The Vanu Anywave™ Base Station Subsystem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Running a Basic Osmocom GSM Network
Running a basic Osmocom GSM network Harald Welte <[email protected]> What this talk is about Implementing GSM/GPRS network elements as FOSS Applied Protocol Archaeology Doing all of that on top of Linux (in userspace) Running your own Internet-style network use off-the-shelf hardware (x86, Ethernet card) use any random Linux distribution configure Linux kernel TCP/IP network stack enjoy fancy features like netfilter/iproute2/tc use apache/lighttpd/nginx on the server use Firefox/chromium/konqueor/lynx on the client do whatever modification/optimization on any part of the stack Running your own GSM network Until 2009 the situation looked like this: go to Ericsson/Huawei/ZTE/Nokia/Alcatel/… spend lots of time convincing them that you’re an eligible customer spend a six-digit figure for even the most basic full network end up with black boxes you can neither study nor improve WTF? I’ve grown up with FOSS and the Internet. I know a better world. Why no cellular FOSS? both cellular (2G/3G/4G) and TCP/IP/HTTP protocol specs are publicly available for decades. Can you believe it? Internet protocol stacks have lots of FOSS implementations cellular protocol stacks have no FOSS implementations for the first almost 20 years of their existence? it’s the classic conflict classic circuit-switched telco vs. the BBS community ITU-T/OSI/ISO vs. Arpanet and TCP/IP Enter Osmocom In 2008, some people (most present in this room) started to write FOSS for GSM to boldly go where no FOSS hacker has gone before where protocol stacks are deep and acronyms are -
Guidelines on Mobile Device Forensics
NIST Special Publication 800-101 Revision 1 Guidelines on Mobile Device Forensics Rick Ayers Sam Brothers Wayne Jansen http://dx.doi.org/10.6028/NIST.SP.800-101r1 NIST Special Publication 800-101 Revision 1 Guidelines on Mobile Device Forensics Rick Ayers Software and Systems Division Information Technology Laboratory Sam Brothers U.S. Customs and Border Protection Department of Homeland Security Springfield, VA Wayne Jansen Booz-Allen-Hamilton McLean, VA http://dx.doi.org/10.6028/NIST.SP. 800-101r1 May 2014 U.S. Department of Commerce Penny Pritzker, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director Authority This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal Information Security Management Act of 2002 (FISMA), 44 U.S.C. § 3541 et seq., Public Law (P.L.) 107-347. NIST is responsible for developing information security standards and guidelines, including minimum requirements for Federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate Federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as analyzed in Circular A- 130, Appendix IV: Analysis of Key Sections. Supplemental information is provided in Circular A- 130, Appendix III, Security of Federal Automated Information Resources. Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on Federal agencies by the Secretary of Commerce under statutory authority. -
GSM Network Element Modification Or Upgrade Required for GPRS. Mobile Station (MS) New Mobile Station Is Required to Access GPRS
GPRS GPRS architecture works on the same procedure like GSM network, but, has additional entities that allow packet data transmission. This data network overlaps a second- generation GSM network providing packet data transport at the rates from 9.6 to 171 kbps. Along with the packet data transport the GSM network accommodates multiple users to share the same air interface resources concurrently. Following is the GPRS Architecture diagram: GPRS attempts to reuse the existing GSM network elements as much as possible, but to effectively build a packet-based mobile cellular network, some new network elements, interfaces, and protocols for handling packet traffic are required. Therefore, GPRS requires modifications to numerous GSM network elements as summarized below: GSM Network Element Modification or Upgrade Required for GPRS. Mobile Station (MS) New Mobile Station is required to access GPRS services. These new terminals will be backward compatible with GSM for voice calls. BTS A software upgrade is required in the existing Base Transceiver Station(BTS). BSC The Base Station Controller (BSC) requires a software upgrade and the installation of new hardware called the packet control unit (PCU). The PCU directs the data traffic to the GPRS network and can be a separate hardware element associated with the BSC. GPRS Support Nodes (GSNs) The deployment of GPRS requires the installation of new core network elements called the serving GPRS support node (SGSN) and gateway GPRS support node (GGSN). Databases (HLR, VLR, etc.) All the databases involved in the network will require software upgrades to handle the new call models and functions introduced by GPRS. -
Migration to 3G Technology Standards: Europe, Japan, South Korea, and the U.S. by Richard Nunno, International Bureau, FCC
