Low Latency 5G Distributed Wireless Network Architecture: a Techno-Economic Comparison

Total Page:16

File Type:pdf, Size:1020Kb

Low Latency 5G Distributed Wireless Network Architecture: a Techno-Economic Comparison inventions Article Low Latency 5G Distributed Wireless Network Architecture: A Techno-Economic Comparison Ibrahim Alhassan Gedel * and Nnamdi I. Nwulu * Department of Electrical and Electronic Engineering Science, Corner Kingsway and University Johannesburg, Johannesburg 2092, South Africa * Correspondence: [email protected] (I.A.G.); [email protected] (N.I.N.) Abstract: The most profound requirements of fifth-generation (5G) technology implementations are the architecture design and the radio base station technology to capably run applications such as device-to-device, machine-to machine and internet of things at a reduced latency. Owing to these requirements, the implementation of 5G technology is very expensive to mobile network operators (MNO). In this study we modified the existing 4G network to form a distributed wireless network architecture (DWNA); the picocell and distributed antenna system were modified to support the enabling technology of 5G technology were a multi-edge computer (MEC), software-defined networking (SDN), massive multiple input multiple output (MIMO), ultra-dense network (UDN), Network Functions Virtualization (NFV) and device-to-device (D2D) communication at a reduced cost of ownership, improved coverage and capacity. We present a mathematical model for operational expenditure, capital expenditure and total cost of ownership (TCO) for the DWNA. A mathematical model for DWNA capacity and throughput was presented. Result shows that it is very economical for MNO to rent the space of the tower infrastructure from tower companies. The sensitivity analysis also shows a significant reduction in TCO for both the modified picocell and modified distributed antenna systems. Keywords: 5G technology; capital expenditure; operational expenditure; total cost of ownership; Citation: Gedel, I.A.; Nwulu, N.I. distributed wireless network architectures Low Latency 5G Distributed Wireless Network Architecture: A Techno-Economic Comparison. Inventions 2021, 6, 11. https://doi. 1. Introduction org/10.3390/inventions6010011 The introduction of new services such as device-to-device (D2D) communication, machine-to-machine (M2M) communication and the internet of things (IoT), as well as the Received: 11 October 2020 increased demand for mobile data, have necessitated the implementation of fifth-generation Accepted: 1 December 2020 Published: 24 January 2021 (5G) technology [1]. This is due to the dense coverage, high capacity, low latency and high quality of service that can be achieved with 5G technology. The 5G will require Publisher’s Note: MDPI stays neutral gNodeB (macrocell) with other technology such as microcell, radio remote head (RRH), with regard to jurisdictional claims in distributed antenna system (DAS), relay-based systems, picocell and femtocell to form a published maps and institutional affil- heterogeneous network. Cognitive radio, network function virtualization, software-defined iations. networking (SDN), ultra-density and multiple input multiple output (MIMO) are other key 5G technologies. MIMO and massive MIMO technology will be integrated with 5G to improve network coverage, capacity and data rate at the macrocell level further. The 5G will further enhance the coverage, capacity, energy efficiency and spectral efficiency in a dead signal location. Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Ultra-broadband backhaul links can be achieve using millimetre wave (mmWave) This article is an open access article technology, this is to carry traffic to or from either small base stations (BSs) or relay stations distributed under the terms and in 5G. The 5G technology can be either centralized or distributed architecture, depending conditions of the Creative Commons on how the baseband units and switch are deigned. The current 2G, 3G and 4G networks Attribution (CC BY) license (https:// are all distributed, with each cell having it baseband unit interconnected from the end site creativecommons.org/licenses/by/ to the backbone. The major backbone to the base station controller (BSC), universal mobile 4.0/). telecommunications system radio access network (URAN) and the evolved packet core Inventions 2021, 6, 11. https://doi.org/10.3390/inventions6010011 https://www.mdpi.com/journal/inventions Inventions 2021, 6, 11 2 of 15 (EPC). These networks are complex, high-latency, high intercell interference and required serval hand-off during movement. The technology is not capable of handling the current data requirement and modern applications such as D2D, IoT and M2M. Although a lot of study on 5G shows that there will be a complete change in the radio access network and the core network, this study shows otherwise. This study is necessary to reduce the capital expenditure (Capex) and operational expenditure (Opex), but at the same time meet all the requirements of 5G technology to reduce low latency. The study proposed a distributed wireless network architecture (DWNA) to complement the drawbacks of the centralized wireless network architecture (CWNA) for 5G deployment. Unlike the CWNA, the DWNA will reduce Capex and Opex, improve network security, reduce traffic bottlenecks and reduce the cost of transmission backhaul and fronthaul, since the architecture will have a cluster of baseband units (BBU) and small centralized radio access network (C-RAN), which will again reduce latency because the subscribers are closed the C-RAN and the switching is better than that of the CWNA. DWNA is used in bridging a number of access point, for examples buildings or offices, through a wireless local area network [2]. 