(12) Patent Application Publication (10) Pub. No.: US 2012/0028333 A1 Piatesi Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2012/0028333 A1 Piatesi Et Al US 20120028333A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0028333 A1 Piatesi et al. (43) Pub. Date: Feb. 2, 2012 (54) USE OF ENZYMES TO REDUCE ALDEHYDES (30) Foreign Application Priority Data FROMALDEHYDE-CONTAINING PRODUCTS Apr. 7, 2009 (EP) .................................. O9157522.5 Publication Classification (76) Inventors: Andrea Piatesi, Mannheim (DE); (51) Int. Cl. Tilo Habicher, Speyer (DE); CI2N 9/02 (2006.01) Michael Bischel, Worms (DE); CI2N I/00 (2006.01) Li-Wen Wang, Mannheim (DE): CI2N 15/63 (2006.01) Jirgen Reichert, Limburgerhof A62D 3/02 (2007.01) (DE); Rainer Packe-Wirth, C7H 2L/04 (2006.01) Trostberg (DE); Kai-Uwe (52) U.S. Cl. ... 435/189: 435/262:536/23.2:435/320.1; Baldenius, Heidelberg (DE); Erich 435/243 Kromm, Weisenheim am Sand (57) ABSTRACT (DE); Stefan Häfner, Speyer (DE); Carsten Schwalb. Mannheim (DE); The invention relates to the use of an enzyme preparation Hans Wolfgang Höffken, which catalyzes the degradation of formaldehyde for reduc Ludwigshafen (DE) ing the formaldehyde content in a formaldehyde-containing formulation. In a preferred embodiment, the enzyme prepa ration contains a formaldehyde dismutase from a Pseudomo (21) Appl. No.: 13/262,662 nas putida Strain. Further, the invention refers to a process for reducing the formaldehyde content in cross-linking agents for textile finishing or in polymer dispersions used, e.g. in con (22) PCT Filed: Mar. 31, 2010 struction chemistry. Further the invention relates to the use of an enzyme preparation which catalyzes the degradation of (86). PCT No.: PCT/EP1OAS4284 aldehydes for reducing the formaldehyde content in an alde hyde-containing formulation. Furthermore, the invention S371 (c)(1), relates to a novel variant of the formaldehyde dismutase from (2), (4) Date: Oct. 3, 2011 Pseudomonas putida. Patent Application Publication Feb. 2, 2012 Sheet 1 of 9 US 2012/0028333 A1 Figure 1 (A) (B) (C) Patent Application Publication Feb. 2, 2012 Sheet 2 of 9 US 2012/0028333 A1 Figure 2 00:00 00:30 01:00 01:30 02:00 02:30 reaction time h) -4-301 FDM aSax. F93A assy F93A 301 Patent Application Publication Feb. 2, 2012 Sheet 3 of 9 US 2012/0028333 A1 Figure 3 Formaldehyde R 1750 1500 250 1g0l . Formic acid 750 - s r 500- s | Methanol is s l 1i t ( s', \\ s, Al A is: N. - - Silf Sease e- ses--4 Se= 1, s 1. 1. -- 2 54 R &OOO- f - Acetaldehyde 15'g 7000 - | \ 8O co 5) (OC) 4000 3000 2000 1R a 2 1 3. M f retention time (min) Patent Application Publication Feb. 2, 2012 Sheet 4 of 9 US 2012/0028333 A1 Figure 4 140 120 100 SS, e 80 2 60 8 40 20 O temperature (C) Patent Application Publication Feb. 2, 2012 Sheet 5 of 9 US 2012/0028333 A1 Figure 5 8 FDM 301 25 35 45 55 65 temperature (C) Patent Application Publication Feb. 2, 2012 Sheet 6 of 9 US 2012/0028333 A1 Figure 6 Patent Application Publication Feb. 2, 2012 Sheet 7 of 9 US 2012/0028333 A1 Figure 7 Patent Application Publication Feb. 2, 2012 Sheet 8 of 9 US 2012/0028333 A1 Figure 8 Patent Application Publication Feb. 2, 2012 Sheet 9 of 9 US 2012/0028333 A1 Figure 9 US 2012/0028333 A1 Feb. 2, 2012 USE OF ENZYMES TO REDUCE ALDEHYDES finishing of woven and knitted fabrics composed of cotton, FROMALDEHYDE-CONTAINING other cellulosic fibres, and their blends with synthetic fibres. PRODUCTS 0006 Initially, resin-finishing agents were developed to improve the shrinkage of Viscose staple fabrics. These com FIELD OF THE INVENTION pounds were usually derived from formaldehyde and urea. In order to improve the competitiveness of cotton on the textile 0001. The present invention relates to the enzymatic market, heterocyclic cross-linking reagents based on formal removal of formaldehyde from formulations containing dehyde, urea and glyoxal have been developed and are com formaldehyde and from products treated with said formula monly used for easy-care and wrinkle-free finishing. Due to tions. the Suspected harm in humans, FA levels in products and industrial processes have to be kept as low as possible. BACKGROUND OF THE INVENTION 0007. The prior art discloses various technologies for the 0002 Formaldehyde (for the purposes of convenience purpose of removing FA, e.g. air-borne when released from hereinafter often referred to as “FA) is an important chemi products or directly from well-known and widely used resins cal used widely by industry to manufacture building materials as introduced supra. U.S. Pat. No. 5,352.274 discloses air and numerous household products. FA is used for example for filtration utilizing a plurality of corrugated base sheets which crease-resistant finishing in the textile industry, for the pro are stacked or nestled and which have entrapped carbon dust duction and coating of chipboards in the wood processing for adsorption of impurities such as FA, acetaldehyde, and industry, and