Geometry of Matrix Decompositions Seen Through Optimal Transport and Information Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Isospectralization, Or How to Hear Shape, Style, and Correspondence
Isospectralization, or how to hear shape, style, and correspondence Luca Cosmo Mikhail Panine Arianna Rampini University of Venice Ecole´ Polytechnique Sapienza University of Rome [email protected] [email protected] [email protected] Maks Ovsjanikov Michael M. Bronstein Emanuele Rodola` Ecole´ Polytechnique Imperial College London / USI Sapienza University of Rome [email protected] [email protected] [email protected] Initialization Reconstruction Abstract opt. target The question whether one can recover the shape of a init. geometric object from its Laplacian spectrum (‘hear the shape of the drum’) is a classical problem in spectral ge- ometry with a broad range of implications and applica- tions. While theoretically the answer to this question is neg- ative (there exist examples of iso-spectral but non-isometric manifolds), little is known about the practical possibility of using the spectrum for shape reconstruction and opti- mization. In this paper, we introduce a numerical proce- dure called isospectralization, consisting of deforming one shape to make its Laplacian spectrum match that of an- other. We implement the isospectralization procedure using modern differentiable programming techniques and exem- plify its applications in some of the classical and notori- Without isospectralization With isospectralization ously hard problems in geometry processing, computer vi- sion, and graphics such as shape reconstruction, pose and Figure 1. Top row: Mickey-from-spectrum: we recover the shape of Mickey Mouse from its first 20 Laplacian eigenvalues (shown style transfer, and dense deformable correspondence. in red in the leftmost plot) by deforming an initial ellipsoid shape; the ground-truth target embedding is shown as a red outline on top of our reconstruction. -
Banach J. Math. Anal. 2 (2008), No. 2, 59–67 . OPERATOR-VALUED
Banach J. Math. Anal. 2 (2008), no. 2, 59–67 Banach Journal of Mathematical Analysis ISSN: 1735-8787 (electronic) http://www.math-analysis.org . OPERATOR-VALUED INNER PRODUCT AND OPERATOR INEQUALITIES JUN ICHI FUJII1 This paper is dedicated to Professor Josip E. Peˇcari´c Submitted by M. S. Moslehian Abstract. The Schwarz inequality and Jensen’s one are fundamental in a Hilbert space. Regarding a sesquilinear map B(X, Y ) = Y ∗X as an operator- valued inner product, we discuss operator versions for the above inequalities and give simple conditions that the equalities hold. 1. Introduction Inequality plays a basic role in analysis and consequently in Mathematics. As surveyed briefly in [6], operator inequalities on a Hilbert space have been discussed particularly since Furuta inequality was established. But it is not easy in general to give a simple condition that the equality in an operator inequality holds. In this note, we observe basic operator inequalities and discuss the equality conditions. To show this, we consider simple linear algebraic structure in operator spaces: For Hilbert spaces H and K, the symbol B(H, K) denotes all the (bounded linear) operators from H to K and B(H) ≡ B(H, H). Then, consider an operator n n matrix A = (Aij) ∈ B(H ), a vector X = (Xj) ∈ B(H, H ) with operator entries Xj ∈ B(H), an operator-valued inner product n ∗ X ∗ Y X = Yj Xj, j=1 Date: Received: 29 March 2008; Accepted 13 May 2008. 2000 Mathematics Subject Classification. Primary 47A63; Secondary 47A75, 47A80. Key words and phrases. Schwarz inequality, Jensen inequality, Operator inequality. -
Cartan and Iwasawa Decompositions in Lie Theory
