A Trabecular Bone Explant Model of Osteocyte–Osteoblast Co-Culture for Bone Mechanobiology

Total Page:16

File Type:pdf, Size:1020Kb

A Trabecular Bone Explant Model of Osteocyte–Osteoblast Co-Culture for Bone Mechanobiology Cellular and Molecular Bioengineering, Vol. 2, No. 3, September 2009 (Ó 2009) pp. 405–415 DOI: 10.1007/s12195-009-0075-5 A Trabecular Bone Explant Model of Osteocyte–Osteoblast Co-Culture for Bone Mechanobiology 1 1 1,2 1 1 3 MEILIN ETE CHAN, XIN L. LU, BO HUO, ANDREW D. BAIK, VICTOR CHIANG, ROBERT E. GULDBERG, 4 1 HELEN H. LU, and X. EDWARD GUO 1Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY 10027, USA; 2Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, P.R. China; 3Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; and 4Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA (Received 10 June 2009; accepted 23 July 2009; published online 5 August 2009) Abstract—The osteocyte network is recognized as the major INTRODUCTION mechanical sensor in the bone remodeling process, and osteocyte–osteoblast communication acts as an important Osteocytes are mature bone cells encased in three- mediator in the coordination of bone formation and turn- dimensional (3D) mineralized bone matrix. A unique over. In this study, we developed a novel 3D trabecular bone feature of osteocytes is the long dendritic processes explant co-culture model that allows live osteocytes situated in their native extracellular matrix environment to be (~50 lm) that travel through canaliculi channels in the interconnected with seeded osteoblasts on the bone surface. extracellular matrix. These processes connect osteo- Using a low-level medium perfusion system, the viability of in cytes in the lacunae with each other and with other situ osteocytes in bone explants was maintained for up to types of cells, such as osteoblasts on the bone surface, 4 weeks, and functional gap junction intercellular communi- to form an extensive cellular communication network.8 cation (GJIC) was successfully established between osteo- cytes and seeded primary osteoblasts. Using this novel co- A recent study demonstrated that the absence of 35 culture model, the effects of dynamic deformational loading, osteocytes alone could induce osteoporosis. The GJIC, and prostaglandin E2 (PGE2) release on functional transgenic mice with ablated osteocytes were resistant bone adaptation were further investigated. The results to unloading (tail suspension) induced bone loss, showed that dynamical deformational loading can signifi- indicating the critical role of osteocytes in detecting the cantly increase the PGE2 release by bone cells, bone formation, and the apparent elastic modulus of bone presence or absence of mechanical signals, controlling explants. However, the inhibition of gap junctions or the the bone remodeling process, and maintaining skeleton PGE2 pathway dramatically attenuated the effects of integrity. In vitro cell studies subjecting osteocytes to mechanical loading. This 3D trabecular bone explant mechanical stimuli such as fluid shear have identified co-culture model has great potential to fill in the critical several important biochemical pathways involved in gap in knowledge regarding the role of osteocytes as a mechano-sensor and how osteocytes transmit signals to bone mechanotransduction, such as intracellular cal- regulate osteoblasts function and skeletal integrity as cium, primary cilia, gap junction intercellular com- reflected in its mechanical properties. munication (GJIC), prostaglandin E2 (PGE2), and nitric oxide.1,2,21,22,24,34,36 It has also been recognized Keywords—Mechanotransduction, Explant, Osteocytes, that direct biochemical pathways between osteocytes Osteoblasts, Gap junction, PGE2. or between osteocytes and osteoblasts rely on either direct intercellular contacts such as gap junctions or paracrine/autocrine signaling via the narrow peri- cellular space between the osteocytic processes and the canalicular wall. Osteocytes have been shown to form gap junctions mainly using connexin 43 (Cx43), which allow rapid communication between two connected cells. In addition, Cx43 has been shown to form un- Address correspondence to X. Edward Guo, Bone Bioengineer- apposed hemi-channels, and these hemi-channels can ing Laboratory, Department of Biomedical Engineering, Columbia release PGE2 and adenosine-5’-triphosphate (ATP) University, 351 Engineering Terrace, Mail Code 8904, 1210 13,19,23 Amsterdam Avenue, New York, NY 10027, USA. Electronic mail: upon mechanical stimulation. A major limita- [email protected] tion in most in vitro studies of osteocytes is the 405 1865-5025/09/0900-0405/0 Ó 2009 Biomedical Engineering Society 406 CHAN et al. disruption of the spatial relationship between osteo- marrow and