Extinction-Driven Changes in Frugivore Communities on Oceanic Islands
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Megafauna Extinction, Tree Species Range Reduction, and Carbon Storage in Amazonian Forests
Ecography 39: 194–203, 2016 doi: 10.1111/ecog.01587 © 2015 The Authors. Ecography © 2015 Nordic Society Oikos Subject Editor: Yadvinder Mahli. Editor-in-Chief: Nathan J. Sanders. Accepted 27 September 2015 Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests Christopher E. Doughty, Adam Wolf, Naia Morueta-Holme, Peter M. Jørgensen, Brody Sandel, Cyrille Violle, Brad Boyle, Nathan J. B. Kraft, Robert K. Peet, Brian J. Enquist, Jens-Christian Svenning, Stephen Blake and Mauro Galetti C. E. Doughty ([email protected]), Environmental Change Inst., School of Geography and the Environment, Univ. of Oxford, South Parks Road, Oxford, OX1 3QY, UK. – A. Wolf, Dept of Ecology and Evolutionary Biology, Princeton Univ., Princeton, NJ 08544, USA. – N. Morueta-Holme, Dept of Integrative Biology, Univ. of California – Berkeley, CA 94720, USA. – B. Sandel, J.-C. Svenning and NM-H, Section for Ecoinformatics and Biodiversity, Dept of Bioscience, Aarhus Univ., Ny Munkegade 114, DK-8000 Aarhus C, Denmark. – P. M. Jørgensen, Missouri Botanical Garden, PO Box 299, St Louis, MO 63166-0299, USA. – C. Violle, CEFE UMR 5175, CNRS – Univ. de Montpellier – Univ. Paul-Valéry Montpellier – EPHE – 1919 route de Mende, FR-34293 Montpellier Cedex 5, France. – B. Boyle and B. J. Enquist, Dept of Ecology and Evolutionary Biology, Univ. of Arizona, Tucson, AZ 85721, USA. – N. J. B. Kraft, Dept of Biology, Univ. of Maryland, College Park, MD 20742, USA. BJE also at: The Santa Fe inst., 1399 Hyde Park Road, Santa Fe, NM 87501, USA. – R. K. Peet, Dept of Biology, Univ. of North Carolina, Chapel Hill, NC 27599-3280, USA. -
Ecosystem Consequences of Bird Declines
Ecosystem consequences of bird declines C¸ag˘ an H. S¸ekerciog˘ lu*, Gretchen C. Daily, and Paul R. Ehrlich Center for Conservation Biology, Department of Biological Sciences, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020 Contributed by Paul R. Ehrlich, October 28, 2004 We present a general framework for characterizing the ecological historically extinct (129) bird species of the world from 248 and societal consequences of biodiversity loss and applying it to sources into a database with Ͼ600,000 entries. Our scenarios the global avifauna. To investigate the potential ecological conse- (Fig. 3, which is published as supporting information on the quences of avian declines, we developed comprehensive databases PNAS web site) are based on the extinction probabilities for of the status and functional roles of birds and a stochastic model threatened species used by International Union for Conserva- for forecasting change. Overall, 21% of bird species are currently tion of Nature and Natural Resources (IUCN). These probabil- extinction-prone and 6.5% are functionally extinct, contributing ities are as follows: 50% chance of extinction in the next 10 years negligibly to ecosystem processes. We show that a quarter or more for critically endangered species, 20% chance of extinction in the of frugivorous and omnivorous species and one-third or more of next 20 years for endangered species, and 10% chance of herbivorous, piscivorous, and scavenger species are extinction- extinction in the next 100 years for vulnerable species. We report prone. Furthermore, our projections indicate that by 2100, 6–14% the averages of 10,000 simulations run for each decade from 2010 of all bird species will be extinct, and 7–25% (28–56% on oceanic to 2100. -
Wkdivextinct Report 2018