CARTAN AND IWASAWA DECOMPOSITIONS IN LIE THEORY SUBHAJIT JANA Abstract. In this article we will be discussing about various decom- positions of semisimple Lie algebras, which are very important to un- derstand their structure theories. Throughout the article we will be assuming existence of a compact real form of complex semisimple Lie algebra. We will start with describing Cartan involution and Cartan de- compositions of semisimple Lie algebras. Iwasawa decompositions will also be constructed at Lie group and Lie algebra level. We will also be giving some brief description of Iwasawa of semisimple groups. 1. Introduction The idea for beginning an investigation of the structure of a general semisimple Lie group, not necessarily classical, is to look for same kind of structure in its Lie algebra. We start with a Lie algebra L of matrices and seek a decomposition into symmetric and skew-symmetric parts. To get this decomposition we often look for the occurrence of a compact Lie algebra as a real form of the complexification LC of L. If L is a real semisimple Lie algebra, then the use of a compact real form of LC leads to the construction of a 'Cartan Involution' θ of L. This involution has the property that if L = H ⊕ P is corresponding eigenspace decomposition or 'Cartan Decomposition' then, LC has a compact real form (like H ⊕iP ) which generalize decomposition of classical matrix algebra into Hermitian and skew-Hermitian parts. Similarly if G is a semisimple Lie group, then the 'Iwasawa decomposition' G = NAK exhibits closed subgroups A and N of G such that they are simply connected abelian and nilpotent respectively and A normalizes N and multiplication K ×A×N ! G is a diffeomorphism. -
LIE GROUPS and ALGEBRAS NOTES Contents 1. Definitions 2
LIE GROUPS AND ALGEBRAS NOTES STANISLAV ATANASOV Contents 1. Definitions 2 1.1. Root systems, Weyl groups and Weyl chambers3 1.2. Cartan matrices and Dynkin diagrams4 1.3. Weights 5 1.4. Lie group and Lie algebra correspondence5 2. Basic results about Lie algebras7 2.1. General 7 2.2. Root system 7 2.3. Classification of semisimple Lie algebras8 3. Highest weight modules9 3.1. Universal enveloping algebra9 3.2. Weights and maximal vectors9 4. Compact Lie groups 10 4.1. Peter-Weyl theorem 10 4.2. Maximal tori 11 4.3. Symmetric spaces 11 4.4. Compact Lie algebras 12 4.5. Weyl's theorem 12 5. Semisimple Lie groups 13 5.1. Semisimple Lie algebras 13 5.2. Parabolic subalgebras. 14 5.3. Semisimple Lie groups 14 6. Reductive Lie groups 16 6.1. Reductive Lie algebras 16 6.2. Definition of reductive Lie group 16 6.3. Decompositions 18 6.4. The structure of M = ZK (a0) 18 6.5. Parabolic Subgroups 19 7. Functional analysis on Lie groups 21 7.1. Decomposition of the Haar measure 21 7.2. Reductive groups and parabolic subgroups 21 7.3. Weyl integration formula 22 8. Linear algebraic groups and their representation theory 23 8.1. Linear algebraic groups 23 8.2. Reductive and semisimple groups 24 8.3. Parabolic and Borel subgroups 25 8.4. Decompositions 27 Date: October, 2018. These notes compile results from multiple sources, mostly [1,2]. All mistakes are mine. 1 2 STANISLAV ATANASOV 1. Definitions Let g be a Lie algebra over algebraically closed field F of characteristic 0. -
Isospectral Towers of Riemannian Manifolds
New York Journal of Mathematics New York J. Math. 18 (2012) 451{461. Isospectral towers of Riemannian manifolds Benjamin Linowitz Abstract. In this paper we construct, for n ≥ 2, arbitrarily large fam- ilies of infinite towers of compact, orientable Riemannian n-manifolds which are isospectral but not isometric at each stage. In dimensions two and three, the towers produced consist of hyperbolic 2-manifolds and hyperbolic 3-manifolds, and in these cases we show that the isospectral towers do not arise from Sunada's method. Contents 1. Introduction 451 2. Genera of quaternion orders 453 3. Arithmetic groups derived from quaternion algebras 454 4. Isospectral towers and chains of quaternion orders 454 5. Proof of Theorem 4.1 456 5.1. Orders in split quaternion algebras over local fields 456 5.2. Proof of Theorem 4.1 457 6. The Sunada construction 458 References 461 1. Introduction Let M be a closed Riemannian n-manifold. The eigenvalues of the La- place{Beltrami operator acting on the space L2(M) form a discrete sequence of nonnegative real numbers in which each value occurs with a finite mul- tiplicity. This collection of eigenvalues is called the spectrum of M, and two Riemannian n-manifolds are said to be isospectral if their spectra coin- cide. Inverse spectral geometry asks the extent to which the geometry and topology of M is determined by its spectrum. Whereas volume and scalar curvature are spectral invariants, the isometry class is not. Although there is a long history of constructing Riemannian manifolds which are isospectral but not isometric, we restrict our discussion to those constructions most Received February 4, 2012. -
