Notes on Operator Algebras

Total Page:16

File Type:pdf, Size:1020Kb

Notes on Operator Algebras Notes on operator algebras Jesse Peterson April 6, 2015 2 Contents 1 Spectral theory 7 1.1 Banach and C∗-algebras . 8 1.1.1 Examples . 13 1.2 The Gelfand transform . 14 1.3 Continuous functional calculus . 16 1.3.1 The non-unital case . 17 1.4 Applications of functional calculus . 19 1.4.1 The positive cone . 20 1.4.2 Extreme points . 22 2 Representations and states 25 2.1 Approximate identities . 25 2.2 The Cohen-Hewitt factorization theorem . 26 2.3 States . 29 2.3.1 The Gelfand-Naimark-Segal construction . 31 2.3.2 Pure states . 33 2.3.3 Jordan Decomposition . 35 3 Bounded linear operators 37 3.1 Trace class operators . 40 3.2 Hilbert-Schmidt operators . 44 3.3 Compact operators . 47 3.4 Topologies on the space of operators . 50 3.5 The double commutant theorem . 53 3.6 Kaplansky's density theorem . 56 3.7 The spectral theorem and Borel functional calculus . 57 3.7.1 Spectral measures . 58 3.8 Abelian von Neumann algebras . 63 3 4 CONTENTS 3.9 Standard probability spaces . 67 3.10 Normal linear functionals . 75 3.11 Polar and Jordan decomposition . 77 4 Unbounded operators 83 4.1 Definitions and examples . 83 4.1.1 The spectrum of a linear operator . 86 4.1.2 Quadratic forms . 87 4.2 Symmetric operators and extensions . 89 4.2.1 The Cayley transform . 91 4.3 Functional calculus for normal operators . 94 4.3.1 Positive operators . 94 4.3.2 Borel functional calculus . 95 4.3.3 Polar decomposition . 99 4.4 Semigroups and infinitesimal generators. 100 4.4.1 Contraction semigroups . 100 4.4.2 Stone's Theorem . 102 4.4.3 Dirichlet forms . 103 I Topics in abstract harmonic analysis 105 5 Basic concepts in abstract harmonic analysis 107 5.1 Polish groups . 107 5.2 Locally compact groups . 110 5.3 The L1, C∗, and von Neuman algebras of a locally compact group . 114 5.3.1 Unitary representations . 117 5.4 Functions of positive type . 121 5.5 The Fourier-Stieltjes, and Fourier algebras . 127 5.6 Pontryagin duality . 132 5.6.1 Subgroups and quotients . 141 5.6.2 Restricted products . 142 5.6.3 Stone's theorem . 142 5.7 The Peter-Weyl Theorem . 144 5.8 The Stone-von Neumann theorem . 147 CONTENTS 5 6 Group approximation properties 153 6.1 Ergodicity and weak mixing . 153 6.1.1 Mixing representations . 154 6.2 Almost invariant vectors . 156 6.3 Amenability . 158 6.4 Lattices . 164 6.4.1 An example: SLn(Z) < SLn(R) . 164 6.5 The Howe-Moore property for SLn(R) . 167 6.6 Property (T) . 169 6 CONTENTS Chapter 1 Spectral theory If A is a complex unital algebra then we denote by G(A) the set of elements which have a two sided inverse. If x 2 A, the spectrum of x is σA(x) = fλ 2 C j x − λ 62 G(A)g: The complement of the spectrum is called the resolvent and denoted ρA(x). Proposition 1.0.1. Let A be a unital algebra over C, and consider x; y 2 A. Then σA(xy) [ f0g = σA(yx) [ f0g. Proof. If 1 − xy 2 G(A) then we have (1 − yx)(1 + y(1 − xy)−1x) = 1 − yx + y(1 − xy)−1x − yxy(1 − xy)−1x = 1 − yx + y(1 − xy)(1 − xy)−1x = 1: Similarly, we have (1 + y(1 − xy)−1x)(1 − yx) = 1; and hence 1 − yx 2 G(A). Knowing the formula for the inverse beforehand of course made the proof of the previous proposition quite a bit easier. But this formula is quite natural to consider. Indeed, if we just consider formal power series then we have 1 1 X X (1 − yx)−1 = (yx)k = 1 + y( (xy)k)x = 1 + y(1 − xy)−1x: k=0 k=0 7 8 CHAPTER 1. SPECTRAL THEORY 1.1 Banach and C∗-algebras A Banach algebra is a Banach space A, which is also an algebra such that kxyk ≤ kxkkyk: An involution ∗ on a Banach algebra