most surface cells with sterile PBS using cytes and osteoblasts, as well as between osteocytes and an Interplak water jet (WJ7B, ConAir, East Windsor, the mineralized extracellular matrix. For example, it is NJ). The treatment group was then treated with almost impossible to mimic the in vivo 3D canalicular Trypsin–EDTA solution for 5 min while the control system in these 2D in vitro culture systems. Thus, a group received regular culture medium. Bone cores in critical gap in knowledge remains regarding the role of both groups were washed again with sterile PBS using osteocytes as a mechano-sensor and how osteocytes the water jet. All cores were then cultured in six-well transmit signals to regulate osteoblast functions. plates. The cores were harvested after one, two, and Unlike 2D in vitro cell studies, explant cultures of three weeks (n = 4 for each group and time-point). At bone tissue have the advantage of allowing live each time point, each core was vertically cut in half and osteocytes to maintain their in vivo 3D morphology stained using a live/dead cell viability stain. The trypsin and intercellular connections and to be surrounded by treatment eliminated almost all surface cells while their native extracellular environment. Explant cul- maintaining osteocyte viability (Fig. 1). Next, primary tures can also simplify the complexities of in vivo ani- bovine osteoblasts were seeded into live trabecular mal models, allowing the roles of individual bone explants using a custom-designed cell seeder.32 biochemical or mechanical factors to be investigated The seeding efficiency and the final distribution of independently. Such bone explant culture models have seeded osteoblasts in the 3D trabecular bone explants been used to study the osteocyte response to various were examined. Two groups were compared in this biochemical and mechanical stimuli in their physio- study (n = 3 for each group): (1) no seeding and logical environment, both in cortical and trabecular (2) seeding of osteoblasts. Seeding efficiency was eval- bone.9,15–18,20,25,28–30,40 In this study, a novel 3D tra- uated by the difference of cell numbers in medium becular bone explant model of a co-culture of osteocytes before and immediately after seeding. The measure- and primary osteoblasts was developed and character- ment indicated that an average of 2 9 105 cells/core ized. With the ability to sustain long-term culture, the seeding efficiency was able to be achieved. The live/ functional bone formation and changes in elastic mod- dead stain and fluorescence microscopy visually verified ulus of trabecular bone were quantitatively assessed. The a uniform distribution of the seeded osteoblasts through- objectives of this study were to: (1) establish a 3D tra- out the 3D bone cores 24 h after seeding (Fig. 2). becular bone explant model of a co-culture of osteocytes and osteoblasts by demonstrating and quantifying con- Maintenance of Osteocyte Viability in Seeded trolled seeding of primary osteoblasts, intercellular Trabecular Bone Explants communications between live osteocytes in the trabecu- lar bone matrix and seeded osteoblasts, and the main- To maintain osteocyte and osteoblast viability tenance of cell viability for long-term studies, and (2) in seeded trabecular bone explants for long-term examine the roles of two biochemical pathways, i.e., mechanobiology studies, a perfusion system was GJIC and PGE2, in functional trabecular bone response employed to allow a low-level medium perfusion at (bone formation and changes in apparent elastic mod- 0.01 ml/min through the bone explants.10 Individual ulus) under dynamic deformational loading. bone core explants with seeded osteoblasts were placed into perfusion chambers after 24 h of static culture. To verify the efficacy of the perfusion system on osteocyte viability, three experimental groups were compared RESULTS AND DISCUSSION (n = 4): (1) initial cores after osteoblast seeding, (2) 2-week static culture, and (3) 2-week culture in the Establishment of Trabecular Bone Explant medium perfusion system. Live/dead stain and fluo- Co-Culture Model rescence microscopy showed that most of the osteo- To establish the trabecular bone explant co-culture cytes in the static culture group died after two weeks model of in situ osteocytes and the seeded primary (Fig. 3a). On the contrary, the osteocytes in the osteoblasts, bone marrow and all cells on the bone trabecular bone cores in the perfusion group survived surface must be removed for a subsequent controlled with a comparable viable osteocytes per bone area seeding of osteoblasts. A PBS rinse-trypsinization- (OCY/BA) value to that of bone cores at initial day rinse technique was developed to facilitate the removal zero state (Figs. 3b and 3c).
