Identification of Disease Gene Variants That Can Lead to Familial Myelodysplasia and Acute Myeloid Leukaemia

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Disease Gene Variants That Can Lead to Familial Myelodysplasia and Acute Myeloid Leukaemia Identification of disease gene variants that can lead to familial myelodysplasia and acute myeloid leukaemia A thesis submitted for the degree of PhD Shirleny Romualdo Cardoso Supervisors: Professor Inderjeet Dokal, and Professor Tom Vulliamy Centre for Genomics and Child Health, Blizard Institute Barts and The London School of Medicine & Dentistry, Queen Mary University of London In loving memory of my beloved sister Karla Romualdo Cardoso 2 I, Shirleny Romualdo Cardoso, confirm that the research included within this thesis is my own work or that where it has been carried out in collaboration with, or supported by others, that this is duly acknowledged below and my contribution indicated. Previously published material is also acknowledged below. I attest that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge break any UK law, infringe any third party’s copyright or other Intellectual Property Right, or contain any confidential material. I accept that the College has the right to use plagiarism detection software to check the electronic version of the thesis. I confirm that this thesis has not been previously submitted for the award of a degree by this or any other university. The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author. Shirleny Romualdo Cardoso 3 Abstract Myelodysplasia (MDS) is characterised by inefficient haematopoiesis with dysplastic features of blood and bone marrow, reduction of mature blood cells and continuous bone marrow failure (BMF). Acute myeloid leukaemia (AML) is characterised by the accumulation of immature myeloid blasts in the bone marrow. MDS and AML are mostly sporadic clonal disorders affecting older patients. Familial occurrence of MDS/AML is rare, and most of these cases occur in the setting of genetic syndromes. However, it has also been reported to be caused by germline heterozygous mutations in genes including RUNX1, CEBPA, TERC, TERT, GATA2, SRP72, and ANKRD26. Our group has collected 115 families that have two or more individuals with BMF with at least one of whom has MDS or AML. The aim of this project was to identify disease causing gene variants that can lead to familial MDS/AML. Identification of predisposing variants to familial MDS/AML is critical for effective management in these families. This will also provide new insights into the biology of MDS/AML in general. Herein, we have characterised a subset of families with MDS/AML as well as identified candidate disease genes using a range of genetic studies. Specifically, we have: i. Identified new genetic variants in some of the known disease genes such as RUNX1 and GATA2. ii. Our studies have substantiated the discovery of DDX41 as a disease gene as we have identified several families harbouring novel heterozygous loss of function (LoF) DDX41 variants. iii. Identified germline heterozygous LoF RTEL1 variants in a subset of families with myelodysplasia and liver disease. This defines a new disease group in this field, RTEL1 can now be added to the list of familial MDS/AML disease genes. iv. We have identified nine new candidate disease genes 4 which are involved in RNA splicing, transcription factor, DNA modification, cell signalling and intracellular transport. 5 Contents List of figures 12 List of tables 15 List of abbreviations 17 Publications and presentations arising from this thesis 27 Acknowledgments 29 Introduction 31 1.1 General introduction 32 1.2 Myelodysplasia syndromes 32 1.2.1 Patterns of acquired genetic variants in MDS 37 1.3 Acute myeloid leukaemia 41 1.3.1 Patterns of acquired genetic variants in AML 45 1.4 Familial myelodysplasia and/or acute myeloid leukaemia with germline predisposition syndromes 49 1.4.1 Familial platelet disorder with propensity to myeloid malignancy (FPD/AML) 51 1.4.2 Thrombocytopenia 2 51 1.4.3 Thrombocytopenia 5 52 1.4.4 Familial AML with mutated