2. Structure of the Paper The paper is organised as follows: in Section3, we do a review of a related works in the area of study. Section4, we give detail description of the proposed architecture for the 5G mobile technology. Section5 is the techno-economic model formulation for the distributed wireless network, Section6 is the network capacity and throughput model formulation. Section7 we do the model verification. In Section8 is the model simulation and in Section9 is the conclusion followed by the referencing. 3. Review of Related Works The level of spatial densification in a 5G wireless network necessitates the use of small cells to form a distributed wireless network where mmWave technology is used for communication or data transfer [3,4] between cells and a multiprotocol label switching (MPLS) network or a fiber network is used for data transfer to the core network. Many scholars have recommended the use of mmWave for small cell 5G heterogamous networks. mmWave technology is more dependable when it comes to attenuation due to rain, provided the required spectrum is used with small cell technology, especially for indoor use. mmWave is more efficient when used with directional antennas. The proposed architecture will run on internet protocol (IP) backhauling and fronthaul- ing using fiber-optic technology. mmWave will also be used as fronthauling from the RRH to the BBU for traffic offloading. The mmWave technology will change backhauling tech- niques in the mobile industry owing to the available spectrum at this band. The mmWave will help to reduce antenna sizes, enabling the fabrication of hundreds or thousands of antenna elements, even at the user equipment (UE). The start of 5G happens together with a global economic crisis. Mobile network operators (MNO) can never terminate investment in innovative technologies to obtain profits without any economic analysis. According to reference [5], MNO will require augmentation of a 5G new ratio (NR) or gNodeB to be able to render modern services such as IoT, D2D and M2M communication. This will require better and cost-effective planning. Reference [6] presented an analysis comparing Capex, Opex, total cost of ownership (TCO), and network capacity based on antenna expansion, intercell interference and energy efficiency for a distributed antenna system (DAS) and femtocell. Reference [2] examined the techno-economic analysis of various small cell and DAS financial models, Capex and Opex. Reference [1] defined TCO for DAS as the sum of Capex and Opex and a sensitivity analysis was done on the bandwidth, running cost and interest rate. Reference [7] presented a techno-economic analysis for 5G architecture for DAS and MIMO. Reference [8] used an ordinary annuity model to predict the future annual repeating payment of the principal amount invested in Capex, Opex and TCO. Reference [9] stated that the principal cost for operations includes the running cost and backhaul cost, whereas the principal invested Inventions 2021, 6, 11 3 of 15 capital amount is made up of the eNodeB and the EPC, as well as the transmit and receive antenna. Reference stated that [10] infrastructure sharing will enhance the deployment of 5G technologies and will help MNOs meet the dense coverage, high capacity and reduced latency requirements. Passive infrastructure sharing will spread the infrastructure ex- penditure of 5G implementation among multiple players, which will reduce cost and increase profitability. Reference [11] argued that telecommunication infrastructure sharing will allow inde- pendent tower companies to manage the infrastructure, while the MNO focus on providing the best telecom service with no Capex and very limited Opex. A study by [12], shows that 5G infrastructure cost in Britain is very high and the economical way to reduce the cost of infrastructure is by infrastructure sharing and network virtualization [13]. This paper will develop a mathematical model that will be used
Recommended publications
  • Tutorial on Small Cell/Hetnet Deployment Part 1: Evolutions
    Tutorial on Small Cell/HetNet Deployment Part 1: Evolutions towards small cell and HetNet Jie Zhang1, 2 1RANPLAN Wireless Network Design Ltd., UK Web: www.ranplan.co.uk 2Dept. of EEE, University of Sheffield, UK Globecom’12 Industry Forum, 03/12/2012 Outline 1. An overview of the tutorial 2. Evolutions towards small cell/HetNet 3. Challenges of small cell/HetNet deployment 4. Some of our publications on small cell/HetNet deployment 1. An overview of the tutorial • Part 1: Evolutions towards small cell and HetNet • Part 2: Interference in small cell and HetNet • Part 3: SON for small cell and HetNet • Part 4: Small cell backhaul • Part 5: Tools for small cell and HetNet deployment 2. Evolutions towards small cell/HetNet What is a small cell? • Small cells are low-power wireless access points that operate in licensed spectrum. • Small cells provide improved cellular coverage, capacity and applications for homes and enterprises as well as metropolitan and rural public spaces. Source: www.smallcellforum.org What is a small cell? • Types of small cells include femtocells, picocells, metrocells and microcells – broadly increasing in size from femtocells (the smallest) to microcells (the largest). • Small-cell networks can also be realized by means of distributed radio technology consisting of centralised baseband units and remote radio heads. Source: www.smallcellforum.org What is HetNet? • HetNet could mean a network comprising of different RATs (WiFi, GSM, UMTS/HSPA, LTE/LTE-A) – Multi-RATs from multi-vendors will co-exist in the next decades • A HetNet also means a network consisting different access nodes such as macrocell, microcell, picocells, femtocells, RRHs (Remote Radio Heads), as well as relay stations.