Recommended publications
  • Osteocyte Dysfunction Promotes Osteoarthritis Through MMP13-Dependent Suppression of Subchondral Bone Homeostasis
    Bone Research www.nature.com/boneres ARTICLE OPEN Osteocyte dysfunction promotes osteoarthritis through MMP13-dependent suppression of subchondral bone homeostasis Courtney M. Mazur1,2, Jonathon J. Woo 1, Cristal S. Yee1, Aaron J. Fields 1, Claire Acevedo1,3, Karsyn N. Bailey1,2, Serra Kaya1, Tristan W. Fowler1, Jeffrey C. Lotz1,2, Alexis Dang1,4, Alfred C. Kuo1,4, Thomas P. Vail1 and Tamara Alliston1,2 Osteoarthritis (OA), long considered a primary disorder of articular cartilage, is commonly associated with subchondral bone sclerosis. However, the cellular mechanisms responsible for changes to subchondral bone in OA, and the extent to which these changes are drivers of or a secondary reaction to cartilage degeneration, remain unclear. In knee joints from human patients with end-stage OA, we found evidence of profound defects in osteocyte function. Suppression of osteocyte perilacunar/canalicular remodeling (PLR) was most severe in the medial compartment of OA subchondral bone, with lower protease expression, diminished canalicular networks, and disorganized and hypermineralized extracellular matrix. As a step toward evaluating the causality of PLR suppression in OA, we ablated the PLR enzyme MMP13 in osteocytes while leaving chondrocytic MMP13 intact, using Cre recombinase driven by the 9.6-kb DMP1 promoter. Not only did osteocytic MMP13 deficiency suppress PLR in cortical and subchondral bone, but it also compromised cartilage. Even in the absence of injury, osteocytic MMP13 deficiency was sufficient to reduce cartilage proteoglycan content, change chondrocyte production of collagen II, aggrecan, and MMP13, and increase the 1234567890();,: incidence of cartilage lesions, consistent with early OA. Thus, in humans and mice, defects in PLR coincide with cartilage defects.
    [Show full text]
  • Osteocyte Differentiation and the Formation of an Interconnected Cellular Network in Vitro
    EuropeanMJ Mc Garrigle Cells and et alMaterials. Vol. 31 2016 (pages 323-340) DOI: 10.22203/eCM.v031a21Formation of an interconnected osteocyte ISSN 1473-2262 network OSTEOCYTE DIFFERENTIATION AND THE FORMATION OF AN INTERCONNECTED CELLULAR NETWORK IN VITRO M.J. Mc Garrigle1, C.A. Mullen1, M.G. Haugh1, M.C. Voisin1 and L.M. McNamara1* 1 Centre for Biomechanics Research (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway Abstract Introduction Extracellular matrix (ECM) stiffness and cell density can In bone, osteocyte cells form a complex three-dimensional regulate osteoblast differentiation in two dimensional (3D) communication network that plays a vital role in environments. However, it is not yet known how maintaining bone health by monitoring physical cues osteoblast-osteocyte differentiation is regulated within a arising during load-bearing activity and directing the 3D ECM environment, akin to that existing in vivo. In this activity of osteoblasts and osteoclasts to initiate bone study we test the hypothesis that osteocyte differentiation is formation and resorption (Burger and Klein-Nulend, 1999). regulated by a 3D cell environment, ECM stiffness and cell Osteocytes are formed when cuboidal-like osteoblasts density. We encapsulated MC3T3-E1 pre-osteoblastic cells become embedded within soft secreted osteoid and start to at varied cell densities (0.25, 1 and 2 × 106 cells/mL) within change morphologically to a dendritic shape characteristic microbial transglutaminase (mtgase) gelatin hydrogels of an osteocyte. This transition is accompanied by a loss of low (0.58 kPa) and high (1.47 kPa) matrix stiffnesses. of cell volume (reduced organelle content) (Knothe Tate Cellular morphology was characterised from phalloidin- et al., 2004; Palumbo et al., 2004) and an increase in the FITC and 4’,6-diamidino-2-phenylindole (DAPI) dilactate formation and elongation of thin cytoplasmic projections staining.
