Memoria 2013

Total Page:16

File Type:pdf, Size:1020Kb

Memoria 2013 Estación Biológica de Doñana - Memoria 2013 1 Estación Biológica de Doñana - Memoria 2013 Portada: Experimentación con picudo rojo (Rhinchophorus ferrugineus), especie invasora, actualmente en expasión en España, que ha supuesto una plaga, principalmente para la palmera canaria. 2 Estación Biológica de Doñana - Memoria 2013 ESTACIÓN BIOLÓGICA DE DOÑANA CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS MEMORIA 2013 COORDINACIÓN Guyonne Janss Rocío Astasio Rosa Rodríguez RECOPILACIÓN INFORMACIÓN Begoña Arrizabalaga José Carlos Soler Olga Guerrero Carmen Mª Velasco Tomás Perera Antonio Páez María Antonia Orduña Ana Ruíz Sonia Velasco Angelines Soto María Cabot Sofía Conradi FOTOGRAFÍAS Héctor Garrido DISEÑO Y MAQUETACIÓN Héctor Garrido Sevilla, Noviembre de 2014 Estación Biológica de Doñana/CSIC C/ Américo Vespucio, s/n 41092 SEVILLA www.ebd.csic.es 3 Estación Biológica de Doñana - Memoria 2013 4 Estación Biológica de Doñana - Memoria 2013 5 Estación Biológica de Doñana - Memoria 2013 6 Estación Biológica de Doñana - Memoria 2013 Contenidos Presentación 9 Introducción 10 Misión 10 Sedes 10 Organización y Estructura 12 Departamentos y grupos de investigación 12 Organigrama de la Estación Biológica de Doñana 13 Líneas de Investigación 14 Servicios científicos 18 Actividades 2013 31 Actividad Investigadora de la EBD 32 Recursos económicos y humanos 38 Otras actividades a destacar 42 Proyectos de Investigación 45 Publicaciones 103 Congresos 120 Tesis doctorales y maestrias 121 Cursos 124 Premios y distinciones 125 Recursos humanos 127 7 Estación Biológica de Doñana - Memoria 2013 8 Estación Biológica de Doñana - Memoria 2013 Presentación 9 Estación Biológica de Doñana - Memoria 2013 Sedes La Estación Biológica de Doñana consta de un centro de investigación con sede en Sevilla, dos estaciones de campo (El Palacio y Huer- ta Tejada) junto a las Reservas Biológicas de Doñana en Almonte (Huelva) y del Guadiamar en Aznalcazar (Sevilla) y de una Estación de Campo en Roblehondo, en el Parque Natural de las Sierras de Cazorla, Segura y Las Villas (Jaén). Utiliza además como oficinas, gracias a un convenio con la Universidad de Huelva, parte de las instalaciones que ésta tiene en el CIECEM de Matalascañas (Almonte, Huelva) Desde enero de 2009 la Sede Central de la Es- tación Biológica de Doñana está ubicada en la Isla de la Cartuja, un parque científico-tecno- lógico construido para la Exposición Universal de 1992 de Sevilla. La sede principal alberga la Administración central, Departamentos, Labo- ratorios, Biblioteca, la Colección Científica de Vertebrados, distintas instalaciones de apoyo, etc. Se trata de un edificio de nueva construc- ción diseñado para cubrir las necesidades es- pecíficas de los investigadores. En la antigua sede de la EBD, el Pabellón del Perú (Expo Iberoamericana de 1929), se mantiene una unidad dedicada a la Cultura Científica y Divul- gación, la Casa de la Ciencia que depende de INTRODUCCIÓN la Delegación del CSIC en Andalucía. Misión La Reserva Biológica de Doñana (RBD) se en- clava dentro de los límites del Parque Nacional La Estación Biológica de Doñana, creada en de Doñana y está constituida por dos fincas. 1964, es un Instituto Público de Investigación perteneciente al Consejo Superior de Inves- tigaciones Científicas, CSIC, dentro del área de Recursos Naturales. Nuestra misión funda- mental es llevar a cabo una investigación multi- disciplinar al más alto nivel, y dirigida a la com- prensión, desde un punto de vista evolutivo, de la forma en que se genera la biodiversidad, la forma en que se mantiene y deteriora, ade- más de las consecuencias de su pérdida y de las posibilidades de su conservación y restau- ración. Inherente a todo ello, también se pro- mueve la transferencia del conocimiento a la sociedad. En un principio la actividad científica de la EBD se centró en el ámbito de Doñana, ampliándose pronto el campo de actuación a otros ecosistemas tanto dentro como fuera de España. 