Field Notes: Scincella Lateralis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47. -
Checklist Reptile and Amphibian
To report sightings, contact: Natural Resources Coordinator 980-314-1119 www.parkandrec.com REPTILE AND AMPHIBIAN CHECKLIST Mecklenburg County, NC: 66 species Mole Salamanders ☐ Pickerel Frog ☐ Ground Skink (Scincella lateralis) ☐ Spotted Salamander (Rana (Lithobates) palustris) Whiptails (Ambystoma maculatum) ☐ Southern Leopard Frog ☐ Six-lined Racerunner ☐ Marbled Salamander (Rana (Lithobates) sphenocephala (Aspidoscelis sexlineata) (Ambystoma opacum) (sphenocephalus)) Nonvenomous Snakes Lungless Salamanders Snapping Turtles ☐ Eastern Worm Snake ☐ Dusky Salamander (Desmognathus fuscus) ☐ Common Snapping Turtle (Carphophis amoenus) ☐ Southern Two-lined Salamander (Chelydra serpentina) ☐ Scarlet Snake1 (Cemophora coccinea) (Eurycea cirrigera) Box and Water Turtles ☐ Black Racer (Coluber constrictor) ☐ Three-lined Salamander ☐ Northern Painted Turtle ☐ Ring-necked Snake (Eurycea guttolineata) (Chrysemys picta) (Diadophis punctatus) ☐ Spring Salamander ☐ Spotted Turtle2, 6 (Clemmys guttata) ☐ Corn Snake (Pantherophis guttatus) (Gyrinophilus porphyriticus) ☐ River Cooter (Pseudemys concinna) ☐ Rat Snake (Pantherophis alleghaniensis) ☐ Slimy Salamander (Plethodon glutinosus) ☐ Eastern Box Turtle (Terrapene carolina) ☐ Eastern Hognose Snake ☐ Mud Salamander (Pseudotriton montanus) ☐ Yellow-bellied Slider (Trachemys scripta) (Heterodon platirhinos) ☐ Red Salamander (Pseudotriton ruber) ☐ Red-eared Slider3 ☐ Mole Kingsnake Newts (Trachemys scripta elegans) (Lampropeltis calligaster) ☐ Red-spotted Newt Mud and Musk Turtles ☐ Eastern Kingsnake -
Common Species
Common Species on District Lands The Southwest Florida Water Management District (District) manages water resources in the west- central portion of Florida according to legislative mandates. The District uses public land acquisition funds to protect key lands for water resources. The natural communities, plants and animals on these lands also benefi t from a level of protection that can be experienced and enjoyed through recreational opportunities made available on District lands. Every year, approximately 2.5 million people visit the more than 436,000 acres of public conservation lands acquired by the District and its partners. The lands are open to the public for activities such as hiking, bicycling, hunting, horseback riding, fi shing, camping, picnicking and studying nature. The District provides these recreational opportunities so that residents may experience healthy natural communities. An array of natural landscapes is available from the meandering Outstanding Florida Southwest Florida Water Management District Waters riverine systems, the cypress domes and strands, swamps and hammocks, to the scrub, sandhill, and pine fl atwoods. The Common Species on District Lands brochure provides insight to what you may experience while recreating on public lands managed by the District. CONSERVATION LANDS Southwest Florida Water Management District Mammals Southwest Florida Water Management District iStock W Barbour - Smithsonian Institute Roger Virginia Brazilian Opossum Free-Tailed Bat Didelphis virginiana Tadarida brasiliensis iStock Ivy -
Check List 17 (1): 27–38
17 1 ANNOTATED LIST OF SPECIES Check List 17 (1): 27–38 https://doi.org/10.15560/17.1.27 A herpetological survey of Edith L. Moore Nature Sanctuary Dillon Jones1, Bethany Foshee2, Lee Fitzgerald1 1 Biodiversity Research and Teaching Collections, Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA. 2 Houston Audubon, 440 Wilchester Blvd. Houston, TX 77079 USA. Corresponding author: Dillon Jones, [email protected] Abstract Urban herpetology deals with the interaction of amphibians and reptiles with each other and their environment in an ur- ban setting. As such, well-preserved natural areas within urban environments can be important