Migration to 3G Technology Standards: Europe, Japan, South Korea, and the U.S. By Richard Nunno, International Bureau, FCC Revised July 21, 2003 For over a decade, the International Telecommunication Union (ITU) has been supporting the international effort to develop an advanced third-generation (3G) mobile telecommunications service that has a higher bandwidth than previous and existing mobile services and that subscribers can seamlessly use across international borders (known as global roaming). To that end, the ITU has identified spectrum and developed technical standards for International Mobile Telecommunications 2000 (IMT-2000), the official name for 3G services. The ITU’s World Administrative Radiocommunication Conference (WARC) in 1992 and World Radiocommunication Conference (WRC) in 2000 identified several bands of spectrum that could be used for 3G services. The mobile telecommunications industry has started delivering 3G services that provide broadband applications including voice, data, and video. As defined by the ITU, 3G signal transmission rates must be able to reach 2 megabits per second (Mbps) or higher for indoor (low mobility) wireless applications (more than 35 times faster than today’s 56 kilobits per second (kbps) dial-up PC modems). 3G rates may be slower (384 kbps) for pedestrian traffic, and 144 kbps for high mobility (vehicular) traffic.1 How each country is implementing 3G systems depends on a number of factors, such as the country’s 3G spectrum allocations, the standards it adopts for 3G (if it adopts any standards vs. letting the marketplace make the decision), and the country’s current mobile telephony system configuration. Because a great deal of information and analysis is already available on the spectrum-related issues surrounding 3G implementation, this report focuses only on the technology standards issues pertaining to 3G. -
Location Update Procedure
Location Update Procedure In order to make a mobile terminated call, The GSM network should know the location of the MS (Mobile Station), despite of its movement. For this purpose the MS periodically reports its location to the network using the Location Update procedure. Location Area (LA) A GSM network is divided into cells. A group of cells is considered a location area. A mobile phone in motion keeps the network informed about changes in the location area. If the mobile moves from a cell in one location area to a cell in another location area, the mobile phone should perform a location area update to inform the network about the exact location of the mobile phone. The Location Update procedure is performed: When the MS has been switched off and wants to become active, or When it is active but not involved in a call, and it moves from one location area to another, or After a regular time interval. Location registration takes place when a mobile station is turned on. This is also known as IMSI Attach because as soon as the mobile station is switched on it informs the Visitor Location Register (VLR) that it is now back in service and is able to receive calls. As a result of a successful registration, the network sends the mobile station two numbers that are stored in the SIM (Subscriber Identity Module) card of the mobile station. These two numbers are:- 1. Location Area Identity (LAI) 2. Temporary Mobile Subscriber Identity (TMSI). The network, via the control channels of the air interface, sends the LAI. -
Modeling the Use of an Airborne Platform for Cellular Communications Following Disruptions
Dissertations and Theses 9-2017 Modeling the Use of an Airborne Platform for Cellular Communications Following Disruptions Stephen John Curran Follow this and additional works at: https://commons.erau.edu/edt Part of the Aviation Commons, and the Communication Commons Scholarly Commons Citation Curran, Stephen John, "Modeling the Use of an Airborne Platform for Cellular Communications Following Disruptions" (2017). Dissertations and Theses. 353. https://commons.erau.edu/edt/353 This Dissertation - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. MODELING THE USE OF AN AIRBORNE PLATFORM FOR CELLULAR COMMUNICATIONS FOLLOWING DISRUPTIONS By Stephen John Curran A Dissertation Submitted to the College of Aviation in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Aviation Embry-Riddle Aeronautical University Daytona Beach, Florida September 2017 © 2017 Stephen John Curran All Rights Reserved. ii ABSTRACT Researcher: Stephen John Curran Title: MODELING THE USE OF AN AIRBORNE PLATFORM FOR CELLULAR COMMUNICATIONS FOLLOWING DISRUPTIONS Institution: Embry-Riddle Aeronautical University Degree: Doctor of Philosophy in Aviation Year: 2017 In the wake of a disaster, infrastructure can be severely damaged, hampering telecommunications. An Airborne Communications Network (ACN) allows for rapid and accurate information exchange that is essential for the disaster response period. Access to information for survivors is the start of returning to self-sufficiency, regaining dignity, and maintaining hope. Real-world testing has proven that such a system can be built, leading to possible future expansion of features and functionality of an emergency communications system. -