10 Estación Biológica de Doñana - Memoria 2013 La Reserva Biológica de Doñana, propiamente dicha, tiene una superficie de 6.794 ha cuya propiedad y gestión corresponden al CSIC. La Reserva Biológica de Guadiamar, con 3.214 ha, es propiedad de WWF/ADENA y su ges- tión administrativa y científica corresponde al CSIC. La EBD gestiona, por tanto, una superfi- cie de 10.008 ha en el Parque Nacional de Do- ñana. El director de la EBD coordina también por ley todos los proyectos de investigación en el Parque Nacional y Natural de Doñana (Ley 91/1978 del Parque Nacional de Doñana y Ley 8/1999 del Espacio Natural de Doñana), un es- pacio protegido de 108.000 ha. En 2006 la RBD fue reconocida por el Minis- terio Español de Educación y Ciencia como Infraestructura Científica y Tecnológica Sin- gular (ICTS). La RBD-ICTS ofrece modernas infraestructuras de comunicación, así como equipamiento científico y pone a disposición de los investigadores una excepcional base de datos sobre las especies, comunidades y procesos naturales más relevantes de Doña- na, fruto del Seguimiento a largo plazo que se lleva a cabo en el Espacio Natural y su entorno desde hace años. La Reserva Biológica de Doñana consta de un total de 31 edificios, incluido el Palacio de Do- ñana, laboratorios y otros servicios, proporcio- nando apoyo logístico y técnico a los proyectos de investigación ajustado a las propias restric- ciones de uso del Parque y alojamiento gratui- to para investigadores autorizados (incluyendo servicios de comida, lavandería, etc.). La Estación de Campo de Roblehondo (ECRH) se encuentra a 350 km de Sevilla, en el Parque Natural Sierras de Cazorla, Segura y Las Villas (214.300 ha). Desde 1978 el personal investi- gador de la EBD viene utilizando como base para sus investigaciones la Casa Forestal de Roblehondo, situada en el término municipal de La Iruela. Esa infraestructura, ubicada en el centro de la Reserva de Navahondona-Gua- dahornillos, es en la actualidad una estación de campo dependiente administrativamente de la Estación Biológica de Doñana gracias a una cesión de uso otorgada por la Junta de Anda- lucía al CSIC en 1994. Tiene una capacidad muy limitada y es utilizada también por grupos de investigación de otros institutos del CSIC y de universidades. 11 Estación Biológica de Doñana - Memoria 2013 ORGANIZACIÓN Y ESTRUCTURA Departamentos y grupos de investi- gación La EBD está estructurada en 5 departamentos Grupos de Investigación de la EBD del Sistema de investigación, siendo éstos las unidades ad- Andaluz de Conocimiento (Junta de Andalucía) ministrativas funcionales en el día a día. Cada uno de ellos tiene un Jefe o representante y • Grupo de análisis integrado en ecología uno o más grupos alrededor de los cuales gira evolutiva (RNM 305) nuestro trabajo científico. Los miembros de • Grupo de biología de especies cinegéticas cada Departamento pueden trabajar en varias y plagas (RNM 118) Líneas de de Investigación. • Grupo de biología de la conservación (RNM 157) • Grupo de conservación de la Biodiversidad DEPARTAMENTOS DE LA EBD (RNM 372) • Grupo de ecología de humedales (RNM • Biología de la Conservación 361) • Ecología de Humedales • Grupo de ecología y evolución de anfibios y • Ecología Evolutiva reptiles (RNM 128) • Ecología Integrativa • Grupo de estrategias reproductivas • Etología y Conservación de la Biodiversi- (RNM105) dad • Grupo de evolución de sistemas planta/ani- mal (RNM 154) • Grupo de sistemática y ecología de los qui- Dentro del Sistema Andaluz de Conocimiento rópteros (RNM 158) (I+D+i) de la Junta de Andalucía, la Estación Biológica de Doñana se conforma por 9 grupos de investigación que cada año son evaluados y subvencionados por la Junta de Andalucía (Consejería de Innovación y Ciencia) y cuyos miembros pueden estar en departamentos di- ferentes. 