CEBPA 53 1.4.5 Familial MDS/AML with mutated GATA2 53 1.4.6 Familial aplastic anaemia/MDS with SRP72 54 1.4.7 Bone marrow failure syndromes 54 1.4.7.1 Fanconi anaemia 55 1.4.7.2 Dyskeratosis congenita 56 1.5 Our cohort of families with familial MDS/AML 60 1.6 Aims of the project 63 Material and methods 64 6 2.1 Introduction 65 2.2 Materials 65 2.2.1 Patient samples 65 2.2.2 Primers 65 2.2.3 Chemicals and reagents 66 2.3 Methods 67 2.3.1 DNA quantification 67 2.3.2 Polymerase chain reaction – PCR 68 2.3.3 Agarose gel electrophoresis 68 2.3.4 DNA restriction digestion 69 2.3.5 Rolling circle amplification reaction 69 2.3.6 Alkaline gel electrophoresis 71 2.3.7 Southern blotting 71 2.3.8 Hybridisation and chemiluminescence detection 73 2.3.9 Gel extraction and purification 74 2.3.10 Sanger sequencing 74 2.3.11 Analysis of sequencing traces 76 2.3.12 RNA extraction 77 2.3.13 Reverse Transcriptase PCR 77 2.3.14 Monochrome multiplex quantitative PCR 78 2.3.15 Denaturing high-performance liquid chromatography 79 2.3.16 Whole exome sequencing 81 2.3.17 Nextera library preparation (enrichment of exonic fragments) 81 2.3.18 Tagmentation of genomic DNA and first PCR amplification 83 2.3.19 First hybridisation and first capture 84 2.3.20 Targeted resequencing – design of probes 86 2.3.21 Targeted resequencing library preparation 87 2.3.22 Sequencing of exome library 90 2.3.23 Variant calling 92 2.3.24 Mammalian cell culture 94 2.3.25 Polyacrylamide gel electrophoresis and Western blotting 95 2.3.26 In silico analyses 96 7 Variants identified in known disease genes associated with familial MDS/AML and related disorders 97 3.1 Introduction 98 3.1.1 Genetically uncharacterised familial MDS/AML patients 98 3.2 Results 99 3.2.1 Variants identified in previously known familial MDS/AML causing genes 100 3.2.1.1 Variants identified in RUNX1 100 3.2.2 Variants identified in genes associated with complex phenotypes 104 3.2.2.1 Variants identified in GATA2 104 3.2.2.2 Variant identified in TERT 109 3.2.2.3 TERT promoter region and ANKRD26 5’UTR screening in our cohort of patients by dHPLC 113 3.2.3 Variants identified in genes associated with inherited syndromes with predisposition to MDS/AML 118 3.2.3.1 Shwachman-Diamond syndrome 118 3.2.3.2 Fanconi anaemia 121 3.2.4 Variants identified in genes associated with other inherited syndromes 124 3.2.4.1 Wiskott-Aldrich syndrome 124 3.3 Discussion 127 Germline heterozygous DDX41 variants in a subset of familial myelodysplasia and acute myeloid leukaemia 131 4.1 Introduction 132 4.1.1 Familial myelodysplasia and acute myeloid leukaemia with germline predisposing variants in DDX41 132 4.1.2 DDX41 – DEAD-box helicase 41 structure and function 133 4.1.3 The role of DExD/H box helicases and DDX41 in the innate immunity response 136 8 4.1.4 Association of DDX41 variants with myeloid neoplasms and defects in mRNA splicing 141 4.1.5 The role of DDX41 in ribosome biogenesis and in post- transcriptional regulation of protein translation in cell growth 149 4.2 Results 153 4.2.1 DDX41 germline variants identified in our cohort 155 4.2.2 Telomere length analysis in patients harbouring DDX41 variants 158 4.3 Discussion 159 RTEL1 variants leading to myelodysplasia and liver disease 163 5.1 Introduction 164 5.1.1 RTEL1 protein structure and function 164 5.1.2 RTEL1 in homologous recombination 167 5.1.3 RTEL1 in telomere maintenance 170 5.1.4 RTEL1 in human diseases 177 5.1.4.1 RTEL1 germline biallelic variants leading to dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome 177 5.1.4.2 RTEL1 germline heterozygous variants leading to pulmonary fibrosis 179 5.2 Results 182 5.2.1 RTEL1 germline variants identified in our cohort 185 5.2.1.1 Patients with biallelic RTEL1 variants 185 5.2.1.2 Patients with heterozygous loss of function RTEL1 variants 189 5.2.1.3 Families with heterozygous variants of unknown significance and heterozygous likely benign variants 193 5.2.2 Short telomeres and T-circles in distinguishing the pathogenic status of RTEL1 variants 195 9 5.3 Discussion 198 Variants identified in familial MDS/AML candidate genes 202 