Patent No.: US 8358640 B1
US008358640B1 (12) United States Patent (10) Patent No.: US 8,358,640 B1 Breau et a]. (45) Date of Patent: Jan. 22, 2013 (54) FEMTOCELL BRIDGING IN MEDIA LOCAL OTHER PUBLICATIONS AREA NETWORKS Notice ofAllowance datedApr. 11, 2011,U.S.Appl.No. 12/689,081, ?led Jan. 18,2012. (75) Inventors: Jeremey R. Breau, Leawood, KS (US); Breau, Jeremy R., et al., Patent Application entitled “System and Jason R. Delker, Olathe, KS (U S) Method for Bridging Media Local Area Networks,” ?led Jan. 18, 2010, US. Appl. No. 12/689,081. Assignee: Sprint Communications Company “Address Resolution Protocol,” Wikipedia, http://en.wikipedia.org/ (73) w/indeX.php?titleIAddressiResolutioniProtocol&printable:yes, L.P., Overland Park, KS (U S) (last visited Aug. 25, 2009). Bahlmann, Bruce, “DLNA Basics, Bridging Services within a Con ( * ) Notice: Subject to any disclaimer, the term of this nected Home,” Communications Technology, http://www.cable360. patent is extended or adjusted under 35 net/print/ct/deployment/techtrends/23787.html, Jun. 1, 2007. U.S.C. 154(b) by 248 days. Bahlmann, Bruce, “Digital Living Network Alliance (DLNA) Essen tials,” Birds-Eye.Net, http://www.birds-eye.net/articleiarchive/ digitalilivinginetworkiallianceidlnaiessentials.htm, Apr. 1, (21) Appl. No.: 12/791,859 2007. “Network address translation,” Wikipedia, http://en.wikipedia.org/ (22) Filed: Jun. 1, 2010 w/indeX.php?title:Networkiaddressitranslation&printable:yes, Aug. 20, 2009. (51) Int. Cl. Pre-Interview Communication dated Jul. 31, 2012, US. Appl. No. H04L 12/56 (2006.01) 12/698,495, ?led Feb. 2, 2010. H04] [/16 (2006.01) Delker, Jason R., et al., Patent Application entitled “Centralized Program Guide,” ?led Feb. -
Tutorial on Small Cell/Hetnet Deployment Part 1: Evolutions
Tutorial on Small Cell/HetNet Deployment Part 1: Evolutions towards small cell and HetNet Jie Zhang1, 2 1RANPLAN Wireless Network Design Ltd., UK Web: www.ranplan.co.uk 2Dept. of EEE, University of Sheffield, UK Globecom’12 Industry Forum, 03/12/2012 Outline 1. An overview of the tutorial 2. Evolutions towards small cell/HetNet 3. Challenges of small cell/HetNet deployment 4. Some of our publications on small cell/HetNet deployment 1. An overview of the tutorial • Part 1: Evolutions towards small cell and HetNet • Part 2: Interference in small cell and HetNet • Part 3: SON for small cell and HetNet • Part 4: Small cell backhaul • Part 5: Tools for small cell and HetNet deployment 2. Evolutions towards small cell/HetNet What is a small cell? • Small cells are low-power wireless access points that operate in licensed spectrum. • Small cells provide improved cellular coverage, capacity and applications for homes and enterprises as well as metropolitan and rural public spaces. Source: www.smallcellforum.org What is a small cell? • Types of small cells include femtocells, picocells, metrocells and microcells – broadly increasing in size from femtocells (the smallest) to microcells (the largest). • Small-cell networks can also be realized by means of distributed radio technology consisting of centralised baseband units and remote radio heads. Source: www.smallcellforum.org What is HetNet? • HetNet could mean a network comprising of different RATs (WiFi, GSM, UMTS/HSPA, LTE/LTE-A) – Multi-RATs from multi-vendors will co-exist in the next decades • A HetNet also means a network consisting different access nodes such as macrocell, microcell, picocells, femtocells, RRHs (Remote Radio Heads), as well as relay stations. -
700 Mhz Base Station Test Results for the FCC
MOBILE --------.. BEFREE 0---.- 700 MHz Base Station Test Results for the FCC Flow Mobile 700 MHz Base Station Test Results 1.0 Document Goal This document provides the test results of a Base Station which provides mobile broadband connectivity using 700 MHz spectrum using the WiFi protocol. Flow Mobile had obtained a STA from the FCC to be able to test a Base Station in the 760-776 MHZ. The purpose of this test was to prove that WiFi protocol can be used at this spectrum and a mobile Base Station can be used to help deploy a large wide-area network. 2.0 Introduction A Base Transceiver Station (BTS) is a major component of any wireless access network to provide wireless service to users. A client terminal connects to a BTS to provide service to the user. Our demonstration is of a BTS operating in 760-776 MHz using WiFi protocol and the client used to test this BTS is based on an off-the-shelf module developed by Ubiquiti Networks. The client can be a handheld device, a computer card that is either connected using the PCMCIA slot or USB connector. The connection between the client and the BTS uses a particular protocol. The protocol could be any of CDMA, GSM, 3G standards or Wi-Fi standards or the future LTE standards. Hence a BTS has two components for the radio connection to be established between the BTS and the Client Terminal. The two components are frequency component which is purely a radio function and a protocol component which is a required for communication. -
Wireless E9-1-1 Phase II Stage 2 Feature Analysis ______
