between the person’s ontologically encoded phenotype and a latent characteristic phenotype which can be inferred from data. A proba- bility of association is computed by comparison of the two models, allowing prioritisation of candidate loci for involvement in disease with respect to a heterogeneous collection of disease phenotypes. SimReg includes a sophisticated treatment of HPO-coded phenotypic data but dichotomises the genetic data at a locus. Therefore, we developed an additional method, ‘BeviMed’, standing for Bayesian Evaluation of Variant Involvement in Mendelian Disease, which evaluates the evidence of association between allele configurations across rare variants within a genomic locus and a case/control label. It is capable of inferring the probability of association, and conditional on association, the probability of each mode of inheritance and probability of involvement of each variant. Inference is performed through a Bayesian comparison of multiple models: under a baseline model disease risk is independent of allele configuration at the given rare variant sites and under an alternate model disease risk depends on the configuration of alleles, a latent partition of variants into pathogenic and non-pathogenic groups and a mode of inheritance. The method can be used to analyse a dataset comprising thousands of individuals genotyped at hundreds of rare variant sites in a fraction of a second, making it much faster than competing methods and facilitating genome-wide application. The thesis concludes by describing an analysis pipeline and web application called ‘Gene-docs’ that utilises ontologyX, SimReg and BeviMed to perform inferences and makes the results and the underlying data available to collaborating biologists and clinicians. I would like to dedicate this thesis to my wife Danielle, whose love and support has been my motivation thoughout. Declaration I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other university. This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements. This dissertation contains fewer than 60,000 words including appendices, bibliography, footnotes, tables and equations. Daniel Greene January 2018 Acknowledgements I would like to thank my supervisor, Dr. Ernest Turro, who has been consistently supportive, generous with his time and ideas, and an inspiration. Being his student has been a privilege and a joy, and without him none of this would have been possible. I would also like to thank my co-supervisors, Professor Sylvia Richardson and Professor Willem Ouwehand, for all of their support, direction and many fruitful discussions over the years. I am also grateful to my colleague William Astle, who has always made time for technical discussions and had many good suggestions. I would like to thank my wife, Danielle, and our children, Sean and Lyra, for their love and patience, for keeping my spirits up, and being there for me every day. Lastly, I would like to thank my parents, Brendan and Michele, for all their encouragement and support during the course of my PhD, and for opening all the doors which led me here. Table of contents List of figures xiii List of tables xv 1 Background1 1.1 A portrait of rare Mendelian diseases . .3 1.2 The impact of high-throughput sequencing on rare disease research . .7 1.3 The National Institute for Health Research BioResource–Rare Diseases project dataset . .8 1.4 The ThromboGenomics platform . 10 1.5 Overview of thesis . 11 1.6 Current methods and software for analysing rare disease data . 14 2 Methods for ontological data and applications 23 2.1 ontologyX . 24 2.2 Statistical significance of within-group ontological similarity . 29 2.3 Rare variant prioritisation for genetic diagnostics . 34 2.4 Similarity to model organism phenotypes . 36 2.5 Unsupervised clustering of ontological phenotypes . 38 3 Phenotype similarity regression 45 3.1 Introduction . 45 3.2 Model specification . 47 3.3 Inference . 54 3.4 Simulation study . 58 3.5 Application to real data . 62 3.6 Discussion . 69 xii Table of contents 4 Bayesian evaluation of variant involvement in Mendelian disease 71 4.1 Introduction . 72 4.2 Model specification . 73 4.3 Inference . 75 4.4 Simulation study . 