ICES WKDIVEXTINCT REPORT 2018 ICES ADVISORY COMMITTEE ICES CM 2018/ACOM:48 REF. ACOM Report of the Workshop on extinction risk of MSFD biodiversity approach (WKDIVExtinct) 12–15 June 2018 ICES HQ, Copenhagen, Denmark International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2018. Report of the Workshop on extinction risk of MSFD biodiversity ap- proach (WKDIVExtinct), 12–15 June 2018, ICES HQ, Copenhagen, Denmark. ICES CM 2018/ACOM:48. 43 pp. The material in this report may be reused using the recommended citation. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has own- ership. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on the ICES website. All extracts must be acknowledged. For other reproduction requests please contact the General Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2018 International Council for the Exploration of the Sea ICES WKDIVExtinct REPORT 2018 | i Contents Executive summary 1 1 Introduction .................................................................................................................... 2 1.1 Background ........................................................................................................... 2 1.2 Findings from the workshop WKDIVAgg ....................................................... -
The Extinction and De-Extinction of Species
Linfield University DigitalCommons@Linfield Faculty Publications Faculty Scholarship & Creative Works 2017 The Extinction and De-Extinction of Species Helena Siipi University of Turku Leonard Finkelman Linfield College Follow this and additional works at: https://digitalcommons.linfield.edu/philfac_pubs Part of the Biology Commons, and the Philosophy of Science Commons DigitalCommons@Linfield Citation Siipi, Helena and Finkelman, Leonard, "The Extinction and De-Extinction of Species" (2017). Faculty Publications. Accepted Version. Submission 3. https://digitalcommons.linfield.edu/philfac_pubs/3 This Accepted Version is protected by copyright and/or related rights. It is brought to you for free via open access, courtesy of DigitalCommons@Linfield, with permission from the rights-holder(s). Your use of this Accepted Version must comply with the Terms of Use for material posted in DigitalCommons@Linfield, or with other stated terms (such as a Creative Commons license) indicated in the record and/or on the work itself. For more information, or if you have questions about permitted uses, please contact [email protected]. The extinction and de-extinction of species I. Introduction WhendeathcameforCelia,ittooktheformoftree.Heedlessofthedangerposed bybranchesoverladenwithsnow,CeliawanderedthroughthelandscapeofSpain’s OrdesanationalparkinJanuary2000.branchfellonherskullandcrushedit.So deathcameandtookher,leavingbodytobefoundbyparkrangersandlegacyto bemournedbyconservationistsaroundtheworld. Theconservationistsmournednotonlythedeathoftheorganism,butalsoan -
Highlights of the Museum of Zoology Highlights on the Blue Route
Highlights of the Museum of Zoology Highlights on the Blue Route Ray-finned Fishes 1 The ray-finned fishes are the most diverse group of backboned animals alive today. From the air-breathing Polypterus with its bony scales to the inflated porcupine fish covered in spines; fish that hear by picking up sounds with the swim bladder and transferring them to the ear along a series of bones to the electrosense of mormyrids; the long fins of flying fish helping them to glide above the ocean surface to the amazing camouflage of the leafy seadragon… the range of adaptations seen in these animals is extraordinary. The origin of limbs 2 The work of Prof Jenny Clack (1947-2020) and her team here at the Museum has revolutionised our understanding of the origin of limbs in vertebrates. Her work on the Devonian tetrapods Acanthostega and Ichthyostega showed that they had eight fingers and seven toes respectively on their paddle-like limbs. These animals also had functional gills and other features that suggest that they were aquatic. More recent work on early Carboniferous sites is shedding light on early vertebrate life on land. LeatherbackTurtle, Dermochelys coriacea 3 Leatherbacks are the largest living turtles. They have a wide geographical range, but their numbers are falling. Eggs are laid on tropical beaches, and hatchlings must fend for themselves against many perils. Only around one in a thousand leatherback hatchlings reach adulthood. With such a low survival rate, the harvesting of turtle eggs has had a devastating impact on leatherback populations. Nile Crocodile, Crocodylus niloticus 4 This skeleton was collected by Dr Hugh Cott (1900- 1987). -