6.1 Introduction 203 6.1.1 Genetically uncharacterised familial MDS/AML patients 203 6.2 Results 206 6.2.1 Data analysis 206 6.2.1.1 All MDS/AML families 208 6.2.1.2 Family FML012 217 6.2.1.3 Family FML003 223 6.2.1.4 All MDS/AML families – gene-level and variant-level metrics combined to assess potential pathogenicity of a variant 227 6.3 Discussion 235 Discussion 239 7.1 Variants identified in known disease genes associated with familial MDS/AML and related disorders 240 7.2 Germline heterozygous LoF DDX41 variants in a subset of familial myelodysplasia and acute myeloid leukaemia 244 7.3 RTEL1 LoF variants leading to myelodysplasia and liver disease 247 7.4 Variants identified in familial MDS/AML candidate genes 250 7.5 Future work 259 7.6 Concluding remarks 261 10 Appendices 263 Appendix 1 – Known familial MDS/AML causing genes – published mutations to date 264 Appendix 2 – Primer sequences 274 Appendix 3 – TSCA studies 277 Appendix 4 – Deletion of RUNX1 in family FML053 278 References 279 11 List of figures Figure 1.1.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Alterations of Genetic Variants and Transcriptomic Features of Response to Tamoxifen in the Breast Cancer Cell Line
    Alterations of Genetic Variants and Transcriptomic Features of Response to Tamoxifen in the Breast Cancer Cell Line Mahnaz Nezamivand-Chegini Shiraz University Hamed Kharrati-Koopaee Shiraz University https://orcid.org/0000-0003-2345-6919 seyed taghi Heydari ( [email protected] ) Shiraz University of Medical Sciences https://orcid.org/0000-0001-7711-1137 Hasan Giahi Shiraz University Ali Dehshahri Shiraz University of Medical Sciences Mehdi Dianatpour Shiraz University of Medical Sciences Kamran Bagheri Lankarani Shiraz University of Medical Sciences Research Keywords: Tamoxifen, breast cancer, genetic variants, RNA-seq. Posted Date: August 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-783422/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/33 Abstract Background Breast cancer is one of the most important causes of mortality in the world, and Tamoxifen therapy is known as a medication strategy for estrogen receptor-positive breast cancer. In current study, two hypotheses of Tamoxifen consumption in breast cancer cell line (MCF7) were investigated. First, the effect of Tamoxifen on genes expression prole at transcriptome level was evaluated between the control and treated samples. Second, due to the fact that Tamoxifen is known as a mutagenic factor, there may be an association between the alterations of genetic variants and Tamoxifen treatment, which can impact on the drug response. Methods In current study, the whole-transcriptome (RNA-seq) dataset of four investigations (19 samples) were derived from European Bioinformatics Institute (EBI). At transcriptome level, the effect of Tamoxifen was investigated on gene expression prole between control and treatment samples.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Warsaw Breakage Syndrome DDX11 Helicase Acts Jointly with RAD17 in the Repair of Bulky Lesions and Replication Through Abasic Sites
    Warsaw breakage syndrome DDX11 helicase acts jointly with RAD17 in the repair of bulky lesions and replication through abasic sites Takuya Abea,b,1, Masato Ookaa,b,1, Ryotaro Kawasumia, Keiji Miyatab, Minoru Takatac, Kouji Hirotab, and Dana Branzeia,d,2 aDNA Repair lab, IFOM, Fondazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, 20139 Milan, Italy; bDepartment of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, 192-0397 Tokyo, Japan; cLaboratory of DNA Damage Signaling, Radiation Biology Center, Kyoto University, 606-8501 Kyoto, Japan; and dIstituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy Edited by Philip C. Hanawalt, Stanford University, Stanford, CA, and approved June 28, 2018 (received for review February 21, 2018) Warsaw breakage syndrome, a developmental disorder caused by genes result in impaired ability of cells to deal with certain mutations in the DDX11/ChlR1 helicase, shows cellular features of forms of DNA damage, such as endogenous formaldehyde (9), genome