12 Estación Biológica de Doñana - Memoria 2013 Organigrama de la Estación Biológica de Doñana Consejo Superior de Investigaciones Científicas 13 Estación Biológica de Doñana - Memoria 2013 Líneas de Investigación Las líneas de investigación reflejan las principa- les áreas científicas en las que se centra nues- tro trabajo en este momento Constituyen el es- queleto conceptual del Instituto, estructuradas de una forma transversal respecto a nuestra estructura administrativa (Departamentos) y los grupos funcionales (Laboratorios) y forman los grupos científicos que representa la EBD a nivel del CSIC a la hora de contabilizar las ac- tividades científicas. Actualmente distinguimos las siguientes líneas: Biología de la Conservación y Cambio Global Realizamos una investigación multidisciplinar (ecología evolutiva, ecología del comportamien- to, ecología demográfica espacial, ecología de las comunidades, dinámicas demográficas y de población, modelos de extinción, genética de conservación, ecofisiología etc.) con el fin de construir la base científica necesaria para la conservación de la diversidad biológica en to- das sus formas. La biología de la conservación es la respuesta que la comunidad científica ofrece a la actual crisis de la biodiversidad mo- tivada por los cambios globales inducidos por el hombre que están suponiendo un episodio de extinción sin precedentes. Nuestro trabajo se orienta hacia la composición, estructura y procesos dentro y entre ecosistemas, comu- nidades, especies, poblaciones, individuos y genes. Nuestro trabajo se enmarca en el pa- radigma de la evolución y en el reconocimiento de que las dinámicas ecológicas son típicas de sistemas altamente estocásticos, complejos y en desequilibro con una fuerte presión externa. Desde nuestro punto de vista, la
Recommended publications
  • Megafauna Extinction, Tree Species Range Reduction, and Carbon Storage in Amazonian Forests
    Ecography 39: 194–203, 2016 doi: 10.1111/ecog.01587 © 2015 The Authors. Ecography © 2015 Nordic Society Oikos Subject Editor: Yadvinder Mahli. Editor-in-Chief: Nathan J. Sanders. Accepted 27 September 2015 Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests Christopher E. Doughty, Adam Wolf, Naia Morueta-Holme, Peter M. Jørgensen, Brody Sandel, Cyrille Violle, Brad Boyle, Nathan J. B. Kraft, Robert K. Peet, Brian J. Enquist, Jens-Christian Svenning, Stephen Blake and Mauro Galetti C. E. Doughty ([email protected]), Environmental Change Inst., School of Geography and the Environment, Univ. of Oxford, South Parks Road, Oxford, OX1 3QY, UK. – A. Wolf, Dept of Ecology and Evolutionary Biology, Princeton Univ., Princeton, NJ 08544, USA. – N. Morueta-Holme, Dept of Integrative Biology, Univ. of California – Berkeley, CA 94720, USA. – B. Sandel, J.-C. Svenning and NM-H, Section for Ecoinformatics and Biodiversity, Dept of Bioscience, Aarhus Univ., Ny Munkegade 114, DK-8000 Aarhus C, Denmark. – P. M. Jørgensen, Missouri Botanical Garden, PO Box 299, St Louis, MO 63166-0299, USA. – C. Violle, CEFE UMR 5175, CNRS – Univ. de Montpellier – Univ. Paul-Valéry Montpellier – EPHE – 1919 route de Mende, FR-34293 Montpellier Cedex 5, France. – B. Boyle and B. J. Enquist, Dept of Ecology and Evolutionary Biology, Univ. of Arizona, Tucson, AZ 85721, USA. – N. J. B. Kraft, Dept of Biology, Univ. of Maryland, College Park, MD 20742, USA. BJE also at: The Santa Fe inst., 1399 Hyde Park Road, Santa Fe, NM 87501, USA. – R. K. Peet, Dept of Biology, Univ. of North Carolina, Chapel Hill, NC 27599-3280, USA.