Memoria 2013
Estación Biológica de Doñana - Memoria 2013 1 Estación Biológica de Doñana - Memoria 2013 Portada: Experimentación con picudo rojo (Rhinchophorus ferrugineus), especie invasora, actualmente en expasión en España, que ha supuesto una plaga, principalmente para la palmera canaria. 2 Estación Biológica de Doñana - Memoria 2013 ESTACIÓN BIOLÓGICA DE DOÑANA CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS MEMORIA 2013 COORDINACIÓN Guyonne Janss Rocío Astasio Rosa Rodríguez RECOPILACIÓN INFORMACIÓN Begoña Arrizabalaga José Carlos Soler Olga Guerrero Carmen Mª Velasco Tomás Perera Antonio Páez María Antonia Orduña Ana Ruíz Sonia Velasco Angelines Soto María Cabot Sofía Conradi FOTOGRAFÍAS Héctor Garrido DISEÑO Y MAQUETACIÓN Héctor Garrido Sevilla, Noviembre de 2014 Estación Biológica de Doñana/CSIC C/ Américo Vespucio, s/n 41092 SEVILLA www.ebd.csic.es 3 Estación Biológica de Doñana - Memoria 2013 4 Estación Biológica de Doñana - Memoria 2013 5 Estación Biológica de Doñana - Memoria 2013 6 Estación Biológica de Doñana - Memoria 2013 Contenidos Presentación 9 Introducción 10 Misión 10 Sedes 10 Organización y Estructura 12 Departamentos y grupos de investigación 12 Organigrama de la Estación Biológica de Doñana 13 Líneas de Investigación 14 Servicios científicos 18 Actividades 2013 31 Actividad Investigadora de la EBD 32 Recursos económicos y humanos 38 Otras actividades a destacar 42 Proyectos de Investigación 45 Publicaciones 103 Congresos 120 Tesis doctorales y maestrias 121 Cursos 124 Premios y distinciones 125 Recursos humanos 127 7 Estación Biológica de Doñana - Memoria 2013 8 Estación Biológica de Doñana - Memoria 2013 Presentación 9 Estación Biológica de Doñana - Memoria 2013 Sedes La Estación Biológica de Doñana consta de un centro de investigación con sede en Sevilla, dos estaciones de campo (El Palacio y Huer- ta Tejada) junto a las Reservas Biológicas de Doñana en Almonte (Huelva) y del Guadiamar en Aznalcazar (Sevilla) y de una Estación de Campo en Roblehondo, en el Parque Natural de las Sierras de Cazorla, Segura y Las Villas (Jaén). -
A Synopsis of the Pre-Human Avifauna of the Mascarene Islands
– 195 – Paleornithological Research 2013 Proceed. 8th Inter nat. Meeting Society of Avian Paleontology and Evolution Ursula B. Göhlich & Andreas Kroh (Eds) A synopsis of the pre-human avifauna of the Mascarene Islands JULIAN P. HUME Bird Group, Department of Life Sciences, The Natural History Museum, Tring, UK Abstract — The isolated Mascarene Islands of Mauritius, Réunion and Rodrigues are situated in the south- western Indian Ocean. All are volcanic in origin and have never been connected to each other or any other land mass. Despite their comparatively close proximity to each other, each island differs topographically and the islands have generally distinct avifaunas. The Mascarenes remained pristine until recently, resulting in some documentation of their ecology being made before they rapidly suffered severe degradation by humans. The first major fossil discoveries were made in 1865 on Mauritius and on Rodrigues and in the late 20th century on Réunion. However, for both Mauritius and Rodrigues, the documented fossil record initially was biased toward larger, non-passerine bird species, especially the dodo Raphus cucullatus and solitaire Pezophaps solitaria. This paper provides a synopsis of the fossil Mascarene avifauna, which demonstrates that it was more diverse than previously realised. Therefore, as the islands have suffered severe anthropogenic changes and the fossil record is far from complete, any conclusions based on present avian biogeography must be viewed with caution. Key words: Mauritius, Réunion, Rodrigues, ecological history, biogeography, extinction Introduction ily described or illustrated in ships’ logs and journals, which became the source material for The Mascarene Islands of Mauritius, Réunion popular articles and books and, along with col- and Rodrigues are situated in the south-western lected specimens, enabled monographs such as Indian Ocean (Fig. -
Extinction-Driven Changes in Frugivore Communities on Oceanic Islands