instability similar to Fanconi anemia (FA). Here we report and lead to a hereditary disorder, FA, characterized by bone that DDX11-deficient avian DT40 cells exhibit interstrand crosslink marrow failure, developmental abnormalities, and predisposition (ICL)-induced chromatid breakage, with DDX11 functioning as to cancer. backup for the FA pathway in regard to ICL repair. Importantly, The central components of the FA pathway, FANCD2 and we establish that DDX11 acts jointly with the 9-1-1 checkpoint FANCI, interact with each other (10), and are monoubiquitylated – clamp and its loader, RAD17, primarily in a postreplicative fashion, by the FA core complex.
    [Show full text]
  • 2020 Program Book
    PROGRAM BOOK Note that TAGC was cancelled and held online with a different schedule and program. This document serves as a record of the original program designed for the in-person meeting. April 22–26, 2020 Gaylord National Resort & Convention Center Metro Washington, DC TABLE OF CONTENTS About the GSA ........................................................................................................................................................ 3 Conference Organizers ...........................................................................................................................................4 General Information ...............................................................................................................................................7 Mobile App ....................................................................................................................................................7 Registration, Badges, and Pre-ordered T-shirts .............................................................................................7 Oral Presenters: Speaker Ready Room - Camellia 4.......................................................................................7 Poster Sessions and Exhibits - Prince George’s Exhibition Hall ......................................................................7 GSA Central - Booth 520 ................................................................................................................................8 Internet Access ..............................................................................................................................................8
    [Show full text]
  • DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy
    cells Review DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy Lu Zhang 1,2 and Xiaogang Li 2,3,* 1 Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; [email protected] 2 Department of Internal Medicine, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55905, USA 3 Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55905, USA * Correspondence: [email protected]; Tel.: +1-507-266-0110 Abstract: Cell cycle is regulated through numerous signaling pathways that determine whether cells will proliferate, remain quiescent, arrest, or undergo apoptosis. Abnormal cell cycle regula- tion has been linked to many diseases. Thus, there is an urgent need to understand the diverse molecular mechanisms of how the cell cycle is controlled. RNA helicases constitute a large family of proteins with functions in all aspects of RNA metabolism, including unwinding or annealing of RNA molecules to regulate pre-mRNA, rRNA and miRNA processing, clamping protein complexes on RNA, or remodeling ribonucleoprotein complexes, to regulate gene expression. RNA helicases also regulate the activity of specific proteins through direct interaction. Abnormal expression of RNA helicases has been associated with different diseases, including cancer, neurological disorders, aging, and autosomal dominant polycystic kidney disease (ADPKD) via regulation of a diverse range of cellular processes such as cell proliferation, cell cycle arrest, and apoptosis. Recent studies showed that RNA helicases participate in the regulation of the cell cycle progression at each cell cycle phase, including G1-S transition, S phase, G2-M transition, mitosis, and cytokinesis.