    [Show full text]
  • Ecosystem Consequences of Bird Declines
    Ecosystem consequences of bird declines C¸ag˘ an H. S¸ekerciog˘ lu*, Gretchen C. Daily, and Paul R. Ehrlich Center for Conservation Biology, Department of Biological Sciences, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020 Contributed by Paul R. Ehrlich, October 28, 2004 We present a general framework for characterizing the ecological historically extinct (129) bird species of the world from 248 and societal consequences of biodiversity loss and applying it to sources into a database with Ͼ600,000 entries. Our scenarios the global avifauna. To investigate the potential ecological conse- (Fig. 3, which is published as supporting information on the quences of avian declines, we developed comprehensive databases PNAS web site) are based on the extinction probabilities for of the status and functional roles of birds and a stochastic model threatened species used by International Union for Conserva- for forecasting change. Overall, 21% of bird species are currently tion of Nature and Natural Resources (IUCN). These probabil- extinction-prone and 6.5% are functionally extinct, contributing ities are as follows: 50% chance of extinction in the next 10 years negligibly to ecosystem processes. We show that a quarter or more for critically endangered species, 20% chance of extinction in the of frugivorous and omnivorous species and one-third or more of next 20 years for endangered species, and 10% chance of herbivorous, piscivorous, and scavenger species are extinction- extinction in the next 100 years for vulnerable species. We report prone. Furthermore, our projections indicate that by 2100, 6–14% the averages of 10,000 simulations run for each decade from 2010 of all bird species will be extinct, and 7–25% (28–56% on oceanic to 2100.
    [Show full text]
  • Wkdivextinct Report 2018
    ICES WKDIVEXTINCT REPORT 2018 ICES ADVISORY COMMITTEE ICES CM 2018/ACOM:48 REF. ACOM Report of the Workshop on extinction risk of MSFD biodiversity approach (WKDIVExtinct) 12–15 June 2018 ICES HQ, Copenhagen, Denmark International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2018. Report of the Workshop on extinction risk of MSFD biodiversity ap- proach (WKDIVExtinct), 12–15 June 2018, ICES HQ, Copenhagen, Denmark. ICES CM 2018/ACOM:48. 43 pp. The material in this report may be reused using the recommended citation. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has own- ership. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on the ICES website. All extracts must be acknowledged. For other reproduction requests please contact the General Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2018 International Council for the Exploration of the Sea ICES WKDIVExtinct REPORT 2018 | i Contents Executive summary 1 1 Introduction .................................................................................................................... 2 1.1 Background ........................................................................................................... 2 1.2 Findings from the workshop WKDIVAgg .......................................................
    [Show full text]
  • The Extinction and De-Extinction of Species
    Linfield University DigitalCommons@Linfield Faculty Publications Faculty Scholarship & Creative Works 2017 The Extinction and De-Extinction of Species Helena Siipi University of Turku Leonard Finkelman Linfield College Follow this and additional works at: https://digitalcommons.linfield.edu/philfac_pubs Part of the Biology Commons, and the Philosophy of Science Commons DigitalCommons@Linfield Citation Siipi, Helena and Finkelman, Leonard, "The Extinction and De-Extinction of Species" (2017). Faculty Publications. Accepted Version. Submission 3. https://digitalcommons.linfield.edu/philfac_pubs/3 This Accepted Version is protected by copyright and/or related rights. It is brought to you for free via open access, courtesy of DigitalCommons@Linfield, with permission from the rights-holder(s). Your use of this Accepted Version must comply with the Terms of Use for material posted in DigitalCommons@Linfield, or with other stated terms (such as a Creative Commons license) indicated in the record and/or on the work itself. For more information, or if you have questions about permitted uses, please contact [email protected]. The extinction and de-extinction of species I. Introduction WhendeathcameforCelia,ittooktheformoftree.Heedlessofthedangerposed bybranchesoverladenwithsnow,CeliawanderedthroughthelandscapeofSpain’s OrdesanationalparkinJanuary2000.branchfellonherskullandcrushedit.So deathcameandtookher,leavingbodytobefoundbyparkrangersandlegacyto bemournedbyconservationistsaroundtheworld. Theconservationistsmournednotonlythedeathoftheorganism,butalsoan