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 Extinction-driven changes in frugivore communities on oceanic islands Heinen, Julia H ; van Loon, E Emiel ; Hansen, Dennis M ; Kissling, W Daniel Abstract: Global change and human expansion have resulted in many species extinctions worldwide, but the geographic variation and determinants of extinction risk in particular guilds still remain little explored. Here, we quantified insular extinctions of frugivorous vertebrates (including birds, mammals and reptiles) across 74 tropical and subtropical oceanic islands within 20 archipelagos worldwide and investigated extinction in relation to island characteristics (island area, isolation, elevation and climate) and species’ functional traits (body mass, diet and ability to fly). Out of the 74 islands, 33 islands (45%) have records of frugivore extinctions, with one third (mean: 34%, range: 2–100%) of the pre‐extinction frugivore community being lost. Geographic areas with more than 50% loss of pre‐extinction species richness include islands in the Pacific (within Hawaii, Cook Islands and Tonga Islands) and the Indian Ocean (Mascarenes, Seychelles). The proportion of species richness lost from original pre‐extinction communities is highest on small and isolated islands, increases with island elevation, but is unrelated to temperature or precipitation. Large and flightless species had higher extinction probability than small or volant species. Across islands with extinction events, a pronounced downsizing of the frugivore community is observed, with a strong extinction‐driven reduction of mean body mass (mean: 37%, range: –18–100%) and maximum body mass (mean: 51%, range: 0–100%). -
Assessing Ecological Function in the Context of Species Recovery H
Assessing ecological function in the context of species recovery H. Resit Akçakaya, Ana S.L. Rodrigues, David Keith, E.J. Milner-gulland, Eric Sanderson, Simon Hedges, David Mallon, Molly Grace, Barney Long, Erik Meijaard, et al. To cite this version: H. Resit Akçakaya, Ana S.L. Rodrigues, David Keith, E.J. Milner-gulland, Eric Sanderson, et al.. Assessing ecological function in the context of species recovery. Conservation Biology, Wiley, 2020, 10.1111/cobi.13425. hal-02383294 HAL Id: hal-02383294 https://hal.archives-ouvertes.fr/hal-02383294 Submitted on 18 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article type: Essay Assessing Ecological Function in the Context of Species Recovery H. Resit Akçakaya1,2, Ana S.L. Rodrigues3, David A. Keith2,4,5, E.J. Milner-Gulland6, Eric W. Sanderson7, Simon Hedges8,9, David P. Mallon10,11, Molly K. Grace12, Barney Long13, Erik Meijaard14,15, P.J. Stephenson16,17 1 Dept. of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA. email: [email protected] 2 IUCN Species Survival Commission 3 Centre d'Ecologie Fonctionnelle et Evolutive CEFE UMR 5175, CNRS – Univ. -
A Brief Look at the Ethical Debate of De- Extinction Stanford-Brown Igem 2013 Alissa Greenberg
1 A Brief Look at the Ethical Debate of De- Extinction Stanford-Brown iGEM 2013 Alissa Greenberg “If extinction is not forever, a lot changes.” -Dr. Stanley Temple, TEDx March 2013 Introduction This year, the 2013 Stanford-Brown iGEM team stepped into uncharted territory. When we brainstormed projects back in April, a combined interest in ancient organisms generated questions on the origins of life and the nature of evolution itself. One screening of Steven Spielberg’s Jurassic Park (1993) later and we developed iGEM’s very first de-extinction project. Hollywood has taken advantage of exploiting scientific disasters. The following paper is meant to strip away the entertaining fiction and facilitate a discussion about the real consequences of de-extinction in the context of our project, both positive and negative. We were still reviewing the task’s objectives when we attended the San Mateo Maker’s Faire in May. All four of our projects were met with enthusiasm. Amidst the excitement, however, were inquiries we had already begun to consider but had not completely explored. Many of the attendees expressed concern over the ethical issues of our de-extinction ideas. Some thought de-extinction had a lot of potential but most appeared weary of our desire to revive what is already “dead and buried.”1 Who are we to manipulate life so vigorously? With the benefit of education and discussion, we feel that the popular fear of de-extinction we encountered is more out of misinformation. The last thing we want to be guilty of is conducting a project without considering multiple perspectives, including the long-term consequences. -