80 4.5 Application to real data . 84 4.6 Discussion . 89 5 Gene-docs: a web application for browsing phenotypic and genetic data 93 6 Conclusions 99 References 105 Appendix A ontologyX comparisons and examples 117 Appendix B SimReg manual 123 Appendix C BeviMed manual 129 List of figures 1.1 Number of rare alleles observed per gene . .2 1.2 Pairs of organ systems affected by rare diseases . .6 1.3 HPO encoded phenotypes in the NBR–RD project . .9 1.4 Example HPO phenotype . 15 2.1 Visualisation of ontological set operations in ontologyIndex . 25 2.2 GO annotation of QPCTL and CRNN .................... 28 2.3 Distribution of comorbidities in BPD study participants . 32 2.4 Heatmap of phenotypic similarity between BPD cases grouped by pedigree and clinical diagnosis . 33 2.5 Prioritisation of variants by similarity to gene HPO profile . 35 2.6 Performance of HPO-based variant prioritisation . 36 2.7 Prioritisation of variants for family with bleeding, thrombocytopenia and bone pathologies . 39 2.8 Schematic representation of enrichment test strategy for phenotype clustering 41 3.1 Cartoon of SimReg model . 46 3.2 Priors for similarity transformations f and g ................. 51 3.3 Inferred f for various parameterisations of the similarity function . 52 3.4 SimReg simulation study . 60 3.5 Relationship between genetic heterogeneity and power . 61 3.6 SimReg specificity . 62 3.7 SimReg results for ACTN1 .......................... 65 3.8 SimReg results for DIAPH1 and RASGRP2 ................. 67 3.9 SimReg results for all genes . 68 4.1 BeviMed simulation study . 83 4.2 BeviMed inference applied to ANKRD26 ................... 87 4.3 BeviMed inference applied to RNU4ATAC .................. 88 xiv List of figures 5.1 Gene-docs main page . 95 5.2 BeviMed annotation of variants on gene page for GP1BB .......... 96 5.3 Gene-docs pedigree page . 97 B.1 Plotting marginal probabilities of term inclusion in f with SimReg package 125 List of tables 1.1 NBR–RD subprojects . 10 2.1 Execution time for retrieving descendants and ancestors of terms using different ontology software . 26 2.2 Performance comparison of semantic similarity packages in R . 29 2.3 Abbreviations used for HPO terms in Figure 2.7............... 40 3.1 SimReg performance evaluation . 63 3.2 Known disease-gene associations identified using SimReg . 69 4.1 Loci with BeviMed posterior probabilities of association with thrombocy- topenia at least 0.9 . 89 4.2 Performance comparison of rare variant association
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • Implication of M6a Mrna Methylation in Susceptibility to Inflammatory
    epigenomes Article Implication of m6A mRNA Methylation in Susceptibility to Inflammatory Bowel Disease Maialen Sebastian-delaCruz 1,2 , Ane Olazagoitia-Garmendia 1,2 , Itziar Gonzalez-Moro 2,3 , Izortze Santin 2,3,4 , Koldo Garcia-Etxebarria 5 and Ainara Castellanos-Rubio 1,2,4,6,* 1 Department of Genetics, Physical Anthropology and Animal Fisiology, University of the Basque Country, 48940 Leioa, Spain; [email protected] (M.S.-d.); [email protected] (A.O.-G.) 2 Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; [email protected] (I.G.-M.); [email protected] (I.S.) 3 Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain 4 CIBER (Centro de Investigación Biomédica en Red) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain 5 Hepatic and Gastrointestinal Disease Area, IIS Biodonostia, 20014 Donostia, Spain; [email protected] 6 Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain * Correspondence: [email protected] Received: 29 June 2020; Accepted: 28 July 2020; Published: 3 August 2020 Abstract: Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract that develops due to the interaction between genetic and environmental factors. More than 160 loci have been associated with IBD, but the functional implication of many of the associated genes remains unclear. N6-Methyladenosine (m6A) is the most abundant internal modification in mRNA. m6A methylation regulates many aspects of mRNA metabolism, playing important roles in the development of several pathologies. Interestingly, SNPs located near or within m6A motifs have been proposed as possible contributors to disease pathogenesis.