for the production of synthetic resins like phe acrolein. This technology provides a method to adsorb FA nolic plastics or aminoplasts in the chemical industry. Due to molecules physically but not degradation by a chemical or its high volatility FA is released into the air during the pro biochemical reaction. U.S. Pat. No. 5,830,414 discloses the duction processes and is considered as an important impact treatment of carbon fibers with an active small molecule such on health and environment. as a strong acid, strong base, or strong oxidizing agent. These 0003 FA has four basic uses: as an intermediate in the chemicals can only be used to treat fibers having high chemi production of resins; as intermediate in the production of cal resistances such as activated carbon fibers. Further, fibers industrial chemicals; as a biocide; and as a component in the thus treated are potentially hazardous to handle. The use of formulation of end-use consumer items. The manufacture of formaldehyde degrading enzymes in air filters is described in resins accounts for about 65 percent of total consumption. JP2OO1340436. About one-third is used in the synthesis of high volume 0008. With respect to textile industry and building mate chemical derivatives, including pentaerythritol, hexamethyl rials, FA reducing agents should not adversely affect fabric enetetramine, and butanediol. Two percent is used in textile properties such as hand, shrinkage, strength retention and treating and Small amounts of FA are present as preservatives shade or whiteness or the mechanical properties of the par or bioicides in consumer and industrial products, such as ticleboard. And, of course, it must be economical to use in cosmetics, shampoos and glues. The largest amounts of FA production and efficient at reasonable levels. In the textile are used for producing condensates (i.e. resins) with urea, industry, compounds having active methylene groups have melamine, naphthaline Sulfonate, and phenol and, to a small been used as FA reducing agents to reduce the amount of FA extent, with their derivatives. The main part of these resins is released from durable press-treated fabrics as described in used for the production of adhesives and impregnating resins, Textile Chemist and Colorist, Vol. 16, No. 12, p. 33, Decem which are employed for manufacturing particle boards, ply ber 1984 (published by the American Association of Textile wood, and furniture. These condensates are also employed for Chemists and Colorists). FA reducing agents containing the production of curable molding materials; as raw materials active methylene hydrogens also may be added to coating for Surface coating and as controlled-release nitrogen fertil compositions containing urea/formaldehyde or melamine? izers. They are used as auxiliaries in the textile, leather, rub formaldehyde resin to reduce formaldehyde concentration ber, and cement industries. Further uses include binders for (e.g. described in U.S. Pat. No. 5,795,933). Also the addition foundry sand, rockwool and glasswool mats in insulating of urea and its derivatives is known to Scavenge formalde materials, abrasive paper, and brake linings. Very small hyde. amounts of urea-FA condensates are used in the manufacture 0009. The prior art has not disclosed FA reducing agents of foamed resins that have applications in the mining sector which are effective in reducing released FA to the low levels and in the insulation of buildings and transportation vehicles. which are currently desired without detrimental effects on the 0004 Some products based on FA contain unreacted FA in properties of the materials to be treated with said resins. excess which may be released from the product or released Currently, the FA reducing agents most widely used in through Subsequent hydrolysis. One example is urea-FA durable press finishing compositions are polyhydric alcohols, resin. Urea-FA resin is a generic name that actually represents Such as diethylene glycol and Sorbitol and in the manufacture an entire class of related formulations. About 60 percent of of particleboard nitrogen containing compounds such as urea, urea-FA resin production is consumed by particleboard and melamine, diazine, triazine and amine compounds (U.S. Pat. plywood manufacturing, where the resin is used as glue. No. 4,559,097). Compounds such as these, however, are not Urea-FA resins are also used in decorative laminates, textiles, sufficiently effective in reducing FA levels to produce the low paper, and foundry sand molds. levels which are currently desired. Moreover, they only bind 0005 Finally, FA resins are used to treat textiles to impart FA and do not catalyze its degradation. Also some formalde wrinkle-resistance to clothing. Resin or chemical finishing is hyde scavengers like urea slow down reactivity of textile in most cases the last stage of modern textile production. The cross-linkers, reducing their efficiency.