is a conjugate linear period two anti- isomorphism such that kx∗k = kxk, for all x 2 A. An involutive Banach algebra is a Banach algebra, together with a fixed involution. If an involutive Banach algebra A additionally satisfies kx∗xk = kxk2; for all x 2 A, then we say that A is a C∗-algebra. If a Banach or C∗-algebra is unital, then we further require k1k = 1. Note that if A is a unital involutive Banach algebra, and x 2 G(A) then −1 ∗ ∗ −1 ∗ (x ) = (x ) , and hence σA(x ) = σA(x). Lemma 1.1.1. Let A be a unital Banach algebra and suppose x 2 A such that k1 − xk < 1, then x 2 G(A). P1 k Proof. Since k1 − xk < 1, the element y = k=0(1 − x) is well defined, and it is easy to see that xy = yx = 1. Proposition 1.1.2. Let A be a unital Banach algebra, then G(A) is open, and the map x 7! x−1 is a continuous map on G(A). Proof. If y 2 G(A) and kx − yk < ky−1k then k1 − xy−1k < 1 and hence by the previous lemma xy−1 2 G(A) (hence also x = xy−1y 2 G(A)) and 1 X kxy−1k ≤ k(1 − xy−1)kn n=0 1 X 1 ≤ ky−1knky − xkn = : 1 − kyk−1ky − xk n=0 Hence, kx−1 − y−1k = kx−1(y − x)y−1k ky−1k2 ≤ ky−1(xy−1)−1kky−1kky − xk ≤ ky − xk: 1 − ky−1kky − xk ky−1k2 Thus continuity follows from continuity of the map t 7! 1−ky−1kt t, at t = 0. 1.1. BANACH AND C∗-ALGEBRAS 9 Proposition 1.1.3. Let A be a unital Banach algebra, and suppose x 2 A, then σA(x) is a non-empty compact set. x Proof. If kxk < jλj then λ − 1 2 G(A) by Lemma 1.1.1, also σA(x) is closed by Proposition 1.1.2, thus σA(x) is compact. ∗ To see that σA(x) is non-empty note that for any linear functional ' 2 A , −1 we have that f(z) = '((x−z) ) is analytic on ρA(x). Indeed, if z; z0 2 ρA(x) then we have −1 −1 −1 −1 (x − z) − (x − z0) = (x − z) (z − z0)(x − z0) : Since inversion is continuous it then follows that f(z) − f(z0) −2 lim = '((x − z0) ): z!z0 z − z0 We also have limz!1 f(z) = 0, and hence if σA(x) were empty then f would be a bounded entire function and we would then have f = 0. Since ' 2 A∗ were arbitrary this would then contradict the Hahn-Banach theorem. Theorem 1.1.4 (Gelfand-Mazur). Suppose A is a unital Banach algebra ∼ such that every non-zero element is invertible, then A = C. Proof. Fix x 2 A, and take λ 2 σ(x). Since x − λ is not invertible we have that x − λ = 0, and the result then follows. Pn k If f(z) = k=0 akz is a polynomial, and x 2 A, a unital Banach algebra, Pn k then we define f(x) = k=0 akx 2 A. Proposition 1.1.5 (The spectral mapping formula for polynomials). Let A be a unital Banach algebra, x 2 A and f a polynomial. then σA(f(x)) = f(σA(x)). Pn k Proof. If λ 2 σA(x), and f(z) = k=0 akz then n X k k f(x) − f(λ) = ak(x − λ ) k=1 k−1 X X j k−j−1 = (x − λ) ak x λ ; k=1 j=0 10 CHAPTER 1. SPECTRAL THEORY hence f(λ) 2 σA(x). conversely if µ 62 f(σA(x)) and we factor f − µ as f − µ = αn(x − λ1) ··· (x − λn); then since f(λ) − µ 6= 0, for all λ 2 σA(x) it follows that λi 62 σA(x), for 1 ≤ i ≤ n, hence f(x) − µ 2 G(A). If A is a unital Banach algebra and x 2 A, the spectral radius of x is r(x) = sup jλj: λ2σA(x) Note that by Proposition 1.1.3 the spectral radius is finite, and the supre- mum is attained. Also note that by Proposition 1.0.1 we have the very useful equality r(xy) = r(yx) for all x and y in a unital Banach algebra A. A priori the spectral radius depends on the Banach algebra in which x lives, but we will show now that this is not the case. Proposition 1.1.6 (The spectral radius formula). Let A be a unital Banach n 1=n algebra, and suppose x 2 A. Then limn!1 kx k exists and we have r(x) = lim kxnk1=n: n!1 Proof. By Proposition 1.1.5 we have r(xn) = r(x)n, and hence r(x)n ≤ kxnk; n 1=n showing that r(x) ≤ lim infn!1 kx k . n 1=n To show that r(x) ≥ lim supn!1 kx k , consider the domain Ω = fz 2 C j jzj > r(x)g, and fix a linear functional ' 2 A∗. We showed in Propo- sition 1.1.3 that z 7! '((x − z)−1) is analytic in Ω and as such we have a Laurent expansion 1 X an '((z − x)−1) = ; zn n=0 for jzj > r(x).