    [Show full text]
  • R-Loop Proximity Proteomics Identifies a Role of DDX41 in Transcription- 2 Associated Genomic Instability
    R-loop proximity proteomics identies a role of DDX41 in transcription-associated genomic instability Thorsten Mosler Institute of Molecular Biology (IMB) Francesca Conte Institute of Molecular Biology (IMB) Ivan Mikicic Institute of Molecular Biology (IMB) https://orcid.org/0000-0003-3393-0688 Nastasja Kreim Institute of Molecular Biology Martin Möckel Institute of Molecular Biology (IMB) Johanna Flach Medical Faculty Mannheim of the Heidelberg University Brian Luke Johannes Gutenberg University of Mainz https://orcid.org/0000-0002-1648-5511 Petra Beli ( [email protected] ) Institute of Molecular Biology (IMB) https://orcid.org/0000-0001-9507-9820 Article Keywords: DDX41, genomic instability, proximity proteomics, R-loops, transcription Posted Date: April 26th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-337351/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 R-loop proximity proteomics identifies a role of DDX41 in transcription- 2 associated genomic instability 1 1 1 1 1 3 Thorsten Mosler , Francesca Conte , Ivan Mikicic , Nastasja Kreim , Martin M. Möckel , 4 Johanna Flach2, Brian Luke1,3, Petra Beli1,3,# 5 6 1Institute of Molecular Biology (IMB), Mainz, Germany 7 2Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg 8 University, Mannheim, Germany 9 3Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, 10 Mainz, Germany. 11 #Correspondence should be addressed to [email protected] 12 13 14 15 16 17 18 19 20 21 22 Keywords: DDX41, genomic instability, proximity proteomics, R-loops, transcription 23 1 24 Abstract 25 Transcription can pose a threat to genomic stability through the formation of R-loops that 26 obstruct the progression of replication forks.
    [Show full text]
  • Expression of the POTE Gene Family in Human Ovarian Cancer Carter J Barger1,2, Wa Zhang1,2, Ashok Sharma 1,2, Linda Chee1,2, Smitha R
    www.nature.com/scientificreports OPEN Expression of the POTE gene family in human ovarian cancer Carter J Barger1,2, Wa Zhang1,2, Ashok Sharma 1,2, Linda Chee1,2, Smitha R. James3, Christina N. Kufel3, Austin Miller 4, Jane Meza5, Ronny Drapkin 6, Kunle Odunsi7,8,9, 2,10 1,2,3 Received: 5 July 2018 David Klinkebiel & Adam R. Karpf Accepted: 7 November 2018 The POTE family includes 14 genes in three phylogenetic groups. We determined POTE mRNA Published: xx xx xxxx expression in normal tissues, epithelial ovarian and high-grade serous ovarian cancer (EOC, HGSC), and pan-cancer, and determined the relationship of POTE expression to ovarian cancer clinicopathology. Groups 1 & 2 POTEs showed testis-specifc expression in normal tissues, consistent with assignment as cancer-testis antigens (CTAs), while Group 3 POTEs were expressed in several normal tissues, indicating they are not CTAs. Pan-POTE and individual POTEs showed signifcantly elevated expression in EOC and HGSC compared to normal controls. Pan-POTE correlated with increased stage, grade, and the HGSC subtype. Select individual POTEs showed increased expression in recurrent HGSC, and POTEE specifcally associated with reduced HGSC OS. Consistent with tumors, EOC cell lines had signifcantly elevated Pan-POTE compared to OSE and FTE cells. Notably, Group 1 & 2 POTEs (POTEs A/B/B2/C/D), Group 3 POTE-actin genes (POTEs E/F/I/J/KP), and other Group 3 POTEs (POTEs G/H/M) show within-group correlated expression, and pan-cancer analyses of tumors and cell lines confrmed this relationship. Based on their restricted expression in normal tissues and increased expression and association with poor prognosis in ovarian cancer, POTEs are potential oncogenes and therapeutic targets in this malignancy.