    [Show full text]
  • Cartilage & Bone
    Cartilage & bone Red: important. Black: in male|female slides. Gray: notes|extra. Editing File ➢ OBJECTIVES • describe the microscopic structure, distribution and growth of the different types of Cartilage • describe the microscopic structure, distribution and growth of the different types of Bone Histology team 437 | MSK block | Lecture one ➢ REMEMBER from last block (connective tissue lecture) Components of connective tissue Fibers Cells Collagenous, Matrix difference elastic & the intercellular substance, in which types reticular cells and fibers are embedded. Rigid (rubbery, Hard (solid) Fluid (liquid) Soft firm) “Cartilage” “Bone” “Blood” “C.T Proper” Histology team 437 | MSK block | Lecture one CARTILAGE “Chondro- = relating to cartilage” BONE “Osteo- = relating to bone” o Its specialized type of connective tissue with a rigid o Its specialized type of connective tissue with a hard matrix (ﻻ يكسر بسهولة) matrix o Its usually nonvascular (avascular = lack of blood o Types: vessels) 1) Compact bone 2) Spongy bone o Its poor nerve supply o Components: 1) Bone cells: o All cartilage contain collagen fiber type II • Osteogenic cells • Osteoblasts o Types: • Osteocytes 1) Hyaline cartilage (main type) • Osteoclasts 2) Elastic cartilage 2) Bone Matrix (calcified osteoid tissue): 3) Fibrocartilage • hard because it is calcified (Calcium salts) • It contains collagen fibers type I • It forms bone lamellae and trabeculae 3) Periosteum 4) Endosteum o Functions: 1) body support 2) protection of vital organs as brain & bone marrow 3) calcium
    [Show full text]
  • The Osteocyte: from “Prisoner” to “Orchestrator”
    Journal of Functional Morphology and Kinesiology Review The Osteocyte: From “Prisoner” to “Orchestrator” Carla Palumbo * and Marzia Ferretti Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; [email protected] * Correspondence: [email protected] Abstract: Osteocytes are the most abundant bone cells, entrapped inside the mineralized bone matrix. They derive from osteoblasts through a complex series of morpho-functional modifications; such modifications not only concern the cell shape (from prismatic to dendritic) and location (along the vascular bone surfaces or enclosed inside the lacuno-canalicular cavities, respectively) but also their role in bone processes (secretion/mineralization of preosseous matrix and/or regulation of bone remodeling). Osteocytes are connected with each other by means of different types of junctions, among which the gap junctions enable osteocytes inside the matrix to act in a neuronal-like manner, as a functional syncytium together with the cells placed on the vascular bone surfaces (osteoblasts or bone lining cells), the stromal cells and the endothelial cells, i.e., the bone basic cellular system (BBCS). Within the BBCS, osteocytes can communicate in two ways: by means of volume transmission and wiring transmission, depending on the type of signals (metabolic or mechanical, respectively) received and/or to be forwarded. The capability of osteocytes in maintaining skeletal and mineral homeostasis is due to the fact that it acts as a mechano-sensor, able to transduce mechanical strains into biological signals and to trigger/modulate the bone remodeling, also because of the relevant role of sclerostin secreted by osteocytes, thus regulating different bone cell signaling pathways.