    [Show full text]
  • Assessing Ecological Function in the Context of Species Recovery H
    Assessing ecological function in the context of species recovery H. Resit Akçakaya, Ana S.L. Rodrigues, David Keith, E.J. Milner-gulland, Eric Sanderson, Simon Hedges, David Mallon, Molly Grace, Barney Long, Erik Meijaard, et al. To cite this version: H. Resit Akçakaya, Ana S.L. Rodrigues, David Keith, E.J. Milner-gulland, Eric Sanderson, et al.. Assessing ecological function in the context of species recovery. Conservation Biology, Wiley, 2020, 10.1111/cobi.13425. hal-02383294 HAL Id: hal-02383294 https://hal.archives-ouvertes.fr/hal-02383294 Submitted on 18 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article type: Essay Assessing Ecological Function in the Context of Species Recovery H. Resit Akçakaya1,2, Ana S.L. Rodrigues3, David A. Keith2,4,5, E.J. Milner-Gulland6, Eric W. Sanderson7, Simon Hedges8,9, David P. Mallon10,11, Molly K. Grace12, Barney Long13, Erik Meijaard14,15, P.J. Stephenson16,17 1 Dept. of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA. email: [email protected] 2 IUCN Species Survival Commission 3 Centre d'Ecologie Fonctionnelle et Evolutive CEFE UMR 5175, CNRS – Univ.
    [Show full text]
  • A Brief Look at the Ethical Debate of De- Extinction Stanford-Brown Igem 2013 Alissa Greenberg
    1 A Brief Look at the Ethical Debate of De- Extinction Stanford-Brown iGEM 2013 Alissa Greenberg “If extinction is not forever, a lot changes.” -Dr. Stanley Temple, TEDx March 2013 Introduction This year, the 2013 Stanford-Brown iGEM team stepped into uncharted territory. When we brainstormed projects back in April, a combined interest in ancient organisms generated questions on the origins of life and the nature of evolution itself. One screening of Steven Spielberg’s Jurassic Park (1993) later and we developed iGEM’s very first de-extinction project. Hollywood has taken advantage of exploiting scientific disasters. The following paper is meant to strip away the entertaining fiction and facilitate a discussion about the real consequences of de-extinction in the context of our project, both positive and negative. We were still reviewing the task’s objectives when we attended the San Mateo Maker’s Faire in May. All four of our projects were met with enthusiasm. Amidst the excitement, however, were inquiries we had already begun to consider but had not completely explored. Many of the attendees expressed concern over the ethical issues of our de-extinction ideas. Some thought de-extinction had a lot of potential but most appeared weary of our desire to revive what is already “dead and buried.”1 Who are we to manipulate life so vigorously? With the benefit of education and discussion, we feel that the popular fear of de-extinction we encountered is more out of misinformation. The last thing we want to be guilty of is conducting a project without considering multiple perspectives, including the long-term consequences.
    [Show full text]
  • Relation of Minimum Viable Population Size to Biology, Time Frame, and Objective
    Comment Relation of Minimum Viable Population Size to Biology, Time Frame, and Objective J. MICHAEL REED∗ § AND EARL D. MCCOY† ∗Department of Biology, Tufts University, Medford, MA, 02155, U.S.A. †Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, U.S.A. Shoemaker et al.’s (2013) estimate of the minimum vi- probability of extinction escalates dramatically over 40 able population size (MVPS) of the bog turtle (Glyptemys generations (Fig. 1). Given the long generation length, muhlenbergii) is 3 orders of magnitude below popu- 20–30 years, of the bog turtle, Shoemaker et al.’s result lation sizes typically viewed as minimally viable (Reed is, therefore, not surprising; but, it is inconsistent with et al. 2003; Trail et al. 2007). Even Flather et al. (2011), typical conception of MVPS, which assumes a population who question the utility of MVPS for conservation plan- will be self-sustaining. Similarly, Brook et al. (1999) con- ning, concede that long-term persistent populations will cluded a high probability of persistence for 50 years for require thousands of individuals. Rather than conclude a population of 18 Whooping Cranes (Grus americana). their result is incorrect, Shoemaker at al. suggest that Because Whooping Cranes can live for 35 years, it is MVPS has been overestimated for long-lived species. Al- unlikely that any pair of birds that can reproduce would though we agree in principle that small populations, es- fail to produce a lineage that persisted 50 years; but, 18 pecially of long-lived species, have conservation value, individuals do not necessarily constitute a viable popu- we do not agree that Shoemaker et al.’s result provides lation.