    [Show full text]
  • Expression of the POTE Gene Family in Human Ovarian Cancer Carter J Barger1,2, Wa Zhang1,2, Ashok Sharma 1,2, Linda Chee1,2, Smitha R
    www.nature.com/scientificreports OPEN Expression of the POTE gene family in human ovarian cancer Carter J Barger1,2, Wa Zhang1,2, Ashok Sharma 1,2, Linda Chee1,2, Smitha R. James3, Christina N. Kufel3, Austin Miller 4, Jane Meza5, Ronny Drapkin 6, Kunle Odunsi7,8,9, 2,10 1,2,3 Received: 5 July 2018 David Klinkebiel & Adam R. Karpf Accepted: 7 November 2018 The POTE family includes 14 genes in three phylogenetic groups. We determined POTE mRNA Published: xx xx xxxx expression in normal tissues, epithelial ovarian and high-grade serous ovarian cancer (EOC, HGSC), and pan-cancer, and determined the relationship of POTE expression to ovarian cancer clinicopathology. Groups 1 & 2 POTEs showed testis-specifc expression in normal tissues, consistent with assignment as cancer-testis antigens (CTAs), while Group 3 POTEs were expressed in several normal tissues, indicating they are not CTAs. Pan-POTE and individual POTEs showed signifcantly elevated expression in EOC and HGSC compared to normal controls. Pan-POTE correlated with increased stage, grade, and the HGSC subtype. Select individual POTEs showed increased expression in recurrent HGSC, and POTEE specifcally associated with reduced HGSC OS. Consistent with tumors, EOC cell lines had signifcantly elevated Pan-POTE compared to OSE and FTE cells. Notably, Group 1 & 2 POTEs (POTEs A/B/B2/C/D), Group 3 POTE-actin genes (POTEs E/F/I/J/KP), and other Group 3 POTEs (POTEs G/H/M) show within-group correlated expression, and pan-cancer analyses of tumors and cell lines confrmed this relationship. Based on their restricted expression in normal tissues and increased expression and association with poor prognosis in ovarian cancer, POTEs are potential oncogenes and therapeutic targets in this malignancy.
    [Show full text]
  • Coding RNA Genes
    Review A guide to naming human non-coding RNA genes Ruth L Seal1,2,* , Ling-Ling Chen3, Sam Griffiths-Jones4, Todd M Lowe5, Michael B Mathews6, Dawn O’Reilly7, Andrew J Pierce8, Peter F Stadler9,10,11,12,13, Igor Ulitsky14 , Sandra L Wolin15 & Elspeth A Bruford1,2 Abstract working on non-coding RNA (ncRNA) nomenclature in the mid- 1980s with the approval of initial gene symbols for mitochondrial Research on non-coding RNA (ncRNA) is a rapidly expanding field. transfer RNA (tRNA) genes. Since then, we have worked closely Providing an official gene symbol and name to ncRNA genes brings with experts in the ncRNA field to develop symbols for many dif- order to otherwise potential chaos as it allows unambiguous ferent kinds of ncRNA genes. communication about each gene. The HUGO Gene Nomenclature The number of genes that the HGNC has named per ncRNA class Committee (HGNC, www.genenames.org) is the only group with is shown in Fig 1, and ranges in number from over 4,500 long the authority to approve symbols for human genes. The HGNC ncRNA (lncRNA) genes and over 1,900 microRNA genes, to just four works with specialist advisors for different classes of ncRNA to genes in the vault and Y RNA classes. Every gene symbol has a ensure that ncRNA nomenclature is accurate and informative, Symbol Report on our website, www.genenames.org, which where possible. Here, we review each major class of ncRNA that is displays the gene symbol, gene name, chromosomal location and currently annotated in the human genome and describe how each also includes links to key resources such as Ensembl (Zerbino et al, class is assigned a standardised nomenclature.
    [Show full text]
  • Revostmm Vol 10-4-2018 Ingles Maquetaciûn 1
    108 ORIGINALS / Rev Osteoporos Metab Miner. 2018;10(4):108-18 Roca-Ayats N1, Falcó-Mascaró M1, García-Giralt N2, Cozar M1, Abril JF3, Quesada-Gómez JM4, Prieto-Alhambra D5,6, Nogués X2, Mellibovsky L2, Díez-Pérez A2, Grinberg D1, Balcells S1 1 Departamento de Genética, Microbiología y Estadística - Facultad de Biología - Universidad de Barcelona - Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - Instituto de Salud Carlos III (ISCIII) - Instituto de Biomedicina de la Universidad de Barcelona (IBUB) - Instituto de Investigación Sant Joan de Déu (IRSJD) - Barcelona (España) 2 Unidad de Investigación en Fisiopatología Ósea y Articular (URFOA); Instituto Hospital del Mar de Investigaciones Médicas (IMIM) - Parque de Salud Mar - Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES); Instituto de Salud Carlos III (ISCIII) - Barcelona (España) 3 Departamento de Genética, Microbiología y Estadística; Facultad de Biología; Universidad de Barcelona - Instituto de Biomedicina de la Universidad de Barcelona (IBUB) - Barcelona (España) 4 Unidad de Metabolismo Mineral; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC); Hospital Universitario Reina Sofía - Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES); Instituto de Salud Carlos III (ISCIII) - Córdoba (España) 5 Grupo de Investigación en Enfermedades Prevalentes del Aparato Locomotor (GREMPAL) - Instituto de Investigación en Atención Primaria (IDIAP) Jordi Gol - Centro de Investigación