    [Show full text]
  • Downloaded the “Top Edge” Version
    bioRxiv preprint doi: https://doi.org/10.1101/855338; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Drosophila models of pathogenic copy-number variant genes show global and 2 non-neuronal defects during development 3 Short title: Non-neuronal defects of fly homologs of CNV genes 4 Tanzeen Yusuff1,4, Matthew Jensen1,4, Sneha Yennawar1,4, Lucilla Pizzo1, Siddharth 5 Karthikeyan1, Dagny J. Gould1, Avik Sarker1, Yurika Matsui1,2, Janani Iyer1, Zhi-Chun Lai1,2, 6 and Santhosh Girirajan1,3* 7 8 1. Department of Biochemistry and Molecular Biology, Pennsylvania State University, 9 University Park, PA 16802 10 2. Department of Biology, Pennsylvania State University, University Park, PA 16802 11 3. Department of Anthropology, Pennsylvania State University, University Park, PA 16802 12 4 contributed equally to work 13 14 *Correspondence: 15 Santhosh Girirajan, MBBS, PhD 16 205A Life Sciences Building 17 Pennsylvania State University 18 University Park, PA 16802 19 E-mail: [email protected] 20 Phone: 814-865-0674 21 1 bioRxiv preprint doi: https://doi.org/10.1101/855338; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 22 ABSTRACT 23 While rare pathogenic copy-number variants (CNVs) are associated with both neuronal and non- 24 neuronal phenotypes, functional studies evaluating these regions have focused on the molecular 25 basis of neuronal defects.
    [Show full text]
  • Datasheet Blank Template
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . DDX41 (N-13): sc-104868 BACKGROUND RECOMMENDED SECONDARY REAGENTS DDX41 (probable ATP-dependent RNA helicase DDX41, DEAD-box protein To ensure optimal results, the following support (secondary) reagents are abstrakt homolog) is a 622 amino acid protein encoded by the human gene recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 DDX41. DDX41 belongs to the DEAD-box helicase family (DDX41 subfamily) (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey and contains one CCHC-type zinc finger, one helicase ATP-binding domain and anti- goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ one helicase C-terminal domain. DDX41 is required during post-transcriptional Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: gene expression and is thought to be involved in pre-mRNA splicing. DDX41 sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecip- is believed to be a probable ATP-dependent RNA helicase. RNA helicases are itation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). highly conserved enzymes that utilize the energy derived from NTP hydrolysis 3) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution to modulate the structure of RNA. RNA helicases participate in all biological range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: processes that involve RNA, including transcription, splicing and translation. 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941. REFERENCES DATA 1. Irion, U.
    [Show full text]
  • Screen for Multi-SUMO–Binding Proteins Reveals a Multi-SIM–Binding Mechanism for Recruitment of the Transcriptional Regulator ZMYM2 to Chromatin
    Screen for multi-SUMO–binding proteins reveals a multi-SIM–binding mechanism for recruitment of the transcriptional regulator ZMYM2 to chromatin Elisa Aguilar-Martineza, Xi Chena, Aaron Webbera, A. Paul Moulda, Anne Seifertb, Ronald T. Hayb, and Andrew D. Sharrocksa,1 aFaculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom; and bCentre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom Edited by James L. Manley, Columbia University, New York, NY, and approved July 17, 2015 (received for review May 20, 2015) Protein SUMOylation has emerged as an important regulatory human proteins containing two or more motifs corresponding event, particularly in nuclear processes such as transcriptional to the extended negatively charged amino acid-dependent control and DNA repair. In this context, small ubiquitin-like modifier SUMOylation motif (NDSM) (13) Thus, there is a huge poten- (SUMO) often provides a binding platform for the recruitment of tial for widespread multi-SUMOylation of proteins to occur. proteins via their SUMO-interacting motifs (SIMs). Recent discoveries Indeed, several of these proteins have been shown to be point to an important role for multivalent SUMO binding through SUMOylated on multiple sites, including megakaryoblastic leu- multiple SIMs in the binding partner as exemplified by poly- kemia (translocation) 1 (MKL1) (14), CREB-binding protein SUMOylation acting as a binding platform for ubiquitin E3 ligases (CBP) (15), and PEA3/ETV4 (16). Furthermore, two recent such as ring finger protein 4. Here, we have investigated whether proteomic studies emphasize the potential for more widespread other types of protein are recruited through multivalent SUMO multi-SUMOylation as they found that a large proportion of all interactions.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]