Computing the Polar Decomposition---With Applications
This 1984 technical report was published as N. J. Higham. Computing the polar decomposition---with applications. SIAM J. Sci. Stat. Comput., 7(4):1160-1174, 1986. The appendix contains an alternative proof omitted in the published paper. Pages 19-20 are missing from the copy that was scanned. The report is mainly of interest for how it was produced. - The cover was prepared in Vizawrite 64 on a Commodore 64 and was printed on an Epson FX-80 dot matrix printer. - The main text was prepared in Vuwriter on an Apricot PC and printed on an unknown dot matrix printer. - The bibliography was prepared in Superbase on a Commodore 64 and printed on an Epson FX-80 dot matrix printer. COMPUTING THE POLAR DECOMPOSITION - WITH APPLICATIONS N.J. Higham • Numerical Analysis Report No. 94 November 1984 This work was carried out with the support of a SERC Research Studentship • Department of Mathematics University of Manchester Manchester M13 9PL ENGLAND Univeriity of Manchester/UMIST Joint Nu•erical Analysis Reports D•p•rt••nt of Math••atic1 Dep•rt•ent of Mathe~atic1 The Victoria Univ•rsity University of Manchester Institute of of Manchester Sci•nce •nd Technology Reque1t1 for individu•l t•chnical reports •ay be addressed to Dr C.T.H. Baker, Depart•ent of Mathe••tics, The University, Mancheiter M13 9PL ABSTRACT .. A quadratically convergent Newton method for computing the polar decomposition of a full-rank matrix is presented and analysed. Acceleration parameters are introduced so as to enhance the initial rate of convergence and it is shown how reliable estimates of the optimal parameters may be computed in practice. -
Class Notes, Functional Analysis 7212
Class notes, Functional Analysis 7212 Ovidiu Costin Contents 1 Banach Algebras 2 1.1 The exponential map.....................................5 1.2 The index group of B = C(X) ...............................6 1.2.1 p1(X) .........................................7 1.3 Multiplicative functionals..................................7 1.3.1 Multiplicative functionals on C(X) .........................8 1.4 Spectrum of an element relative to a Banach algebra.................. 10 1.5 Examples............................................ 19 1.5.1 Trigonometric polynomials............................. 19 1.6 The Shilov boundary theorem................................ 21 1.7 Further examples....................................... 21 1.7.1 The convolution algebra `1(Z) ........................... 21 1.7.2 The return of Real Analysis: the case of L¥ ................... 23 2 Bounded operators on Hilbert spaces 24 2.1 Adjoints............................................ 24 2.2 Example: a space of “diagonal” operators......................... 30 2.3 The shift operator on `2(Z) ................................. 32 2.3.1 Example: the shift operators on H = `2(N) ................... 38 3 W∗-algebras and measurable functional calculus 41 3.1 The strong and weak topologies of operators....................... 42 4 Spectral theorems 46 4.1 Integration of normal operators............................... 51 4.2 Spectral projections...................................... 51 5 Bounded and unbounded operators 54 5.1 Operations.......................................... -
Lecture Notes : Spectral Properties of Non-Self-Adjoint Operators