ESRE0049 – Wireless E9-1-1 Phase II Stage 2 Feature Analysis _______________________________________________________________________ Canadian Radio – television and Telecommunications Commission Interconnection Steering Committee Report to the CRTC by the Emergency Services Working Group (ESWG) Wireless E9-1-1 Phase II Stage 2 Feature Analysis Report Number: ESRE0049 August 21, 2009 August 21, 2009 Version 1.03 Page 1 ESRE0049 – Wireless E9-1-1 Phase II Stage 2 Feature Analysis _______________________________________________________________________ Revision History: Version Date Editor Summary of Changes 1.0 July 31, Nancy Initial draft version proposed to the ESWG. 2009 Banks 1.01 August Nancy Initial version proposed to the ESWG. 12, 2009 Banks Roamer Options 2 & 3 added. 1.02 August Nancy Initial version proposed to the ESWG. Final 13, 2009 Banks conclusions completed. 1.03 August Gerry Final updates as reviewed and approved on 20, 2009 Thompson the August 20 ESWG monthly conference for Nancy call. Banks August 21, 2009 Version 1.03 Page 2 ESRE0049 – Wireless E9-1-1 Phase II Stage 2 Feature Analysis _______________________________________________________________________ Table of Contents 1 Background ................................................................................................................. 5 2 Introduction ................................................................................................................. 5 3 ESWG Approach ....................................................................................................... -
HAROON SHAN COMPARISON of PICOCELL and DAS CONFIGURATION with HSPA EVOLUTION Master of Science Thesis
I HAROON SHAN COMPARISON OF PICOCELL AND DAS CONFIGURATION WITH HSPA EVOLUTION Master of Science Thesis Supervisor: M.Sc. Tero Isotalo Examiner: Prof. Jukka Lempiäinen Examiners and topic approved in the Faculty of Computing and Electrical Engineering Council meeting on 8th September 2010 II ABSTRACT TAMPERE UNIVERSITY OF TECHNOLOGY Master’s Degree Program in RF Electronics Shan, Haroon: Comparison of picocell and DAS configuration with HSPA Evolution. Master of Science Thesis, 85 pages, 3 Appendix pages March 2011 Major: RF Electronics Supervisor: M.Sc. Tero Isotalo, Examiner: Professor Jukka Lempiäinen Keywords: Picocell, DAS, HSPA+, UMTS, indoor network, field measurements. As demand of mobile data services has grown exponentially, it has increased pressure on mobile operators to enhance capacity in dense urban areas. Usage of internet and services related to mobile network has grown up. UMTS specification has been updated in order to cope with an increased amount of mobile data traffic. These upgrades and releases are based on international standards. HSDPA and HSUPA technologies are previous upgrades of UMTS network but now HSPA Evolution (HSPA+) is the upgraded version for UMTS. HSPA+ improves performance of mobile data transmission in downlink direction. Previously UMTS enabled user data of 384 kbps that was upgraded to 14.4 Mbps in downlink and 5.76 Mbps in uplink data rate by HSPA. But still the demand of data rate is increasing so HSPA+ upgraded UMTS to 21.1 Mbps in downlink and 5.76 Mbps in uplink. Due to these improvements in data rates, HSPA+ has become one of the striking choices for mobile operators. -
Wireless Networks
SUBJECT WIRELESS NETWORKS SESSION 3 Getting to Know Wireless Networks and Technology SESSION 3 Case study Getting to Know Wireless Networks and Technology By Lachu Aravamudhan, Stefano Faccin, Risto Mononen, Basavaraj Patil, Yousuf Saifullah, Sarvesh Sharma, Srinivas Sreemanthula Jul 4, 2003 Get a brief introduction to wireless networks and technology. You will see where this technology has been, where it is now, and where it is expected to go in the future. Wireless networks have been an essential part of communication in the last century. Early adopters of wireless technology primarily have been the military, emergency services, and law enforcement organizations. Scenes from World War II movies, for example, show soldiers equipped with wireless communication equipment being carried in backpacks and vehicles. As society moves toward information centricity, the need to have information accessible at any time and anywhere (as well as being reachable anywhere) takes on a new dimension. With the rapid growth of mobile telephony and networks, the vision of a mobile information society (introduced by Nokia) is slowly becoming a reality. It is common to see people communicating via their mobile phones and devices. The era of the pay phones is past, and pay phones stand witness as a symbol of the way things were. With today's networks and coverage, it is possible for a user to have connectivity almost anywhere. Growth in commercial wireless networks occurred primarily in the late 1980s and 1990s, and continues into the 2000s. The competitive nature of the wireless industry and the mass acceptance of wireless devices have caused costs associated with terminals and air time to come down significantly in the last 10 years.