Relation of Minimum Viable Population Size to Biology, Time Frame, and Objective
Comment Relation of Minimum Viable Population Size to Biology, Time Frame, and Objective J. MICHAEL REED∗ § AND EARL D. MCCOY† ∗Department of Biology, Tufts University, Medford, MA, 02155, U.S.A. †Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, U.S.A. Shoemaker et al.’s (2013) estimate of the minimum vi- probability of extinction escalates dramatically over 40 able population size (MVPS) of the bog turtle (Glyptemys generations (Fig. 1). Given the long generation length, muhlenbergii) is 3 orders of magnitude below popu- 20–30 years, of the bog turtle, Shoemaker et al.’s result lation sizes typically viewed as minimally viable (Reed is, therefore, not surprising; but, it is inconsistent with et al. 2003; Trail et al. 2007). Even Flather et al. (2011), typical conception of MVPS, which assumes a population who question the utility of MVPS for conservation plan- will be self-sustaining. Similarly, Brook et al. (1999) con- ning, concede that long-term persistent populations will cluded a high probability of persistence for 50 years for require thousands of individuals. Rather than conclude a population of 18 Whooping Cranes (Grus americana). their result is incorrect, Shoemaker at al. suggest that Because Whooping Cranes can live for 35 years, it is MVPS has been overestimated for long-lived species. Al- unlikely that any pair of birds that can reproduce would though we agree in principle that small populations, es- fail to produce a lineage that persisted 50 years; but, 18 pecially of long-lived species, have conservation value, individuals do not necessarily constitute a viable popu- we do not agree that Shoemaker et al.’s result provides lation. -
Rescuing Ecosystems from Extinction Cascades Through Compensatory Perturbations
ARTICLE Received 8 Nov 2010 | Accepted 15 Dec 2010 | Published 25 Jan 2011 DOI: 10.1038/ncomms1163 Rescuing ecosystems from extinction cascades through compensatory perturbations Sagar Sahasrabudhe1 & Adilson E. Motter1,2 Food-web perturbations stemming from climate change, overexploitation, invasive species and habitat degradation often cause an initial loss of species that results in a cascade of secondary extinctions, posing considerable challenges to ecosystem conservation efforts. Here, we devise a systematic network-based approach to reduce the number of secondary extinctions using a predictive modelling framework. We show that the extinction of one species can often be compensated by the concurrent removal or population suppression of other specific species, a counterintuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not evident from local predator–prey relationships. In numerous cases, even the early removal of a species that would eventually go extinct is found to significantly reduce the number of cascading extinctions. These compensatory perturbations only exploit resources available in the system, and illustrate the potential of human intervention combined with predictive modelling for ecosystem management. 1 Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA. 2 Northwestern Institute on Complex Systems, Northwestern University, 600 Foster Street, Evanston, Illinois 60208, USA. Correspondence and requests for materials should be addressed to A.E.M. (email: [email protected]). NATURE COMMUNICATIONS | 2:170 | DOI: 10.1038/ncomms1163 | www.nature.com/naturecommunications © 2011 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms1163 alting the loss of biodiversity caused by human and natural Results forces1–4 has become one of the grand challenges of this Rescue mechanism.