Journées ÉQUATIONS AUX DÉRIVÉES PARTIELLES Évian, 8 juin–12 juin 2009 Johannes Sjöstrand Lecture notes : Spectral properties of non-self-adjoint operators J. É. D. P. (2009), Exposé no I, 111 p. <http://jedp.cedram.org/item?id=JEDP_2009____A1_0> cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ GROUPEMENT DE RECHERCHE 2434 DU CNRS Journées Équations aux dérivées partielles Évian, 8 juin–12 juin 2009 GDR 2434 (CNRS) Lecture notes : Spectral properties of non-self-adjoint operators Johannes Sjöstrand Résumé Ce texte contient une version légèrement completée de mon cours de 6 heures au colloque d’équations aux dérivées partielles à Évian-les-Bains en juin 2009. Dans la première partie on expose quelques résultats anciens et récents sur les opérateurs non-autoadjoints. La deuxième partie est consacrée aux résultats récents sur la distribution de Weyl des valeurs propres des opé- rateurs elliptiques avec des petites perturbations aléatoires. La partie III, en collaboration avec B. Helffer, donne des bornes explicites dans le théorème de Gearhardt-Prüss pour des semi-groupes. Abstract This text contains a slightly expanded version of my 6 hour mini-course at the PDE-meeting in Évian-les-Bains in June 2009. The first part gives some old and recent results on non-self-adjoint differential operators. The second part is devoted to recent results about Weyl distribution of eigenvalues of elliptic operators with small random perturbations. Part III, in collaboration with B. Helffer, gives explicit estimates in the Gearhardt-Prüss theorem for semi-groups. -
An Asymptotic Result on the A-Component in Iwasawa Decomposition
Unspecified Journal Volume 00, Number 0, Pages 000–000 S ????-????(XX)0000-0 AN ASYMPTOTIC RESULT ON THE A-COMPONENT IN IWASAWA DECOMPOSITION HUAJUN HUANG AND TIN-YAU TAM MAY 12, 2006 Abstract. Let G be a real connected semisimple Lie group. For each v0, v, g ∈ G, we prove that lim [a(v0gmv)]1/m = s−1 · b(g), m→∞ where a(g) denotes the a-component in the Iwasawa decomposition of g = kan and b(g) ∈ A+ denotes the unique element that conjugate to the hyperbolic component in the complete multiplicative Jordan de- composition of g = ehu. The element s in the Weyl group of (G, A) is determined by yv ∈ G (not unique in general) in such a way that − −1 − yv ∈ N msMAN, where yhy = b(g) and G = ∪s∈W N msMAN is the Bruhat decomposition of G. 1. Introduction Given X ∈ GLn(C), the well-known QR decomposition asserts that X = QR, where Q is unitary and R is upper triangular with positive diagonal entries. The decomposition is unique. Let a(X) := diag R. Very recently it is known that [2] given A, B ∈ GLn(C), the following limit lim [a(AXmB)]1/m m→∞ exists and the limit is related to the eigenvalue moduli of X. More precisely, −1 Theorem 1.1. [2] Let A, B, X ∈ GLn(C). Let X = Y JY be the Jordan decomposition of X, where J is the Jordan form of X, diag J = diag (λ1, . , λn) satisfying |λ1| ≥ · · · ≥ |λn|. Then m 1/m lim [a(AX B)] = diag (|λω(1)|,..., |λω(n)|), m→∞ where the permutation ω is uniquely determined by the LωU decomposition of YB = LωU, where L is lower triangular and U is unit upper triangular. -
On Quantum Integrability and Hamiltonians with Pure Point
On quantum integrability and Hamiltonians with pure point spectrum Alberto Enciso∗ Daniel Peralta-Salas† Departamento de F´ısica Te´orica II, Facultad de Ciencias F´ısicas, Universidad Complutense, 28040 Madrid, Spain Abstract We prove that any n-dimensional Hamiltonian operator with pure point spectrum is completely integrable via self-adjoint first integrals. Furthermore, we establish that given any closed set Σ ⊂ R there exists an integrable n-dimensional Hamiltonian which realizes it as its spectrum. We develop several applications of these results and discuss their implications in the general framework of quantum integrability. PACS numbers: 02.30.Ik, 03.65.Ca 1 Introduction arXiv:math-ph/0406022v3 6 Jul 2004 A classical Hamiltonian h, that is, a function from a 2n-dimensional phase space into the real numbers, completely determines the dynamics of a classi- cal system. Its complexity, i.e., the regular or chaotic behavior of the orbits of the Hamiltonian vector field, strongly depends upon the integrability of the Hamiltonian. Recall that the n-dimensional Hamiltonian h is said to be (Liouville) integrable when there exist n functionally independent first integrals in in- volution with a certain degree of regularity. When a classical Hamiltonian is integrable, its dynamics is not considered to be chaotic. ∗aenciso@fis.ucm.es †dperalta@fis.ucm.es 1 Given an arbitrary classical Hamiltonian there is no algorithmic procedure to ascertain whether it is integrable or not. To our best knowledge, the most general results on this matter are Ziglin’s theory [1] and Morales–Ramis’ theory [2], which provide criteria to establish that a classical Hamiltonian is not integrable via meromorphic first integrals. -