Recommended publications
  • Appendix A. Measure and Integration
    Appendix A. Measure and integration We suppose the reader is familiar with the basic facts concerning set theory and integration as they are presented in the introductory course of analysis. In this appendix, we review them briefly, and add some more which we shall need in the text. Basic references for proofs and a detailed exposition are, e.g., [[ H a l 1 ]] , [[ J a r 1 , 2 ]] , [[ K F 1 , 2 ]] , [[ L i L ]] , [[ R u 1 ]] , or any other textbook on analysis you might prefer. A.1 Sets, mappings, relations A set is a collection of objects called elements. The symbol card X denotes the cardi- nality of the set X. The subset M consisting of the elements of X which satisfy the conditions P1(x),...,Pn(x) is usually written as M = { x ∈ X : P1(x),...,Pn(x) }.A set whose elements are certain sets is called a system or family of these sets; the family of all subsystems of a given X is denoted as 2X . The operations of union, intersection, and set difference are introduced in the standard way; the first two of these are commutative, associative, and mutually distributive. In a { } system Mα of any cardinality, the de Morgan relations , X \ Mα = (X \ Mα)and X \ Mα = (X \ Mα), α α α α are valid. Another elementary property is the following: for any family {Mn} ,whichis { } at most countable, there is a disjoint family Nn of the same cardinality such that ⊂ \ ∪ \ Nn Mn and n Nn = n Mn.Theset(M N) (N M) is called the symmetric difference of the sets M,N and denoted as M #N.
    [Show full text]
  • Noncommutative Uniform Algebras
    Noncommutative Uniform Algebras Mati Abel and Krzysztof Jarosz Abstract. We show that a real Banach algebra A such that a2 = a 2 , for a A is a subalgebra of the algebra C (X) of continuous quaternion valued functions on a compact setk kX. ∈ H ° ° ° ° 1. Introduction A well known Hirschfeld-Zelazkoú Theorem [5](seealso[7]) states that for a complex Banach algebra A the condition (1.1) a2 = a 2 , for a A k k ∈ implies that (i) A is commutative, and further° ° implies that (ii) A must be of a very speciÞc form, namely it ° ° must be isometrically isomorphic with a uniformly closed subalgebra of CC (X). We denote here by CC (X)the complex Banach algebra of all continuous functions on a compact set X. The obvious question about the validity of the same conclusion for real Banach algebras is immediately dismissed with an obvious counterexample: the non commutative algebra H of quaternions. However it turns out that the second part (ii) above is essentially also true in the real case. We show that the condition (1.1) implies, for a real Banach algebra A,thatA is isometrically isomorphic with a subalgebra of CH (X) - the algebra of continuous quaternion valued functions on acompactsetX. That result is in fact a consequence of a theorem by Aupetit and Zemanek [1]. We will also present several related results and corollaries valid for real and complex Banach and topological algebras. To simplify the notation we assume that the algebras under consideration have units, however, like in the case of the Hirschfeld-Zelazkoú Theorem, the analogous results can be stated for none unital algebras as one can formally add aunittosuchanalgebra.