    [Show full text]
  • Insulin-Like Growth Factors: Actions on the Skeleton
    61 1 Journal of Molecular S Yakar et al. IGFs and bone 61:1 T115–T137 Endocrinology THEMATIC REVIEW 40 YEARS OF IGF1 Insulin-like growth factors: actions on the skeleton Shoshana Yakar1, Haim Werner2 and Clifford J Rosen3 1David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA 2Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel 3Maine Medical Center Research Institute, Scarborough, Maine, USA Correspondence should be addressed to S Yakar: [email protected] This paper forms part of a special section on 40 years of IGF1. The guest editors for this section were Derek LeRoith and Emily Gallagher. Abstract The discovery of the growth hormone (GH)-mediated somatic factors (somatomedins), Key Words insulin-like growth factor (IGF)-I and -II, has elicited an enormous interest primarily f insulin-like among endocrinologists who study growth and metabolism. The advancement of f osteoblast molecular endocrinology over the past four decades enables investigators to re-examine f osteoclast and refine the established somatomedin hypothesis. Specifically, gene deletions, f osteocyte transgene overexpression or more recently, cell-specific gene-ablations, have enabled f chondrocyte investigators to study the effects of the Igf1 and Igf2 genes in temporal and spatial manners. The GH/IGF axis, acting in an endocrine and autocrine/paracrine fashion, is the major axis controlling skeletal growth. Studies in rodents have clearly shown that IGFs regulate bone length of the appendicular skeleton evidenced by changes in chondrocytes of the proliferative and hypertrophic zones of the growth plate.
    [Show full text]
  • Variation in Cortical Osteocyte Lacunar Density and Distribution: Implications for Bone Quality Assessment
    Variation in Cortical Osteocyte Lacunar Density and Distribution: Implications for Bone Quality Assessment DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Randee L. Hunter, B.S., M.A. Graduate Program in Anthropology The Ohio State University 2015 Dissertation Committee: Clark Spencer Larsen, Advisor Samuel D. Stout Paul W. Sciulli Amanda M. Agnew Copyrighted by Randee Linn Hunter 2015 Abstract The purpose of this study is to investigate variation in cortical bone osteocyte cell populations using their lacunae as a proxy. The osteocytes and their lacunocanalicular network have been identified as the regulator of bone quality and function by exerting extensive influence over metabolic processes, mechanical adaptation, and mineral homeostasis. Recent research has shown that osteocyte malfunction and apoptosis leads to a decrease in bone quality and increase in bone fragility. However, these results are limited to mainly trabecular bone in clinical studies following biopsy or prosthetic replacement in osteoporotic patients and animal studies in which experimental data have been collected. This study is the first to analyze cortical bone variation in osteocyte lacunar density from multiple skeletal sites to establish regional and systemic age and sex related trends. Bone samples were recovered from 30 modern cadaveric individuals (15 males and 15 females) ranging from 49 to 100 years old. Three anatomical sites were utilized for this study: the midshaft femur which is frequently used in anthropological studies of cross-section geometry, age estimation and behavioral interpretations as it is a major load bearing bone; the distal third of the diaphyseal radius as it represents a clinically relevant site for fractures associated with falls especially in older adults; and the midshaft of the 6th rib as this is frequently held as a systemic control.
    [Show full text]
  • Aandp1ch07lecture.Pdf
    Chapter 07 Lecture Outline See separate PowerPoint slides for all figures and tables pre- inserted into PowerPoint without notes. Copyright © McGraw-Hill Education. Permission required for reproduction or display. 1 Introduction • In this chapter we will cover: – Bone tissue composition – How bone functions, develops, and grows – How bone metabolism is regulated and some of its disorders 7-2 Introduction • Bones and teeth are the most durable remains of a once-living body • Living skeleton is made of dynamic tissues, full of cells, permeated with nerves and blood vessels • Continually remodels itself and interacts with other organ systems of the body • Osteology is the study of bone 7-3 Tissues and Organs of the Skeletal System • Expected Learning Outcomes – Name the tissues and organs that compose the skeletal system. – State several functions of the skeletal system. – Distinguish between bones as a tissue and as an organ. – Describe the four types of bones classified by shape. – Describe the general features of a long bone and a flat bone. 7-4 Tissues and Organs of the Skeletal System • Skeletal system—composed of bones, cartilages, and ligaments – Cartilage—forerunner of most bones • Covers many joint surfaces of mature bone – Ligaments—hold bones together at joints – Tendons—attach muscle to bone 7-5 Functions of the Skeleton • Support—limb bones and vertebrae support body; jaw bones support teeth; some bones support viscera • Protection—of brain, spinal cord, heart, lungs, and more • Movement—limb movements, breathing, and other