    [Show full text]
  • HAROON SHAN COMPARISON of PICOCELL and DAS CONFIGURATION with HSPA EVOLUTION Master of Science Thesis
    I HAROON SHAN COMPARISON OF PICOCELL AND DAS CONFIGURATION WITH HSPA EVOLUTION Master of Science Thesis Supervisor: M.Sc. Tero Isotalo Examiner: Prof. Jukka Lempiäinen Examiners and topic approved in the Faculty of Computing and Electrical Engineering Council meeting on 8th September 2010 II ABSTRACT TAMPERE UNIVERSITY OF TECHNOLOGY Master’s Degree Program in RF Electronics Shan, Haroon: Comparison of picocell and DAS configuration with HSPA Evolution. Master of Science Thesis, 85 pages, 3 Appendix pages March 2011 Major: RF Electronics Supervisor: M.Sc. Tero Isotalo, Examiner: Professor Jukka Lempiäinen Keywords: Picocell, DAS, HSPA+, UMTS, indoor network, field measurements. As demand of mobile data services has grown exponentially, it has increased pressure on mobile operators to enhance capacity in dense urban areas. Usage of internet and services related to mobile network has grown up. UMTS specification has been updated in order to cope with an increased amount of mobile data traffic. These upgrades and releases are based on international standards. HSDPA and HSUPA technologies are previous upgrades of UMTS network but now HSPA Evolution (HSPA+) is the upgraded version for UMTS. HSPA+ improves performance of mobile data transmission in downlink direction. Previously UMTS enabled user data of 384 kbps that was upgraded to 14.4 Mbps in downlink and 5.76 Mbps in uplink data rate by HSPA. But still the demand of data rate is increasing so HSPA+ upgraded UMTS to 21.1 Mbps in downlink and 5.76 Mbps in uplink. Due to these improvements in data rates, HSPA+ has become one of the striking choices for mobile operators.
    [Show full text]
  • Cellular Technology.Pdf
    Cellular Technologies Mobile Device Investigations Program Technical Operations Division - DFB DHS - FLETC Basic Network Design Frequency Reuse and Planning 1. Cellular Technology enables mobile communication because they use of a complex two-way radio system between the mobile unit and the wireless network. 2. It uses radio frequencies (radio channels) over and over again throughout a market with minimal interference, to serve a large number of simultaneous conversations. 3. This concept is the central tenet to cellular design and is called frequency reuse. Basic Network Design Frequency Reuse and Planning 1. Repeatedly reusing radio frequencies over a geographical area. 2. Most frequency reuse plans are produced in groups of seven cells. Basic Network Design Note: Common frequencies are never contiguous 7 7 The U.S. Border Patrol uses a similar scheme with Mobile Radio Frequencies along the Southern border. By alternating frequencies between sectors, all USBP offices can communicate on just two frequencies Basic Network Design Frequency Reuse and Planning 1. There are numerous seven cell frequency reuse groups in each cellular carriers Metropolitan Statistical Area (MSA) or Rural Service Areas (RSA). 2. Higher traffic cells will receive more radio channels according to customer usage or subscriber density. Basic Network Design Frequency Reuse and Planning A frequency reuse plan is defined as how radio frequency (RF) engineers subdivide and assign the FCC allocated radio spectrum throughout the carriers market. Basic Network Design How Frequency Reuse Systems Work In concept frequency reuse maximizes coverage area and simultaneous conversation handling Cellular communication is made possible by the transmission of RF. This is achieved by the use of a powerful antenna broadcasting the signals.