    [Show full text]
  • Banach J. Math. Anal. 2 (2008), No. 2, 59–67 . OPERATOR-VALUED
    Banach J. Math. Anal. 2 (2008), no. 2, 59–67 Banach Journal of Mathematical Analysis ISSN: 1735-8787 (electronic) http://www.math-analysis.org . OPERATOR-VALUED INNER PRODUCT AND OPERATOR INEQUALITIES JUN ICHI FUJII1 This paper is dedicated to Professor Josip E. Peˇcari´c Submitted by M. S. Moslehian Abstract. The Schwarz inequality and Jensen’s one are fundamental in a Hilbert space. Regarding a sesquilinear map B(X, Y ) = Y ∗X as an operator- valued inner product, we discuss operator versions for the above inequalities and give simple conditions that the equalities hold. 1. Introduction Inequality plays a basic role in analysis and consequently in Mathematics. As surveyed briefly in [6], operator inequalities on a Hilbert space have been discussed particularly since Furuta inequality was established. But it is not easy in general to give a simple condition that the equality in an operator inequality holds. In this note, we observe basic operator inequalities and discuss the equality conditions. To show this, we consider simple linear algebraic structure in operator spaces: For Hilbert spaces H and K, the symbol B(H, K) denotes all the (bounded linear) operators from H to K and B(H) ≡ B(H, H). Then, consider an operator n n matrix A = (Aij) ∈ B(H ), a vector X = (Xj) ∈ B(H, H ) with operator entries Xj ∈ B(H), an operator-valued inner product n ∗ X ∗ Y X = Yj Xj, j=1 Date: Received: 29 March 2008; Accepted 13 May 2008. 2000 Mathematics Subject Classification. Primary 47A63; Secondary 47A75, 47A80. Key words and phrases. Schwarz inequality, Jensen inequality, Operator inequality.
    [Show full text]
  • The Index of Normal Fredholm Elements of C* -Algebras
    proceedings of the american mathematical society Volume 113, Number 1, September 1991 THE INDEX OF NORMAL FREDHOLM ELEMENTS OF C*-ALGEBRAS J. A. MINGO AND J. S. SPIELBERG (Communicated by Palle E. T. Jorgensen) Abstract. Examples are given of normal elements of C*-algebras that are invertible modulo an ideal and have nonzero index, in contrast to the case of Fredholm operators on Hubert space. It is shown that this phenomenon occurs only along the lines of these examples. Let T be a bounded operator on a Hubert space. If the range of T is closed and both T and T* have a finite dimensional kernel then T is Fredholm, and the index of T is dim(kerT) - dim(kerT*). If T is normal then kerT = ker T*, so a normal Fredholm operator has index 0. Let us consider a generalization of the notion of Fredholm operator intro- duced by Atiyah. Let X be a compact Hausdorff space and consider continuous functions T: X —>B(H), where B(H) is the set of bounded linear operators on a separable infinite dimensional Hubert space with the norm topology. The set of such functions forms a C*- algebra C(X) <g>B(H). A function T is Fredholm if T(x) is Fredholm for each x . Atiyah [1, Appendix] showed how such an element has an index which is an element of K°(X). Suppose that T is Fredholm and T(x) is normal for each x. Is the index of T necessarily 0? There is a generalization of this question that we would like to consider.