    [Show full text]
  • PTH Decreases in Vitro Human Cartilage Regeneration Without Affecting Hypertrophic
    bioRxiv preprint doi: https://doi.org/10.1101/560771; this version posted February 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 PTH decreases in vitro human cartilage regeneration without affecting hypertrophic 2 differentiation 3 4 Marijn Rutgers1, Frances Bach2, Luciënne Vonk1, Mattie van Rijen1, Vanessa Akrum1, 5 Antonette van Boxtel1, Wouter Dhert1,2, Laura Creemers1 6 7 1 Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands 8 2 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, 9 Utrecht University, Utrecht, the Netherlands 10 11 Address for correspondence 12 Dr. F.C.Bach 13 Utrecht University, Faculty of Veterinary Medicine, 14 Yalelaan 104, 3584 CM Utrecht, the Netherlands 15 [email protected], +31302537563 16 1 bioRxiv preprint doi: https://doi.org/10.1101/560771; this version posted February 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 18 Abstract 19 Regenerated cartilage formed after Autologous Chondrocyte Implantation may be of 20 suboptimal quality due to postulated hypertrophic changes. Parathyroid hormone-related 21 peptide, containing the parathyroid hormone sequence (PTHrP 1-34), enhances cartilage 22 growth during development and inhibits hypertrophic differentiation of mesenchymal stromal 23 cells (MSCs) and growth plate chondrocytes.
    [Show full text]
  • Osteocyte RANKL Is Required for Cortical Bone Loss with Age and Is Induced by Senescence
    Osteocyte RANKL is required for cortical bone loss with age and is induced by senescence Ha-Neui Kim, … , Maria Almeida, Charles A. O'Brien JCI Insight. 2020. https://doi.org/10.1172/jci.insight.138815. Research In-Press Preview Bone biology Graphical abstract Find the latest version: https://jci.me/138815/pdf Osteocyte RANKL is required for cortical bone loss with age and is induced by senescence Ha-Neui Kim1,2,#, Jinhu Xiong1,3,#, Ryan S. Macleod1,2, Srividhya Iyer1,3, Yuko Fujiwara1,2, Keisha M. Cawley1,2, Li Han2, Yonghan He4, Jeff D. Thostenson1,5, Elisabeth Ferreira1,2, Robert L. Jilka1,2, Daohong Zhou4, Maria Almeida1,2,3,*, and Charles A. O’Brien1,2,3,6* 1Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA. 2Division of Endocrinology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA. 3Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA. 4Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, USA. 5Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA. 6Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA #Contributed equally to this paper. Srividhya Iyer current affiliation: Department of Orthopedics, University of Colorado School of Medicine, Aurora, Colorado. *Correspondence to: Maria Almeida, Ph.D., 4301 W. Markham st. #587, Little Rock, AR 72205-7199, USA. Phone: 501-686-7856; E-mail: [email protected] and Charles O’Brien, Ph.D., 4301 W. Markham st. #587, Little Rock, AR 72205-7199, USA.
    [Show full text]
  • A Systematic Review of Surgical Methods to Restore Articular Cartilage in the Hip
    74.BJRBJR0010.1302/2046-3758.74.BJR-2017-0331 research-article2018 Follow us @BoneJointRes Freely available online OPEN ACCESS BJR SYSTEMATIC REVIEW A systematic review of surgical methods to restore articular cartilage in the hip W. E. Hotham, This systematic review examines the current literature regarding surgical techniques for A. Malviya restoring articular cartilage in the hip, from the older microfracture techniques involving perforation to the subchondral bone, to adaptations of this technique using nanofractures Newcastle University, and scaffolds. This review discusses the autologous and allograft transfer systems and the Newcastle Upon Tyne, autologous matrix-induced chondrogenesis (AMIC) technique, as well as a summary of the United Kingdom previously discussed techniques, which could become common practice for restoring articu- lar cartilage, thus reducing the need for total hip arthroplasty. Using the British Medical Jour- nal Grading of Recommendations, Assessment, Development and Evaluation (BMJ GRADE) system and Grade system. Comparison of the studies discussed shows that microfracture has the greatest quantity and quality of research, whereas the newer AMIC technique requires more research, but shows promise. Cite this article: Bone Joint Res 2018;7:336–342. Keywords: Hip, Cartilage regeneration, Surgical Article focus different methods especially in regards to This article focuses on the different surgi- microfracture. The longevity of the studies cal methods available to restore articular is of benefit as they allow us to see long cartilage in hips. term benefits of the techniques. This article shows what method appears There are some studies with short follow to be best for restoring articular cartilage up periods and small cohort sizes.