Recommended publications
  • Soluble Carbohydrates in Two Buffalograss Cultivars with Contrasting Freezing Tolerance
    J. AMER. SOC. HORT. SCI. 127(1):45–49. 2002. Soluble Carbohydrates in Two Buffalograss Cultivars with Contrasting Freezing Tolerance S. Ball, Y.L. Qian,1 and C. Stushnoff Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523-1173 DDITIONAL INDEX WORDS A . Buchloe dactyloides, cold hardiness, fructose, glucose, raffinose, sucrose, LT50 ABSTRACT. No information is available regarding endogenous soluble carbohydrate accumulation in buffalograss [Buchloe dactyloides (Nutt.) Engelm.] during cold acclimation. The objective of this study was to determine composition of soluble carbohydrates and their relationship to freezing tolerance in two buffalograss cultivars, 609 and NE 91-118, with different freezing tolerances. The experiment was conducted under natural cold acclimation conditions in two consecutive years in Fort Collins, Colo. Based upon average LT50 (subfreezing temperature resulting in 50% mortality) from seven sampling intervals in 1998–99 and six sampling intervals in 1999–2000, ‘NE 91-118’ survived 4.5 °C and 4.9 °C colder temperatures than ‘609’, during the 1998-1999 and 1999–2000 winter seasons, respectively. Glucose, fructose, sucrose, and raffinose were found in both cultivars in both years, and were generally higher in acclimated than pre- and post-acclimated stolons. Stachyose was not present in sufficient quantities for quantification. Cultivar NE 91-118 contained 63% to 77% more glucose and 41% to 51% more raffinose than ‘609’ in the 1998–99 and 1999–2000 winter seasons, respectively. In 1999–2000, fructose content in ‘NE 91-118’ was significantly higher than that of ‘609’. A significant negative correlation was found between LT50 vs. all carbohydrates in 1999–2000, and LT50 vs.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0089535 A1 Yamashiro Et Al
    US 2013 0089535A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0089535 A1 Yamashiro et al. (43) Pub. Date: Apr. 11, 2013 (54) AGENT FOR REDUCING ACETALDEHYDE Publication Classification NORAL CAVITY (51) Int. Cl. (75) Inventors: Kan Yamashiro, Kakamigahara-shi (JP); A68/66 (2006.01) Takahumi Koyama, Kakamigahara-shi A638/51 (2006.01) (JP) A61O 11/00 (2006.01) A638/44 (2006.01) Assignee: AMANOENZYME INC., Nagoya-shi (52) U.S. Cl. (73) CPC. A61K 8/66 (2013.01); A61K 38/44 (2013.01); (JP) A61 K38/51 (2013.01); A61O II/00 (2013.01) (21) Appl. No.: 13/703,451 USPC .......... 424/94.4; 424/94.5; 435/191: 435/232 (22) PCT Fled: Jun. 7, 2011 (57) ABSTRACT Disclosed herein is a novel enzymatic agent effective in (86) PCT NO.: PCT/UP2011/062991 reducing acetaldehyde in the oral cavity. It has been found S371 (c)(1), that an aldehyde dehydrogenase derived from a microorgan (2), (4) Date: Dec. 11, 2012 ism belonging to the genus Saccharomyces and a threonine aldolase derived from Escherichia coli are effective in reduc (30) Foreign Application Priority Data ing low concentrations of acetaldehyde. Therefore, an agent for reducing acetaldehyde in the oral cavity is provided, Jun. 19, 2010 (JP) ................................. 2010-140O26 which contains these enzymes as active ingredients. Patent Application Publication Apr. 11, 2013 Sheet 1 of 2 US 2013/0089535 A1 FIG 1) 10.5 1 0 9.9.5 8. 5 CONTROL TA AD (BSA) ENZYME Patent Application Publication Apr. 11, 2013 Sheet 2 of 2 US 2013/0089535 A1 FIG 2) 110 the CONTROL (BSA) 100 354.