    [Show full text]
  • Rescuing Ecosystems from Extinction Cascades Through Compensatory Perturbations
    ARTICLE Received 8 Nov 2010 | Accepted 15 Dec 2010 | Published 25 Jan 2011 DOI: 10.1038/ncomms1163 Rescuing ecosystems from extinction cascades through compensatory perturbations Sagar Sahasrabudhe1 & Adilson E. Motter1,2 Food-web perturbations stemming from climate change, overexploitation, invasive species and habitat degradation often cause an initial loss of species that results in a cascade of secondary extinctions, posing considerable challenges to ecosystem conservation efforts. Here, we devise a systematic network-based approach to reduce the number of secondary extinctions using a predictive modelling framework. We show that the extinction of one species can often be compensated by the concurrent removal or population suppression of other specific species, a counterintuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not evident from local predator–prey relationships. In numerous cases, even the early removal of a species that would eventually go extinct is found to significantly reduce the number of cascading extinctions. These compensatory perturbations only exploit resources available in the system, and illustrate the potential of human intervention combined with predictive modelling for ecosystem management. 1 Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA. 2 Northwestern Institute on Complex Systems, Northwestern University, 600 Foster Street, Evanston, Illinois 60208, USA. Correspondence and requests for materials should be addressed to A.E.M. (email: [email protected]). NATURE COMMUNICATIONS | 2:170 | DOI: 10.1038/ncomms1163 | www.nature.com/naturecommunications © 2011 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms1163 alting the loss of biodiversity caused by human and natural Results forces1–4 has become one of the grand challenges of this Rescue mechanism.
    [Show full text]
  • Ecological Consequences of Human Niche Construction: Examining Long-Term Anthropogenic Shaping of Global Species Distributions Nicole L
    SPECIAL FEATURE: SPECIAL FEATURE: PERSPECTIVE PERSPECTIVE Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions Nicole L. Boivina,b,1, Melinda A. Zederc,d, Dorian Q. Fuller (傅稻镰)e, Alison Crowtherf, Greger Larsong, Jon M. Erlandsonh, Tim Denhami, and Michael D. Petragliaa Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved March 18, 2016 (received for review December 22, 2015) The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens. A crucial outcome of such behaviors has been the dramatic reshaping of the global bio- sphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity—the Late Pleistocene global human expansion, the Neolithic spread of agricul- ture, the era of island colonization, and the emergence of early urbanized societies and commercial net- works.
    [Show full text]
  • Plant-Pollinator Coextinctions and the Loss of Plant Functional and Phylogenetic Diversity
    Plant-Pollinator Coextinctions and the Loss of Plant Functional and Phylogenetic Diversity Marcos Costa Vieira1*, Marcus Vinicius Cianciaruso2, Mário Almeida-Neto2 1 Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de Goiás, Goiânia, Goiás, Brazil, 2 Departamento de Ecologia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil Abstract Plant-pollinator coextinctions are likely to become more frequent as habitat alteration and climate change continue to threaten pollinators. The consequences of the resulting collapse of plant communities will depend partly on how quickly plant functional and phylogenetic diversity decline following pollinator extinctions. We investigated the functional and phylogenetic consequences of pollinator extinctions by simulating coextinctions in seven plant- pollinator networks coupled with independent data on plant phylogeny and functional traits. Declines in plant functional diversity were slower than expected under a scenario of random extinctions, while phylogenetic diversity often decreased faster than expected by chance. Our results show that plant functional diversity was relatively robust to plant-pollinator coextinctions, despite the underlying rapid loss of evolutionary history. Thus, our study suggests the possibility of uncoupled responses of functional and phylogenetic diversity to species coextinctions, highlighting the importance of considering both dimensions of biodiversity explicitly in ecological studies and when planning for the conservation of species and interactions. Citation: Vieira MC, Cianciaruso MV, Almeida-Neto M (2013) Plant-Pollinator Coextinctions and the Loss of Plant Functional and Phylogenetic Diversity. PLoS ONE 8(11): e81242. doi:10.1371/journal.pone.0081242 Editor: Nina Farwig, University of Marburg, Germany Received July 2, 2013; Accepted October 10, 2013; Published November 29, 2013 Copyright: © 2013 Vieira et al.