tools for conservation. Edith L. Moore Nature Sanctuary is an 18-acre wooded sanctuary located west of downtown Houston, Texas and is the headquarters to Houston Audubon Society. This study compared iNaturalist data with results from visual encounter surveys and aquatic funnel traps. Results from these two sources showed 24 species belonging to 12 families and 17 genera of herpetofauna inhabit the property. However, several species common in surrounding areas were absent. Combination of data from community science and traditional survey methods allowed us to better highlight herpe- tofauna present in the park besides also identifying species that may be of management concern for Edith L. Moore. Keywords Community science, iNaturalist, urban herpetology Academic editor: Luisa Diele-Viegas | Received 27 August 2020 | Accepted 16 November 2020 | Published 6 January 2021 Citation: Jones D, Foshee B, Fitzgerald L (2021) A herpetology survey of Edith L. Moore Nature Sanctuary. Check List 17 (1): 27–28. https://doi. -
Lizard ID Guide
Lizards of Anderson County, TN Lizards are extraordinary gifts of nature. World-wide there are close to 6,000 species. The United States is home to more than100 native species, along with many exotic species that have become established, especially in Florida. Tennessee has 9 species, 6 of which are listed for Anderson County. Some are fairly widespread and easy to observe, such as the Common Five-lined Skink below. Unfortunately, the liberal use of pesticides, combined with predation by free roaming house cats have taken a heavy toll on our lizard populations. Most lizards are insect eating machines and their ecological services should be promoted through backyard and schoolyard wildlife habitat projects. Lizard watching is great fun, and over time, observers can gain interesting insights into lizard behavior. Your backyard may be a good place to start your lizarding career. This guide will be helpful for identifying our local lizards and will also provide you with examples of lizard behaviors to observe. Some species must be captured—this can be challenging—to insure accurate identification. Please see the back page for more resources. Lizarding Lizard watching, often referred to as lizarding, will likely never be as popular as bird watching (birding), but there is an advantage to being a “lizarder.” Unlike birders, you don’t need to be an early riser. Bright sunny days with warm temperatures are the keys for successful lizarding, but like birding, close-up binoculars are helpful. A lizard’s life centers around three performance activities: 1) avoiding predators, 2) feeding, and 3) reproduction. Lizard performance is all about optimal body temperature. -
Scincella Lateralis)
Herpetological Conservation and Biology 7(2): 109–114. Submitted: 30 January 2012; Accepted: 30 June 2012; Published: 10 September 2012. SEXUAL DIMORPHISM IN HEAD SIZE IN THE LITTLE BROWN SKINK (SCINCELLA LATERALIS) 1 BRIAN M. BECKER AND MARK A. PAULISSEN Department of Natural Sciences, Northeastern State University, Tahlequah, Oklahoma 74464, USA 1Corresponding author, e-mail: [email protected] Abstract.—Many species of skinks show pronounced sexual dimorphism in that males have larger heads relative to their size than females. This can occur in species in which males have greater body length and show different coloration than females, such as several species of the North American genus Plestiodon, but can also occur in species in which males and females have the same body length, or species in which females are larger than males. Another North American skink species, Scincella lateralis, does not exhibit obvious sexual dimorphism. However, behavioral data suggest sexual differences in head size might be expected because male S. lateralis are more aggressive than females and because these aggressive interactions often involve biting. In this study, we measured snout-to-vent length and head dimensions of 31 male and 35 female S. lateralis from northeastern Oklahoma. Females were slightly larger than males, but males had longer, wider, and deeper heads for their size than females. Sexual dimorphism in head size may be the result of sexual selection favoring larger heads in males in male-male contests. However, male S. lateralis are also aggressive to females and larger male head size may give males an advantage in contests with females whose body sizes are equal to or larger than theirs. -