    [Show full text]
  • C*-Algebraic Spectral Sets, Twisted Groupoids and Operators
    C∗-Algebraic Spectral Sets, Twisted Groupoids and Operators Marius M˘antoiu ∗ July 7, 2020 Abstract We treat spectral problems by twisted groupoid methods. To Hausdorff locally compact groupoids endowed with a continuous 2-cocycle one associates the reduced twisted groupoid C∗-algebra. Elements (or multipliers) of this algebra admit natural Hilbert space representations. We show the relevance of the orbit closure structure of the unit space of the groupoid in dealing with spectra, norms, numerical ranges and ǫ-pseudospectra of the resulting operators. As an ex- ample, we treat a class of pseudo-differential operators introduced recently, associated to group actions. We also prove a Decomposition Principle for bounded operators connected to groupoids, showing that several relevant spectral quantities of these operators coincide with those of certain non-invariant restrictions. This is applied to Toeplitz-like operators with variable coefficients and to band dominated operators on discrete metric spaces. Introduction Many applications of C∗-algebras to spectral analysis rely on a very simple principle: a morphism between two C∗-algebras is contractive and reduces the spectrum of elements. In addition, if it is injective, it is isometric and preserves spectra. While working on this project, we became aware of the fact that such a principle works ef- fectively for much more than spectra (and essential spectra). We call C∗-algebraic spectral set a function Σ sending, for any unital C∗-algebra E , the elements E of this one to closed (usually com- pact) subsets Σ(E |E ) of C , having the above mentioned behavior under C∗-morphisms. Definition 1.1 states this formally.
    [Show full text]
  • Regularity Conditions for Banach Function Algebras
    Regularity conditions for Banach function algebras Dr J. F. Feinstein University of Nottingham June 2009 1 1 Useful sources A very useful text for the material in this mini-course is the book Banach Algebras and Automatic Continuity by H. Garth Dales, London Mathematical Society Monographs, New Series, Volume 24, The Clarendon Press, Oxford, 2000. In particular, many of the examples and conditions discussed here may be found in Chapter 4 of that book. We shall refer to this book throughout as the book of Dales. Most of my e-prints are available from www.maths.nott.ac.uk/personal/jff/Papers Several of my research and teaching presentations are available from www.maths.nott.ac.uk/personal/jff/Beamer 2 2 Introduction to normed algebras and Banach algebras 2.1 Some problems to think about Those who have seen much of this introductory material before may wish to think about some of the following problems. We shall return to these problems at suitable points in this course. Problem 2.1.1 (Easy using standard theory!) It is standard that the set of all rational functions (quotients of polynomials) with complex coefficients is a field: this is a special case of the “field of fractions" of an integral domain. Question: Is there an algebra norm on this field (regarded as an algebra over C)? 3 Problem 2.1.2 (Very hard!) Does there exist a pair of sequences (λn), (an) of non-zero complex numbers such that (i) no two of the an are equal, P1 (ii) n=1 jλnj < 1, (iii) janj < 2 for all n 2 N, and yet, (iv) for all z 2 C, 1 X λn exp (anz) = 0? n=1 Gap to fill in 4 Problem 2.1.3 Denote by C[0; 1] the \trivial" uniform algebra of all continuous, complex-valued functions on [0; 1].
    [Show full text]
  • Arxiv:1909.02676V3 [Math.DG] 25 Jul 2021 Elsetu Jcb Arcshv Ipera Pcrm.Mor a of Spectrum)
    AN ATLAS ADAPTED TO THE TODA FLOW DAVID MART´INEZ TORRES AND CARLOS TOMEI Abstract. We describe an atlas adapted to the Toda flow on the mani- fold of full flags of any non-compact real semisimple Lie algebra, and on its Hessenberg-type submanifolds. We show that in these local coordinates the Toda flow becomes linear. The local coordinates are used to show that the Toda flow on the manifold of full flags is Morse-Smale, which generalizes the re- sult for traceless matrices in [27] to arbitrary non-compact real semisimple Lie algebras. As a byproduct we describe new features of classical constructions in matrix theory. 1. Introduction The non-periodic Toda lattice is a Hamiltonian model for a wave propagation along n particles in a line proposed by Toda [30]. A change of variables introduced by Flaschka [14] transforms the original O.D.E. into the matrix differential equation X′ = [X, πkX]= T (X), (1) where X runs over Jacobi matrices and πk is the first projection associated to the decomposition of a matrix into its antisymmetric and upper triangular summands. From a mathematical viewpoint (1) is a vector field everywhere defined on the Lie algebra of real traceless matrices. Since it is in Lax form it is tangent to every adjoint orbit and, in particular, to the orbit made of traceless matrices of any fixed simple real spectrum (Jacobi matrices have simple real spectrum). Moreover, formula (1) implies that the Toda vector field T is tangent to any vector subspace which is stable upon taking Lie bracket with antisymmetric matrices.