    [Show full text]
  • A General Framework for Setting Quantitative Population Objectives for Wildlife Conservation Kristen E
    MARCH 2017 RESEARCH A General Framework for Setting Quantitative Population Objectives for Wildlife Conservation Kristen E. Dybala*,1, Neil Clipperton2, Thomas Gardali1, Gregory H. Golet3, Rodd Kelsey4, Stefan Lorenzato5, Ron Melcer, Jr.5,6, Nathaniel E. Seavy1, Joseph G. Silveira7, and Gregory S. Yarris8 feasible objectives. Conservation practitioners require Volume 15, Issue 1 | Article 8 https://doi.org/10.15447/sfews.2017v15iss1art8 an alternative, science-based method for setting long- term quantitative population objectives. We reviewed * Corresponding author: [email protected] conservation biology literature to develop a general 1 Point Blue Conservation Science conceptual framework that represents conservation Petaluma, CA 94954 USA biology principles and identifies key milestones a 2 California Department of Fish and Wildlife Sacramento, CA 95811 USA population would be expected to pass in the process 3 The Nature Conservancy of becoming a recovered or robust population. Chico, CA 95926 USA We then synthesized recent research to propose 4 The Nature Conservancy general hypotheses for the orders of magnitude at Sacramento, CA 95814 USA which most populations would be expected to reach 5 California Department of Water Resources each milestone. The framework is structured as a Sacramento, CA 95814 USA hierarchy of four population sizes, ranging from very 6 Geography Graduate Group, University of California small populations at increased risk of inbreeding Davis, CA 95616 USA depression and extirpation (< 1,000 adults) to large 7 U.S. Fish and Wildlife Service Sacramento National Wildlife Refuge Complex populations with minimized risk of extirpation Willows, CA 95988 USA (> 50,000 adults), along with additional modifiers 8 Central Valley Joint Venture, U.S.
    [Show full text]
  • Inferring Functional Extinction Based on Sighting Records Ivan Jarić1,2*, Jörn Gessner1 and Andrew R. Solow3 1 Leibniz-Institu
    Inferring functional extinction based on sighting records Ivan Jarić1,2*, Jörn Gessner1 and Andrew R. Solow3 1 Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany 2 Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia 3 Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA * Author to whom correspondence should be addressed: Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany; E-mail: jaric@igb- berlin.de; phone: +49 (0)30 64181 766, fax.: +49 (0)30 64181 626 1 ABSTRACT The term functional extinction is used to describe a permanent failure of reproduction or recruitment in a population. Functional extinction results in a truncation of the age distribution, but this can be very difficult to detect in poorly studied populations. Here, we describe a novel statistical method for detecting functional extinction based on a sighting record of individuals of known or estimated ages. The method is based on a simple population dynamics model and simulation results show that it works well even with limited data. The method is illustrated using a sighting record of the ship sturgeon (Acipenser nudiventris) in the Danube River. The results indicate that this population is functionally extinct, most likely by 2002. Management implications of this finding are discussed. Keywords: Acipenser nudiventris, extinction risk, recruitment failure, reproductive failure, sighting record 2 1. INTRODUCTION For many species, negative population trends pass largely undetected across the critical point beyond which management and conservation measures become ineffective, while the likelihood of extinction approaches certainty. As a result, timely and reliable detection of critical population status is of paramount importance to allow effective countermeasures to be taken in due time.
    [Show full text]