First Record of Brown Forest Skink, Scincella Cherriei (Cope, 1893) (Squamata:Scincidae) in El Salvador
Herpetology Notes, volume 13: 715-716 (2020) (published online on 25 August 2020) First record of brown forest skink, Scincella cherriei (Cope, 1893) (Squamata:Scincidae) in El Salvador Antonio E. Valdenegro-Brito1,2, Néstor Herrera-Serrano3, and Uri O. García-Vázquez1,* The Scincella Mittleman, 1950 genus is composed by 2015; Valdenegro-Brito et al., 2016; McCranie, 2018). 36 species, 26 restricted to eastern Asia and 10 species Here, we report the first record of S. cherrie from El are known in the New World in North America, and Salvador. The digital photographs of specimens were Mesoamerica (Myers and Donelly, 1991; Nguyen et al., submitted to the Colección digital de vertebrados de 2019). For El Salvador in Central America, Scincella la Facultad de Estudios Superiores Zaragoza, UNAM assata (Cope, 1864) represents the only species of (MZFZ-IMG). the genus know for the country (Köhler et al., 2006). While conducting fieldwork in El Salvador, on 10 Scincella cherriei (Cope, 1893) is characterised November 2019, we observed two male juvenile by possessing 30 to 36 rows of scales around the individuals (MZFZ-IMG254-56 and MZFZ-IMG257- midbody, 58-72 dorsal scales, thick and moderately 260; Fig. 1) of S. cherriei in a coffee plantation within long pentadactyl limbs, average snout-vent length of an oak pine forest in the locality of San José Sacare, 55 mm; the dorsal colouration is dark brown with a municipality of La Palma, Chalatenango department mottled pattern throughout the body, and a well-defined (14. 27079ºN, 89. 17995ºW; datum WGS84) 1215 lateral dark stripe only in the head and neck, which m a.s.l. -
The Spatial Ecology of the Southern Copperhead in a Fragmented and Non-Fragmented Habitat
Coastal Carolina University CCU Digital Commons Electronic Theses and Dissertations College of Graduate Studies and Research 1-1-2017 The pS atial Ecology of the Southern Copperhead in a Fragmented and Non-Fragmented Habitat Megan Veronica Novak Coastal Carolina University Follow this and additional works at: https://digitalcommons.coastal.edu/etd Part of the Biology Commons Recommended Citation Novak, Megan Veronica, "The pS atial Ecology of the Southern Copperhead in a Fragmented and Non-Fragmented Habitat" (2017). Electronic Theses and Dissertations. 38. https://digitalcommons.coastal.edu/etd/38 This Thesis is brought to you for free and open access by the College of Graduate Studies and Research at CCU Digital Commons. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of CCU Digital Commons. For more information, please contact [email protected]. THE SPATIAL ECOLOGY OF THE SOUTHERN COPPERHEAD IN A FRAGMENTED AND NON-FRAGMENTED HABITAT By Megan Veronica Novak Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Coastal Marine and Wetland Studies in the School of Coastal and Marine Systems Science Coastal Carolina University 2017 ______________________________ ______________________________ Dr. Scott Parker, Major Professor Dr. Lindsey Bell, Committee Member ______________________________ ______________________________ Dr. Derek Crane, Committee Member Dr. Louis Keiner, Committee Member ______________________________ ______________________________ Dr. Richard Viso, CMWS Director Dr. Michael Roberts, Dean ii The spatial ecology of the southern copperhead in a fragmented and non-fragmented habitat Megan Veronica Novak Coastal Marine and Wetland Studies Program Coastal Carolina University Conway, South Carolina ABSTRACT Habitat fragmentation may alter the spatial ecology of organisms inhabiting the fragmented landscape by limiting the area of habitat available and altering microhabitat features. -