    [Show full text]
  • Self-Adjoint Semigroups with Nilpotent Commutators ∗ Matjaž Omladiˇc A, ,1, Heydar Radjavi B,2
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Linear Algebra and its Applications 436 (2012) 2597–2603 Contents lists available at SciVerse ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa Self-adjoint semigroups with nilpotent commutators ∗ Matjaž Omladiˇc a, ,1, Heydar Radjavi b,2 a Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia b Department of Pure Mathematics, University of Waterloo, Waterloo, Canada ARTICLE INFO ABSTRACT Article history: Let P be a projection and let S be a multiplicative semigroup of Received 19 June 2011 linear operators such that SP − PS is nilpotent for every S in S. Accepted 26 October 2011 We study conditions under which this implies the existence of an Available online 5 December 2011 invariant subspace for S and, in particular, when P commutes with Submitted by H. Schneider every member of S. © 2011 Elsevier Inc. All rights reserved. AMS classification: 15A30 47A15 Keywords: Reducibility Semigroups Commutators Nilpotent operators 1. Introduction Several authors have studied the effect of polynomial conditions on reducibility and (simultane- ous) triangularizability of semigroups of operators in the following sense. Let S be a (multiplicative) semigroup of linear operators on a finite-dimensional vector space V over an algebraically closed field. (The semigroup may have to satisfy more conditions to get certain results, e.g., it may be required that it be a group or an algebra.) Let f be a noncommutative polynomial in two variables. One may assume conditions such as f (S, T) = 0forallS and T in S,ortrf (S, T) = 0, or f (S, T) is nilpotent for all pairs.
    [Show full text]
  • Computing the Polar Decomposition---With Applications
    This 1984 technical report was published as N. J. Higham. Computing the polar decomposition---with applications. SIAM J. Sci. Stat. Comput., 7(4):1160-1174, 1986. The appendix contains an alternative proof omitted in the published paper. Pages 19-20 are missing from the copy that was scanned. The report is mainly of interest for how it was produced. - The cover was prepared in Vizawrite 64 on a Commodore 64 and was printed on an Epson FX-80 dot matrix printer. - The main text was prepared in Vuwriter on an Apricot PC and printed on an unknown dot matrix printer. - The bibliography was prepared in Superbase on a Commodore 64 and printed on an Epson FX-80 dot matrix printer. COMPUTING THE POLAR DECOMPOSITION - WITH APPLICATIONS N.J. Higham • Numerical Analysis Report No. 94 November 1984 This work was carried out with the support of a SERC Research Studentship • Department of Mathematics University of Manchester Manchester M13 9PL ENGLAND Univeriity of Manchester/UMIST Joint Nu•erical Analysis Reports D•p•rt••nt of Math••atic1 Dep•rt•ent of Mathe~atic1 The Victoria Univ•rsity University of Manchester Institute of of Manchester Sci•nce •nd Technology Reque1t1 for individu•l t•chnical reports •ay be addressed to Dr C.T.H. Baker, Depart•ent of Mathe••tics, The University, Mancheiter M13 9PL ABSTRACT .. A quadratically convergent Newton method for computing the polar decomposition of a full-rank matrix is presented and analysed. Acceleration parameters are introduced so as to enhance the initial rate of convergence and it is shown how reliable estimates of the optimal parameters may be computed in practice.