    [Show full text]
  • Options for Improving In-Building Mobile Coverage
    Options for Improving In-Building Mobile Coverage Appendices to final report Self-provided Carrier Wi-Fi UMA Wi-Fi DAS Consumer Intelligent Femtocells Picocells Repeaters Repeaters Issued to: Ofcom Issue date: 18 April 2013 Version: 1.2 Real Wireless Ltd PO Box 2218 Pulborough t +44 207 117 8514 West Sussex f +44 808 280 0142 RH20 4XB e [email protected] United Kingdom www.realwireless.biz Version Control Item Description Source Real Wireless Client Ofcom Report title Options for Improving In-Building Mobile Coverage Sub title Appendices to final report Issue date 18 April 2013 Version Date Comment 1.0 14/03/2013 1st issue to Ofcom 1.1 17/04/2013 Revised in line with feedback on v1.0 from Ofcom for internal review 1.2 18/04/2013 2nd issue to Ofcom Options for Improving In-Building Mobile Coverage Issue date: 18 April 2013 Version: 1.2 About Real Wireless Real Wireless is a leading independent wireless consultancy, based in the U.K. and working internationally for enterprises, vendors, operators and regulators – indeed any organization which is serious about getting the best from wireless to the benefit of their business. We seek to demystify wireless and help our customers get the best from it, by understanding their business needs and using our deep knowledge of wireless to create an effective wireless strategy, implementation plan and management process. We are experts in radio propagation, international spectrum regulation, wireless infrastructures, and much more besides. We have experience working at senior levels in vendors, operators, regulators and academia. We have specific experience in LTE, UMTS, HSPA, Wi-Fi, WiMAX, DAB, DTT, GSM, TETRA – and many more.
    [Show full text]
  • Transition to 4G. 3GPP Broadband Evolution to IMT-Advanced
    TABLE OF CONTENTS INTRODUCTION ......................................................................................................... 4 BROADBAND TRENDS ................................................................................................ 6 Transition to 4G ...................................................................................................... 7 Wireless versus Wireline Advances ............................................................................. 9 Bandwidth Management Trends ............................................................................... 10 Mobile Broadband Cost and Capacity Trends .............................................................. 11 WIRELESS DATA MARKET ........................................................................................ 12 Market Trends ....................................................................................................... 12 EDGE/HSPA/HSPA+/LTE Deployment ........................................................................ 14 Statistics .............................................................................................................. 15 WIRELESS TECHNOLOGY EVOLUTION ..................................................................... 16 3GPP Evolutionary Approach ................................................................................... 16 Spectrum ............................................................................................................. 20 Core-Network Evolution .........................................................................................
    [Show full text]
  • The Rock Steady Beat of Mavenir: One (Radio) Step Beyond…
    THE STÉPHANE TÉRAL PERSPECTIVE The rock steady beat of Mavenir: one (radio) step beyond… Sounds like the ska band Madness singer Suggs introducing Mavenir’s acquisition of IP.access! But this is not madness, this is finesse. With the tactical and rightly timed acquisition of ip.access on September 28, 2020, Mavenir plugged the small cell radio hole in its growing end- to-end software products and services portfolio. MAVENIR IS NOW A TRUE END-TO-END COMMUNICATIONS SOFTWARE SUPPLIER Radio was the only missing piece of the end-to-end portfolio puzzle and for that, Mavenir was working with a least 10 radio unit vendors and will continue to do so because ip.access is a small cell specialist who actually pioneered low power nodes for IP-based mobile networks when GSM started. Moreover, since announcing its open and virtual RAN strategy in the fall of 2018, Mavenir has been vocal about the urgent need to have cheaper radio units, particularly for macro networks, to accelerate the open RAN and vRAN market takeoff. This mounting need is even more pronounced in the indoor enterprise market segment and in the mobile operators’ demand to support 2G and 3G services that are not going away anytime soon. IP.ACCESS PIONEERED IP-BASED INDOOR GSM PICOCELLS Founded in 1999 and headquartered in Cambourne Business Park, Cambridge, UK, ip.access Limited started as a wholly owned subsidiary of TTP Group PLC with the mission of developing technologies that enable IP communications between radios. It took 3 years for the company to achieve that goal: introduced in 2002, nanoGSM became the first IP basestation controller (BSC) designed for indoor GSM networks.
