The notion of observable and the moment problem for ∗-algebras and their GNS representations Nicol`oDragoa, Valter Morettib Department of Mathematics, University of Trento, and INFN-TIFPA via Sommarive 14, I-38123 Povo (Trento), Italy.
[email protected],
[email protected] February, 17, 2020 Abstract We address some usually overlooked issues concerning the use of ∗-algebras in quantum theory and their physical interpretation. If A is a ∗-algebra describing a quantum system and ! : A ! C a state, we focus in particular on the interpretation of !(a) as expectation value for an algebraic observable a = a∗ 2 A, studying the problem of finding a probability n measure reproducing the moments f!(a )gn2N. This problem enjoys a close relation with the selfadjointness of the (in general only symmetric) operator π!(a) in the GNS representation of ! and thus it has important consequences for the interpretation of a as an observable. We n provide physical examples (also from QFT) where the moment problem for f!(a )gn2N does not admit a unique solution. To reduce this ambiguity, we consider the moment problem n ∗ (a) for the sequences f!b(a )gn2N, being b 2 A and !b(·) := !(b · b). Letting µ!b be a n solution of the moment problem for the sequence f!b(a )gn2N, we introduce a consistency (a) relation on the family fµ!b gb2A. We prove a 1-1 correspondence between consistent families (a) fµ!b gb2A and positive operator-valued measures (POVM) associated with the symmetric (a) operator π!(a). In particular there exists a unique consistent family of fµ!b gb2A if and only if π!(a) is maximally symmetric.