    [Show full text]
  • Chapter 2 C -Algebras
    Chapter 2 C∗-algebras This chapter is mainly based on the first chapters of the book [Mur90]. Material bor- rowed from other references will be specified. 2.1 Banach algebras Definition 2.1.1. A Banach algebra C is a complex vector space endowed with an associative multiplication and with a norm k · k which satisfy for any A; B; C 2 C and α 2 C (i) (αA)B = α(AB) = A(αB), (ii) A(B + C) = AB + AC and (A + B)C = AC + BC, (iii) kABk ≤ kAkkBk (submultiplicativity) (iv) C is complete with the norm k · k. One says that C is abelian or commutative if AB = BA for all A; B 2 C . One also says that C is unital if 1 2 C , i.e. if there exists an element 1 2 C with k1k = 1 such that 1B = B = B1 for all B 2 C . A subalgebra J of C is a vector subspace which is stable for the multiplication. If J is norm closed, it is a Banach algebra in itself. Examples 2.1.2. (i) C, Mn(C), B(H), K (H) are Banach algebras, where Mn(C) denotes the set of n × n-matrices over C. All except K (H) are unital, and K (H) is unital if H is finite dimensional. (ii) If Ω is a locally compact topological space, C0(Ω) and Cb(Ω) are abelian Banach algebras, where Cb(Ω) denotes the set of all bounded and continuous complex func- tions from Ω to C, and C0(Ω) denotes the subset of Cb(Ω) of functions f which vanish at infinity, i.e.
    [Show full text]
  • The Notion of Observable and the Moment Problem for ∗-Algebras and Their GNS Representations
    The notion of observable and the moment problem for ∗-algebras and their GNS representations Nicol`oDragoa, Valter Morettib Department of Mathematics, University of Trento, and INFN-TIFPA via Sommarive 14, I-38123 Povo (Trento), Italy. [email protected], [email protected] February, 17, 2020 Abstract We address some usually overlooked issues concerning the use of ∗-algebras in quantum theory and their physical interpretation. If A is a ∗-algebra describing a quantum system and ! : A ! C a state, we focus in particular on the interpretation of !(a) as expectation value for an algebraic observable a = a∗ 2 A, studying the problem of finding a probability n measure reproducing the moments f!(a )gn2N. This problem enjoys a close relation with the selfadjointness of the (in general only symmetric) operator π!(a) in the GNS representation of ! and thus it has important consequences for the interpretation of a as an observable. We n provide physical examples (also from QFT) where the moment problem for f!(a )gn2N does not admit a unique solution. To reduce this ambiguity, we consider the moment problem n ∗ (a) for the sequences f!b(a )gn2N, being b 2 A and !b(·) := !(b · b). Letting µ!b be a n solution of the moment problem for the sequence f!b(a )gn2N, we introduce a consistency (a) relation on the family fµ!b gb2A. We prove a 1-1 correspondence between consistent families (a) fµ!b gb2A and positive operator-valued measures (POVM) associated with the symmetric (a) operator π!(a). In particular there exists a unique consistent family of fµ!b gb2A if and only if π!(a) is maximally symmetric.
    [Show full text]
  • Geometry of Matrix Decompositions Seen Through Optimal Transport and Information Geometry
    Published in: Journal of Geometric Mechanics doi:10.3934/jgm.2017014 Volume 9, Number 3, September 2017 pp. 335{390 GEOMETRY OF MATRIX DECOMPOSITIONS SEEN THROUGH OPTIMAL TRANSPORT AND INFORMATION GEOMETRY Klas Modin∗ Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg SE-412 96 Gothenburg, Sweden Abstract. The space of probability densities is an infinite-dimensional Rie- mannian manifold, with Riemannian metrics in two flavors: Wasserstein and Fisher{Rao. The former is pivotal in optimal mass transport (OMT), whereas the latter occurs in information geometry|the differential geometric approach to statistics. The Riemannian structures restrict to the submanifold of multi- variate Gaussian distributions, where they induce Riemannian metrics on the space of covariance matrices. Here we give a systematic description of classical matrix decompositions (or factorizations) in terms of Riemannian geometry and compatible principal bundle structures. Both Wasserstein and Fisher{Rao geometries are discussed. The link to matrices is obtained by considering OMT and information ge- ometry in the category of linear transformations and multivariate Gaussian distributions. This way, OMT is directly related to the polar decomposition of matrices, whereas information geometry is directly related to the QR, Cholesky, spectral, and singular value decompositions. We also give a coherent descrip- tion of gradient flow equations for the various decompositions; most flows are illustrated in numerical examples. The paper is a combination of previously known and original results. As a survey it covers the Riemannian geometry of OMT and polar decomposi- tions (smooth and linear category), entropy gradient flows, and the Fisher{Rao metric and its geodesics on the statistical manifold of multivariate Gaussian distributions.
    [Show full text]