    [Show full text]
  • Bone Anatomy and Histology What Is Bone? What Is Cartilage?
    Bone Anatomy and Histology by Luis Filgueira What is bone? Connective Tissue Cells <> Extracellular Matrix Bone forming cells <> Bone resorbing cells Organic matrix <> Inorganic matrix Collagen <>Calcium apatite Bone Tissue <> Bone Marrow Function(s)? What is cartilage? Connective Tissue Cells <> Extracellular Matrix Cells = Chondrocytes Bone <> Cartilage YES Calcified Matrix NO YES Blood vessels/nerves NO YES Repair/Remodelling NO 1 Bone = live tissue with high turnover = specialised connective tissue Principles of connective tissue Types of connective tissue 1. Embryonic connective tissue 2. Connective tissue proper 3. Fat tissue 4. Cartilage 5. Bone Cells <> Extracellular matrix Principles of connective tissue Cells <> Extracellular matrix Cells 1. Connective tissue proper <> Fibroblasts/fibrocytes 2. Fat tissue <> Adipocytes 3. Cartilage <> Chondrocytes 4. Bone <> Osteoblasts/osteocytes Extracellular matrix produced and secreted by the cells 1. Ground substance 2. Fibres 3. Minerals 4. Water Bone remodelling Continuous adaptation of bone depending on Age Mechanics Hormones Nutrition Formation of new bone tissue Resorption of old bone tissue Osteoblasts Osteoclasts 2 Addition/growth of bone = appositional growth Osteoprogenitor cells are recruited onto the bone surface Osteoblasts Arrange in a row on the surface of bone Produce new matrix = osteoid Enclose themselves inside the matrix Osteoblasts become osteocytes New matrix is calcified Differentiation and function of osteoclasts is under tight control of osteoblasts Teitelbaum and
    [Show full text]
  • Bone Disease in CKD: a Focus on Osteoporosis Diagnosis and Management
    In Practice Bone Disease in CKD: A Focus on Osteoporosis Diagnosis and Management Paul D. Miller, MD1 Osteoporosis is defined as a condition of impairment in bone strength due to low bone mineral density and poor bone quality and predisposes individuals to an increased risk of fractures. Osteoporosis may coexist with chronic kidney disease2mineral and bone disorder (CKD-MBD) and osteoporotic fractures occur in all stages of CKD. Management of osteoporosis in CKD should consider the pathophysiology of both disorders. Diag- nosis and management of osteoporosis in patients with stages 1-3 CKD and patients without CKD are similar, but diagnosis and management decisions differ greatly once patients have stages 4-5 CKD. Discriminating between osteoporosis and CKD-MBD is best accomplished with quantitative bone histomorphometry. Biochemical markers, especially intact parathyroid hormone and bone-specific alkaline phosphatase, also may be helpful. When the diagnosis of osteoporosis is established, management in stages 4-5 CKD may include antiresorptive or anabolic agents, though evidence for efficacy is marginal in advanced CKD. Am J Kidney Dis. -(-):---. ª 2014 by the National Kidney Foundation, Inc. INDEX WORDS: Chronic kidney disease2mineral and bone disorder (CKD-MBD); osteoporosis; renal failure; bone histomorphometry; parathyroid hormone (PTH); bone-specific alkaline phosphatase. CASE PRESENTATION BMD and poor bone quality (see Box 1 for a glossary of key terms).1 Because bone quality cannot be A 54-year-old white man with end-stage renal disease fi (ESRD) on peritoneal dialysis therapy for 5 years experienced a measured in clinical practice, the operational de ni- right hip fracture from a fall at home.
    [Show full text]