Response of Reptile and Amphibian Communities to the Reintroduction of Fire T in an Oak/Hickory Forest ⁎ Steven J
Forest Ecology and Management 428 (2018) 1–13 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Response of reptile and amphibian communities to the reintroduction of fire T in an oak/hickory forest ⁎ Steven J. Hromadaa, , Christopher A.F. Howeyb,c, Matthew B. Dickinsond, Roger W. Perrye, Willem M. Roosenburgc, C.M. Giengera a Department of Biology and Center of Excellence for Field Biology, Austin Peay State University, Clarksville, TN 37040, United States b Biology Department, University of Scranton, Scranton, PA 18510, United States c Ohio Center for Ecology and Evolutionary Studies, Department of Biological Sciences, Ohio University, Athens, OH 45701, United States d Northern Research Station, U.S. Forest Service, Delaware, OH 43015, United States e Southern Research Station, U.S. Forest Service, Hot Springs, AR 71902, United States ABSTRACT Fire can have diverse effects on ecosystems, including direct effects through injury and mortality and indirect effects through changes to available resources within the environment. Changes in vegetation structure suchasa decrease in canopy cover or an increase in herbaceous cover from prescribed fire can increase availability of preferred microhabitats for some species while simultaneously reducing preferred conditions for others. We examined the responses of herpetofaunal communities to prescribed fires in an oak/hickory forest in western Kentucky. Prescribed fires were applied twice to a 1000-ha area one and four years prior to sampling, causing changes in vegetation structure. Herpetofaunal communities were sampled using drift fences, and vegetation attributes were sampled via transects in four burned and four unburned plots. Differences in reptile community structure correlated with variation in vegetation structure largely created by fires. -
Protozoan, Helminth, and Arthropod Parasites of the Sported Chorus Frog, Pseudacris Clarkii (Anura: Hylidae), from North-Central Texas
J. Helminthol. Soc. Wash. 58(1), 1991, pp. 51-56 Protozoan, Helminth, and Arthropod Parasites of the Sported Chorus Frog, Pseudacris clarkii (Anura: Hylidae), from North-central Texas CHRIS T. MCALLISTER Renal-Metabolic Lab (151-G), Department of Veterans Affairs Medical Center, 4500 S. Lancaster Road, Dallas, Texas 75216 ABSTRACT: Thirty-nine juvenile and adult spotted chorus frogs, Pseudacris clarkii, were collected from 3 counties of north-central Texas and examined for parasites. Thirty-three (85%) of the P. clarkii were found to be infected with 1 or more parasites, including Hexamita intestinalis Dujardin, 1841, Tritrichomonas augusta Alexeieff, 1911, Opalina sp. Purkinje and Valentin, 1840, Nyctotherus cordiformis Ehrenberg, 1838, Myxidium serotinum Kudo and Sprague, 1940, Cylindrotaenia americana Jewell, 1916, Cosmocercoides variabilis (Harwood, 1930) Travassos, 1931, and Hannemania sp. Oudemans, 1911. All represent new host records for the respective parasites. In addition, a summary of the 36 species of amphibians and reptiles reported to be hosts of Cylin- drotaenia americana is presented. KEY WORDS: Anura, Cosmocercoides variabilis, Cylindrotaenia americana, Hannemania sp., Hexamita in- testinalis, Hylidae, intensity, Myxidium serotinum, Nyctotherus cordiformis, Opalina sp., prevalence, Pseudacris clarkii, spotted chorus frog, survey, Tritrichomonas augusta. The spotted chorus frog, Pseudacris clarkii ported to the laboratory where they were killed with (Baird, 1854), is a small, secretive, hylid anuran an overdose of Nembutal®. Necropsy and parasite techniques are identical to the methods of McAllister that ranges from north-central Kansas south- (1987) and McAllister and Upton (1987a, b), except ward through central Oklahoma and Texas to that cestodes were stained with Semichon's acetocar- northeastern Tamaulipas, Mexico (Conant, mine and larval chiggers were fixed in situ with 10% 1975). -