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Genome Sequencing Unveils a Regulatory Landscape of Platelet Reactivity
    ARTICLE https://doi.org/10.1038/s41467-021-23470-9 OPEN Genome sequencing unveils a regulatory landscape of platelet reactivity Ali R. Keramati 1,2,124, Ming-Huei Chen3,4,124, Benjamin A. T. Rodriguez3,4,5,124, Lisa R. Yanek 2,6, Arunoday Bhan7, Brady J. Gaynor 8,9, Kathleen Ryan8,9, Jennifer A. Brody 10, Xue Zhong11, Qiang Wei12, NHLBI Trans-Omics for Precision (TOPMed) Consortium*, Kai Kammers13, Kanika Kanchan14, Kruthika Iyer14, Madeline H. Kowalski15, Achilleas N. Pitsillides4,16, L. Adrienne Cupples 4,16, Bingshan Li 12, Thorsten M. Schlaeger7, Alan R. Shuldiner9, Jeffrey R. O’Connell8,9, Ingo Ruczinski17, Braxton D. Mitchell 8,9, ✉ Nauder Faraday2,18, Margaret A. Taub17, Lewis C. Becker1,2, Joshua P. Lewis 8,9,125 , 2,14,125✉ 3,4,125✉ 1234567890():,; Rasika A. Mathias & Andrew D. Johnson Platelet aggregation at the site of atherosclerotic vascular injury is the underlying patho- physiology of myocardial infarction and stroke. To build upon prior GWAS, here we report on 16 loci identified through a whole genome sequencing (WGS) approach in 3,855 NHLBI Trans-Omics for Precision Medicine (TOPMed) participants deeply phenotyped for platelet aggregation. We identify the RGS18 locus, which encodes a myeloerythroid lineage-specific regulator of G-protein signaling that co-localizes with expression quantitative trait loci (eQTL) signatures for RGS18 expression in platelets. Gene-based approaches implicate the SVEP1 gene, a known contributor of coronary artery disease risk. Sentinel variants at RGS18 and PEAR1 are associated with thrombosis risk and increased gastrointestinal bleeding risk, respectively. Our WGS findings add to previously identified GWAS loci, provide insights regarding the mechanism(s) by which genetics may influence cardiovascular disease risk, and underscore the importance of rare variant and regulatory approaches to identifying loci contributing to complex phenotypes.
    [Show full text]
  • Different Species Common Arthritis
    High Resolution Mapping of Cia3: A Common Arthritis Quantitative Trait Loci in Different Species This information is current as Xinhua Yu, Haidong Teng, Andreia Marques, Farahnaz of September 27, 2021. Ashgari and Saleh M. Ibrahim J Immunol 2009; 182:3016-3023; ; doi: 10.4049/jimmunol.0803005 http://www.jimmunol.org/content/182/5/3016 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2009/02/18/182.5.3016.DC1 Material References This article cites 36 articles, 9 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/182/5/3016.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology High Resolution Mapping of Cia3: A Common Arthritis Quantitative Trait Loci in Different Species1 Xinhua Yu, Haidong Teng, Andreia Marques, Farahnaz Ashgari, and Saleh M.
    [Show full text]
  • Genomic Study of RNA Polymerase II and III Snapc-Bound Promoters Reveals a Gene Transcribed by Both Enzymes and a Broad Use of Common Activators
    Genomic Study of RNA Polymerase II and III SNAPc-Bound Promoters Reveals a Gene Transcribed by Both Enzymes and a Broad Use of Common Activators Nicole James Faresse1., Donatella Canella1., Viviane Praz1,2, Joe¨lle Michaud1¤, David Romascano1, Nouria Hernandez1* 1 Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland, 2 Swiss Institute of Bioinformatics, Lausanne, Switzerland Abstract SNAPc is one of a few basal transcription factors used by both RNA polymerase (pol) II and pol III. To define the set of active SNAPc-dependent promoters in human cells, we have localized genome-wide four SNAPc subunits, GTF2B (TFIIB), BRF2, pol II, and pol III. Among some seventy loci occupied by SNAPc and other factors, including pol II snRNA genes, pol III genes with type 3 promoters, and a few un-annotated loci, most are primarily occupied by either pol II and GTF2B, or pol III and BRF2. A notable exception is the RPPH1 gene, which is occupied by significant amounts of both polymerases. We show that the large majority of SNAPc-dependent promoters recruit POU2F1 and/or ZNF143 on their enhancer region, and a subset also recruits GABP, a factor newly implicated in SNAPc-dependent transcription. These activators associate with pol II and III promoters in G1 slightly before the polymerase, and ZNF143 is required for efficient transcription initiation complex assembly. The results characterize a set of genes with unique properties and establish that polymerase specificity is not absolute in vivo. Citation: James Faresse N, Canella D, Praz V, Michaud J, Romascano D, et al.