    [Show full text]
  • GRAS Notice 896, Alpha-Galacto-Oligosaccharides
    GRAS Notice (GRN) No. 896 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory NOV 1 8 2019 OFFICE OF FOOD ADDITI\/t: SAFETY GENERALLY RECOGNIZED AS SAFE (GRAS) NOTIFICATION FOR ALPHA-GALACTO­ OLIGOSACCHARIDES (ALPHAGOS®) IN CONVENTIONAL FOODS AND BEVERAGES AND NON-EXEMPT INFANT FORMULAS Prepared for: Olygose Pare Technologique des Rives de l'Oise BP 50149, F-60201 Compiegne Cedex France Prepared by: Spherix Consulting Group, Inc. 11821 Parklawn Drive, Suite 310 Rockville, MD 20852 USA November 13, 2019 GRAS Notification for the Use of alpha-GOS November 13, 2019 Prepared for Olygose TABLE OF CONTENTS I. SIGNED STATEMENT OF THE CONCLUSION OF GENERALLY RECOGNIZED AS SAFE (GRAS) AND CERTIFICATION OF CONFORMITY TO 21 CFR §170.205-170.260 .... 1 A. SUBMISSION OF GRAS NOTICE .................................................................................1 B. NAME AND ADDRESS OF THE SPONSOR ................................................................1 C. COMMON OR USUAL NAME .......................................................................................1 D. TRADE SECRET OR CONFIDENTIAL INFORMATION ............................................1 E. INTENDED USE ..............................................................................................................1 F. BASIS FOR GRAS DETERMINATION .........................................................................1 G. PREMARKET APPROVAL ............................................................................................3 H. AVAILABILITY OF
    [Show full text]
  • Effect of Intake of Food Hydrocolloids of Bacterial Origin on the Glycemic Response in Humans: Systematic Review and Narrative Synthesis
    nutrients Review Effect of Intake of Food Hydrocolloids of Bacterial Origin on the Glycemic Response in Humans: Systematic Review and Narrative Synthesis Norah A. Alshammari 1,2, Moira A. Taylor 3, Rebecca Stevenson 4 , Ourania Gouseti 5, Jaber Alyami 6 , Syahrizal Muttakin 7,8, Serafim Bakalis 5, Alison Lovegrove 9, Guruprasad P. Aithal 2 and Luca Marciani 2,* 1 Department of Clinical Nutrition, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; [email protected] 2 Translational Medical Sciences and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham NG7 2UH, UK; [email protected] 3 Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham NG7 2UH, UK; [email protected] 4 Precision Imaging Beacon, University of Nottingham, Nottingham NG7 2UH, UK; [email protected] 5 Department of Food Science, University of Copenhagen, DK-1958 Copenhagen, Denmark; [email protected] (O.G.); [email protected] (S.B.) 6 Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia; [email protected] 7 Indonesian Agency for Agricultural Research and Development, Jakarta 12540, Indonesia; Citation: Alshammari, N.A.; [email protected] Taylor, M.A.; Stevenson, R.; 8 School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK Gouseti, O.; Alyami, J.; Muttakin, S.; 9 Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; [email protected] Bakalis, S.; Lovegrove, A.; Aithal, G.P.; * Correspondence: [email protected]; Tel.: +44-115-823-1248 Marciani, L.
    [Show full text]
  • Differential Effects of the Poly (ADP-Ribose)Polymerase (PARP
    British Journal of Cancer (2001) 84(1), 106–112 © 2001 Cancer Research Campaign doi: 10.1054/ bjoc.2000.1555, available online at http://www.idealibrary.com on http://www.bjcancer.com Differential effects of the poly (ADP-ribose) polymerase (PARP) inhibitor NU1025 on topoisomerase I and II inhibitor cytotoxicity in L1210 cells in vitro KJ Bowman*, DR Newell, AH Calvert and NJ Curtin Cancer Research Unit, University of Newcastle upon Tyne Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK Summary The potent novel poly(ADP-ribose) polymerase (PARP) inhibitor, NU1025, enhances the cytotoxicity of DNA-methylating agents and ionizing radiation by inhibiting DNA repair. We report here an investigation of the role of PARP in the cellular responses to inhibitors of topoisomerase I and II using NU1025. The cytotoxicity of the topoisomerase I inhibitor, camptothecin, was increased 2.6-fold in L1210 cells by co-incubation with NU1025. Camptothecin-induced DNA strand breaks were also increased 2.5-fold by NU1025 and exposure to camptothecin-activated PARP. In contrast, NU1025 did not increase the DNA strand breakage or cytotoxicity caused by the topoisomerase II inhibitor etoposide. Exposure to etoposide did not activate PARP even at concentrations that caused significant levels of apoptosis. Taken together, these data suggest that potentiation of camptothecin cytotoxicity by NU1025 is a direct result of increased DNA strand breakage, and that activation of PARP by camptothecin-induced DNA damage contributes to its repair and consequently cell survival. However, in L1210 cells at least, it would appear that PARP is not involved in the cellular response to etoposide-mediated DNA damage.