A Brief Review of the Guatemalan Lizards of the Genus Anolis
MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, NO. 91 A Brief Review of the Guatemalan Lizards of the Genus Anolis BY L. C. STUART ANN ARBOR MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN June 6, 1955 LIST OF THE MISCELLANEOUS PUBLICATIONS OF THE MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN Address inquiries to the Director of the Museum of Zoology, Ann Arbor, Michigan *On sale from the University Press, 311 Maynard St., Ann Arbor, Michigan. Bound in Paper No. 1. Directions for Collecting and Preserving Specimens of Dragonflies for Museum Purposes. By E. B. Williamson. (1916) Pp. 15, 3 figures No. 2. An Annotated List of the Odonata of Indiana. By E. B. Williamson. (1917) Pp. 12, 1 map No. 3. A Collecting Trip to Colombia, South America. By E. B. Williamson. (1918) Pp. 24 (Out of print) No. 4. Contributions to the Botany of Michigan. By C. K. Dodge. (1918) Pp. 14 No. 5. Contributions to the Botany of Michigan, II. By C. K. Dodge. (1918) Pp. 44, 1 map No. 6. A Synopsis of the Classification of the Fresh-water Mollusca of North America, North of Mexico, and a Catalogue of the More Recently Described Species, with Notes. By Bryant Walker. (1918) Pp. 213, 1 plate, 233 figures No. 7. The Anculosae of the Alabama River Drainage. By Calvin Goodrich. (1922) Pp. 57, 3 plates No. 8. The Amphibians and Reptiles of the Sierra Nevada de Santa Marta, Colombia. By Alexander G. Ruthven. (1922) Pp. 69, 13 plates, 2 figures, 1 map No. 9. Notes on American Species of Triacanthagyna and Gynacantha. -
Amphibians and Reptiles of the State of Coahuila, Mexico, with Comparison with Adjoining States
A peer-reviewed open-access journal ZooKeys 593: 117–137Amphibians (2016) and reptiles of the state of Coahuila, Mexico, with comparison... 117 doi: 10.3897/zookeys.593.8484 CHECKLIST http://zookeys.pensoft.net Launched to accelerate biodiversity research Amphibians and reptiles of the state of Coahuila, Mexico, with comparison with adjoining states Julio A. Lemos-Espinal1, Geoffrey R. Smith2 1 Laboratorio de Ecología-UBIPRO, FES Iztacala UNAM. Avenida los Barrios 1, Los Reyes Iztacala, Tlalnepantla, edo. de México, Mexico – 54090 2 Department of Biology, Denison University, Granville, OH, USA 43023 Corresponding author: Julio A. Lemos-Espinal ([email protected]) Academic editor: A. Herrel | Received 15 March 2016 | Accepted 25 April 2016 | Published 26 May 2016 http://zoobank.org/F70B9F37-0742-486F-9B87-F9E64F993E1E Citation: Lemos-Espinal JA, Smith GR (2016) Amphibians and reptiles of the state of Coahuila, Mexico, with comparison with adjoining statese. ZooKeys 593: 117–137. doi: 10.3897/zookeys.593.8484 Abstract We compiled a checklist of the amphibians and reptiles of the state of Coahuila, Mexico. The list com- prises 133 species (24 amphibians, 109 reptiles), representing 27 families (9 amphibians, 18 reptiles) and 65 genera (16 amphibians, 49 reptiles). Coahuila has a high richness of lizards in the genus Sceloporus. Coahuila has relatively few state endemics, but has several regional endemics. Overlap in the herpetofauna of Coahuila and bordering states is fairly extensive. Of the 132 species of native amphibians and reptiles, eight are listed as Vulnerable, six as Near Threatened, and six as Endangered in the IUCN Red List. In the SEMARNAT listing, 19 species are Subject to Special Protection, 26 are Threatened, and three are in Danger of Extinction.