    [Show full text]
  • Integrating Off-The-Shelf 3GPP Access Networks in the Openepc Software Toolkit
    Competence Center NGNI Fraunhofer FOKUS COLORPICKER: Zum Auswählen der korrekten Farbe mit dem Tool »Farbe auswählen« auf das jeweilige Feld unten klicken oder den Web/RGB farbwert manuell eingeben: Integrating Off-the-shelf 3GPP Access Networks in the OpenEPC Software Toolkit - Realizing cost-efficient and complete small-scale-operator testbeds - Marius Corici, Mihai Constatin, Dwianto Dana Satriya, Dragos Vingarzan, Valentin Vlad, Lukas Wöllner Fraunhofer Institute FOKUS, Germany [email protected] www.FOKUS.fraunhofer.de/go/ngni www.FUSECO-Playground.org www.OpenEPC.net 1 Competence Center NGNI Fraunhofer FOKUS COLORPICKER: Overview Zum Auswählen der korrekten Farbe mit dem Tool »Farbe auswählen« auf das jeweilige Feld unten klicken oder den Web/RGB farbwert manuell eingeben: The Problem – Providing research infrastructure for both the academia and the industry – Cost-effective solutions for NGN test-beds in the mobile domain – Realizing realistic testing environments The OpenEPC Project – Short overview Integrating off-the-shelf 2G/GPRS femto-cells in OpenEPC – Interfaces and protocol stacks – Procedures and implemented functionalities – Lessons learned – Validation Outlook – 3G/UMTS progress status – 4G/LTE short overview Q&A 3 Competence Center NGNI Fraunhofer FOKUS COLORPICKER: The Problem: Access to Mobile Technology Zum Auswählen der korrekten Farbe mit dem Tool »Farbe auswählen« auf das jeweilige Feld unten klicken oder den Web/RGB farbwert manuell eingeben: Wireless testbeds – Most deal with WiFi (e.g.
    [Show full text]
  • Global-5G-Rise-Of-A-Transformational-Technology.Pdf
    Table of Contents INTRODUCTION...................................................................................................... 5 INTENSIFYING ROLE OF WIRELESS COMMUNICATIONS......................................... 7 Global Mobile Adoption ............................................................................................ 8 Transformational Elements ..................................................................................... 10 Expanding Use Cases ............................................................................................ 12 THE IMPACT OF 5G ............................................................................................... 16 5G Rollout............................................................................................................ 16 1G to 5G Evolution ................................................................................................ 17 5G Technical Objectives ......................................................................................... 21 5G Applications .................................................................................................... 22 5G Frequency Use ................................................................................................. 25 5G Schedule ......................................................................................................... 30 5G Device Availability ............................................................................................ 31 5G Phase One (Release 15) ...................................................................................
    [Show full text]
  • Chapter 4: General Radio Packet System(GPRS)
    Subject: Mobile Computing (17632) Chapter 4: General Radio Packet System(GPRS) (16 Marks) GPRS Architecture GPRS Networks Nodes GPRS Network Operations Data Services in GPRS Applications and Limitations of GPRS. Introduction to 3G and 4GTechnologies- UMTS, CDMA 2000 Created By: Ms. M.S.Karande (I/c HOD-IF) Page 1 of 7 Subject: Mobile Computing (17632) GPRS architecture works on the same procedure like GSM network, but, has additional entities that allow packet data transmission. This data network overlaps a second generation GSM network providing packet data transport at the rates from 9.6 to 171 kbps. Along with the packet data transport the GSM network accommodates multiple users to share the same air interface resources concurrently. GPRS is usually attempts to reuse the existing GSM network elements as much as possible. There are new entities called GPRS that supports nodes (GSN) which are responsible for delivery and routing of data packets between mobile stations and external packets networks. There are two types of GSNs, − Serving GPRS Support Node (SGNS) − Gateway GPRS Support Node (GGNS) There is also a new database called GPRS register which is located with HLR. It stores routing information’s and maps the IMSI to a PDN (Packet Data Network) address. GPRS Mobile Stations New Mobile Stations (MS) are required to use GPRS services because existing GSM phones do not handle the enhanced air interface or packet data. These mobile stations are backward compatible for making voice calls using GSM. GPRS Base Station Subsystem Each BSC requires the installation of one or more Packet Control Units (PCUs) and Created By: Ms.
    [Show full text]
  • High-Capacity Indoor Wireless Solutions: Picocell Or Femtocell?