ASYMPTOTICALLY ISOSPECTRAL QUANTUM GRAPHS and TRIGONOMETRIC POLYNOMIALS. Pavel Kurasov, Rune Suhr
ISSN: 1401-5617 ASYMPTOTICALLY ISOSPECTRAL QUANTUM GRAPHS AND TRIGONOMETRIC POLYNOMIALS. Pavel Kurasov, Rune Suhr Research Reports in Mathematics Number 2, 2018 Department of Mathematics Stockholm University Electronic version of this document is available at http://www.math.su.se/reports/2018/2 Date of publication: Maj 16, 2018. 2010 Mathematics Subject Classification: Primary 34L25, 81U40; Secondary 35P25, 81V99. Keywords: Quantum graphs, almost periodic functions. Postal address: Department of Mathematics Stockholm University S-106 91 Stockholm Sweden Electronic addresses: http://www.math.su.se/ [email protected] Asymptotically isospectral quantum graphs and generalised trigonometric polynomials Pavel Kurasov and Rune Suhr Dept. of Mathematics, Stockholm Univ., 106 91 Stockholm, SWEDEN [email protected], [email protected] Abstract The theory of almost periodic functions is used to investigate spectral prop- erties of Schr¨odinger operators on metric graphs, also known as quantum graphs. In particular we prove that two Schr¨odingeroperators may have asymptotically close spectra if and only if the corresponding reference Lapla- cians are isospectral. Our result implies that a Schr¨odingeroperator is isospectral to the standard Laplacian on a may be different metric graph only if the potential is identically equal to zero. Keywords: Quantum graphs, almost periodic functions 2000 MSC: 34L15, 35R30, 81Q10 Introduction. The current paper is devoted to the spectral theory of quantum graphs, more precisely to the direct and inverse spectral theory of Schr¨odingerop- erators on metric graphs [3, 20, 24]. Such operators are defined by three parameters: a finite compact metric graph Γ; • a real integrable potential q L (Γ); • ∈ 1 vertex conditions, which can be parametrised by unitary matrices S. -
Computing the Polar Decomposition—With Applications
Computing the Polar Decomposition—with Applications Higham, Nicholas J. 1986 MIMS EPrint: 2007.9 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 SIAM J. Sci. STAT. COMPUT. (C) 1986 Society for Industrial and Applied Mathematics Vol. 7, No. 4, October 1986 OO7 COMPUTING THE POLAR DECOMPOSITION---WITH APPLICATIONS* NICHOLAS J. HIGHAMf Abstract. A quadratically convergent Newton method for computing the polar decomposition of a full-rank matrix is presented and analysed. Acceleration parameters are introduced so as to enhance the initial rate of convergence and it is shown how reliable estimates of the optimal parameters may be computed in practice. To add to the known best approximation property of the unitary polar factor, the Hermitian polar factor H of a nonsingular Hermitian matrix A is shown to be a good positive definite approximation to A and 1/2(A / H) is shown to be a best Hermitian positive semi-definite approximation to A. Perturbation bounds for the polar factors are derived. Applications of the polar decomposition to factor analysis, aerospace computations and optimisation are outlined; and a new method is derived for computing the square root of a symmetric positive definite matrix. Key words, polar decomposition, singular value decomposition, Newton's method, matrix square root AMS(MOS) subject classifications. 65F25, 65F30, 65F35 1. Introduction. The polar decomposition is a generalisation to matrices of the familiar complex number representation z r e i, r ->_ 0.