AIAA 19Th Fluid Dynamics, Plasma Dynamics and Lasers Conference June 8-10, 1987/Honolulu, Hawaii
AIAA-87 -1407 Electron-Cyclotron-Resonance (ECR) Plasma Acceleration J. C. Sercel Jet Propulsion Laboratory California Institute of Technology Pasadena, California AIAA 19th Fluid Dynamics, Plasma Dynamics and Lasers Conference June 8-10, 1987/Honolulu, Hawaii For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 1633 Broadway, New York, NY 10019 AIAA-87-1407 ELECTRON-CYCLOTRON-RESONANCE (ECR) PLASMA ACCELERATION Joel C. Sercel* Jet Propulsion Laboratory California Institute of Technology Pasadena, California Abstract P power per unit volume, W/m3 R position vector, m A research effort directed at analytically v velocity, mls and experimentally investigating Electron U energy, J or eV Cyclotron-Resonance (ECR) plasma acceleration V electrostatic potential, volts is outlined. Relevant past research is reviewed. T temperature, Kelvin or eV The prospects for application of ECR plasma acceleration to spacecraft propulsion are described. It is shown that previously unexplained losses in converting microwave magnetic dipole moment power to directed kinetic power via ECR plasma reaction cross section, m2 acceleration can be understood in terms of diffusion of energized plasma to the physical time constant, s walls of the accelerator. It is argued that line radiation losses from electron-ion and electron SubscriPts atom inelastic collisions should be less than estimated in past research. Based on this new A acceleration understanding, the expectation now exists that B Bohm efficient ECR plasma accelerators can be e electron designed for application to high specific impulse ex excitation spacecraft propulsion. ionization summation variable refers to lowest energy level Acronyms and Abbreviations p perpendicular r relative D-He3 Deuterium Helium-Three sp space charge induced ECR Electron-Cyclotron-Resonance to t total GE General Electric JPL Jet Propulsion Laboratory LeRC Lewis Research Center I.
[Show full text]