    High-Capacity Indoor Wireless Solutions: Picocell or Femtocell? shaping tomorrow with you High-Capacity Indoor Wireless Solutions: Picocell or Femtocell? Picocells and femtocells are small cells belonging to the family of The situation for in-building deployments is often at the opposite Low-Power Nodes (LPNs). Depending on the environment, the quality extreme. Generally, buildings are three-dimensional hot spots, and type of communication service, one may be a better candidate particularly in the case of data traffic. Research studies have forecast than the other. This paper gives an overview of high-capacity wireless exponential growth in data traffic, as shown in Figure 1, and these deployment considerations and concludes that the femtocell is studies estimate that approximately 80% of data traffic will come from generally a better candidate for high-capacity in-building solutions, indoor locations [1]. Some types of buildings (e.g. football stadiums) while the picocell is a better candidate for serving outdoor hotspots. are extreme forms of hotspots; it is very challenging to provide sufficient indoor capacity for the in-building wireless data users in such Introduction situations. In this case, the cell radii need to be as small as possible Wireless cells can be categorized as macrocells, microcells, picocells [2]. and femtocells, with decreasing cell radii and decreasing Tx power levels. The femtocell is the smallest, and the picocell is the second- smallest. Table 1 shows typical cell radii and Tx power levels for each cell type. Cell Type Typical Cell Radius PA Power: Range & (Typical Value) Macro >1 km 20 W~ 160 W (40 W) Micro 250 m ~ 1 km 2 W ~ 20 W (5 W) Pico 100 m ~ 300 m 250 mW ~ >2 W Femto 10 m ~ 50 m 10 mW~200 mW Figure 1: Market forecasts show exponential growth of data traffic, Table 1: Different cell radii and Tx power levels most of it from indoor users.
    [Show full text]
  • Heterogeneous Network Capacity Expansion Technology for Further Development of LTE/LTE-Advanced
    HetNet Interference Control Technology CA Further Development of LTE/LTE-Advanced – LTE Release 10/11 Standardization Trends – Heterogeneous Network Capacity Expansion Technology for Further Development of LTE/LTE-Advanced † Recent years have seen a dramatic increase in mobile traffic Radio Access Network Development Department Yoshihisa Kishiyama due to the spread of smartphones and other mobile devices. Tooru Uchino† An effective means of expanding capacity under these condi- Satoshi Nagata† Journal † tions –especially in urban areas with extremely high traffic– Research Laboratories Akihito Morimoto † is to set up a large number of small cells having relatively DOCOMO Beijing Communications Laboratories Yun Xiang low transmission power and to use them for offloading radio traffic from macrocells. This article describes capacity expansion technologies introduced by 3GPP in LTE Release 11 specifications (LTE-Advanced) for heterogeneous net- works that overlay small cells on top of macrocell coverage. Technical in 3GPP is defined as a network config- macrocell coverage with a base station 1. Introduction uration that overlays small cells having (eNB) having higher transmission At the 3rd Generation Partnership relatively low transmission power (pico- power. In short, HetNet makes it possi- Project (3GPP), the Heterogeneous cell*2 and femtocell*3 units) on top of ble to flexibly expand radio capacity by Network (HetNet) has come to be stan- Macrocell coverage dardized in response to dramatic Optical fiber or increases in mobile traffic as the use of X2 interface DOCOMO smartphones and other mobile devices continues to grow. A HetNet deploy- eNB with high transmission power RRE or eNB with low ment expands capacity in the radio transmission power access network by offloading Small cell coverage NTT *1 eNB: eNodeB macrocell radio traffic to small cells X2 interface: Wired transmission path for exchanging control information between eNBs.
    [Show full text]
  • (DAS) and Small Cell Technologies Distiguished Hetnet Forum Febuary
    Febuary 2013 HetNet Forum Distributed Antenna Systems (DAS) and Small Cell Technologies Distiguished © 2013 HetNet Forum Page 1 Contents Introduction ............................................................................................................................................................................... 3 DAS Networks Defined ..................................................................................................................................................... 3 Distinguishing DAS Networks from Small Cells ..................................................................................................... 4 Use Cases ................................................................................................................................................................................ 6 Characteristics of DAS Networks ................................................................................................................................. 7 Limitations............................................................................................................................................................................. 7 Microcell Solutions .................................................................................................................................................................. 8 Use Cases ...............................................................................................................................................................................
    [Show full text]