    [Show full text]
  • Thrombocytopenia-Associated Mutations in Ser/Thr Kinase MASTL Deregulate Actin Cytoskeletal Dynamics in Platelets
    Thrombocytopenia-associated mutations in Ser/Thr kinase MASTL deregulate actin cytoskeletal dynamics in platelets Begoña Hurtado, … , Pablo García de Frutos, Marcos Malumbres J Clin Invest. 2018;128(12):5351-5367. https://doi.org/10.1172/JCI121876. Research Article Cell biology Hematology Graphical abstract Find the latest version: https://jci.me/121876/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Thrombocytopenia-associated mutations in Ser/Thr kinase MASTL deregulate actin cytoskeletal dynamics in platelets Begoña Hurtado,1,2 Marianna Trakala,1 Pilar Ximénez-Embún,3 Aicha El Bakkali,1 David Partida,1 Belén Sanz-Castillo,1 Mónica Álvarez-Fernández,1 María Maroto,1 Ruth Sánchez-Martínez,1 Lola Martínez4, Javier Muñoz,3 Pablo García de Frutos,2 and Marcos Malumbres1 1Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. 2Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas- Institut d’Investigacions Biomèdiques August Pi i Sunyer- (IIBB-CSIC-IDIBAPS), Barcelona, Spain. 3ProteoRed – Instituto de Salud Carlos III (ISCIII) and Proteomics Unit, CNIO, Madrid, Spain. 4Cytometry Unit, CNIO, Madrid, Spain. MASTL, a Ser/Thr kinase that inhibits PP2A-B55 complexes during mitosis, is mutated in autosomal dominant thrombocytopenia. However, the connections between the cell-cycle machinery and this human disease remain unexplored. We report here that, whereas Mastl ablation in megakaryocytes prevented proper maturation of these cells, mice carrying the thrombocytopenia-associated mutation developed thrombocytopenia as a consequence of aberrant activation and survival of platelets. Activation of mutant platelets was characterized by hyperstabilized pseudopods mimicking the effect of PP2A inhibition and actin polymerization defects.
    [Show full text]
  • Integration of Text Mining with Systems Biology Provides New Insight Into the Pathogenesis of Diabetic Neuropathy
    INTEGRATION OF TEXT MINING WITH SYSTEMS BIOLOGY PROVIDES NEW INSIGHT INTO THE PATHOGENESIS OF DIABETIC NEUROPATHY by Junguk Hur A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Bioinformatics) in The University of Michigan 2010 Doctoral Committee: Professor Eva L. Feldman, Co-Chair Professor Hosagrahar V. Jagadish, Co-Chair Professor Matthias Kretzler Research Assistant Professor Maureen Sartor Professor David J. States, University of Texas Junguk Hur © 2010 All Rights Reserved DEDICATION To my family ii ACKNOWLEDGMENTS Over the past few years, I have been tremendously fortunate to have the company and mentorship of the most wonderful and smartest scientists I know. My advisor, Prof. Eva Feldman, guided me through my graduate studies with constant support, encouragement, enthusiasm and infinite patience. I would like to thank her for being a mom in my academic life and raising me to become a better scientist. I would also like to thank my co-advisors Prof. H. V. Jagadish and Prof. David States. They provided sound advice and inspiration that have been instrumental in my Ph.D. study. I am also very grateful to Prof. Matthias Kretzler and Prof. Maureen Sartor for being an active part of my committee as well as for their continuous encouragement and guidance of my work. I would also like to thank Prof. Daniel Burns, Prof. Margit Burmeister, Prof. Gil Omenn and Prof. Brain Athey from the Bioinformatics Program, who have been very generous with their support and advice about academic life. I am also very grateful to Sherry, Julia and Judy, who helped me through the various administrative processes with cheerful and encouraging dispositions.
    [Show full text]