    [Show full text]
  • Selection of Cryoprotectant in Lyophilization of Progesterone-Loaded Stearic Acid Solid Lipid Nanoparticles
    pharmaceutics Article Selection of Cryoprotectant in Lyophilization of Progesterone-Loaded Stearic Acid Solid Lipid Nanoparticles Timothy M. Amis, Jwala Renukuntla, Pradeep Kumar Bolla and Bradley A. Clark * Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA; [email protected] (T.M.A.); [email protected] (J.R.); [email protected] (P.K.B.) * Correspondence: [email protected]; Tel.: +1-336-841-9665 Received: 18 August 2020; Accepted: 16 September 2020; Published: 19 September 2020 Abstract: Cryoprotectants are often required in lyophilization to reduce or eliminate agglomeration of solute or suspended materials. The aim of this study was to select a cryoprotecting agent and optimize its concentration in a solid lipid nanoparticle formulation. Progesterone-loaded stearic acid solid lipid nanoparticles (SA-P SLNs) were prepared by hot homogenization with high speed mixing and sonication. The stearic acid content was 4.6% w/w and progesterone was 0.46% w/w of the initial formulation. Multiple surfactants were evaluated, and a lecithin and sodium taurocholate system was chosen. Three concentrations of surfactant were then evaluated, and a concentration of 2% w/w was chosen based on particle size, polydispersity, and zeta potential. Agglomeration of SA-P SLNs after lyophilization was observed as measured by increased particle size. Dextran, glycine, mannitol, polyvinylpyrrolidone (PVP), sorbitol, and trehalose were evaluated as cryoprotectants by both an initial freeze–thaw analysis and after lyophilization. Once selected as the cryoprotectant, trehalose was evaluated at 5%, 10%, 15%, and 20% for optimal concentration, with 20% trehalose being finally selected as the level of choice.
    [Show full text]
  • 2021 Code Changes Reference Guide
    Boston University Medical Group 2021 CPT Code Changes Reference Guide Page 1 of 51 Background Current Procedural Terminology (CPT) was created by the American Medical Association (AMA) in 1966. It is designed to be a means of effective and dependable communication among physicians, patients, and third-party payers. CPT provides a uniform coding scheme that accurately describes medical, surgical, and diagnostic services. CPT is used for public and private reimbursement systems; development of guidelines for medical care review; as a basis for local, regional, and national utilization comparisons; and medical education and research. CPT Category I codes describe procedures and services that are consistent with contemporary medical practice. Category I codes are five-digit numeric codes. CPT Category II codes facilitate data collection for certain services and test results that contribute to positive health outcomes and quality patient care. These codes are optional and used for performance management. They are alphanumeric five-digit codes with the alpha character F in the last position. CPT Category III codes represent emerging technologies. They are alphanumeric five-digit codes with the alpha character T in the last position. The CPT Editorial Panel, appointed by the AMA Board of Trustees, is responsible for maintaining and updating the CPT code set. Purpose The AMA makes annual updates to the CPT code set, effective January 1. These updates include deleted codes, revised codes, and new codes. It’s important for providers to understand the code changes and the impact those changes will have to systems, workflow, reimbursement, and RVUs. This document is meant to assist you with this by providing a summary of the changes; a detailed breakdown of this year’s CPT changes by specialty, and HCPCS Updates for your reference.
    [Show full text]
  • Sucrose/ Glucose
    www.megazyme.com RAFFINOSE/ SUCROSE/ GLUCOSE ASSAY PROCEDURE K-RAFGL 04/18 (120 Assays per Kit) © Megazyme 2018 INTRODUCTION: Grain legumes are an important component of both human and livestock diets. Galactosyl-sucrose oligosaccharides (raffinose, stachyose and verbascose) are major components in many food legumes,1 and the anti-nutritional activity of grain legumes is frequently associated with the presence of these oligosaccharides.2 Galactosyl-sucrose oligosaccharides are not hydrolysed in the upper gut due to the absence of α-galactosidase. In the lower intestine they are metabolised by bacterial action, producing methane, hydrogen and carbon dioxide, which lead to flatulence and diarrhoea. Galactosyl- sucrose oligosaccharides are thus a factor limiting the use of grain legumes in monogastric diets.3 Several solvents have been employed for the extraction of galactosyl- sucrose oligosaccharides from legume-seed flours. These are generally water/alcohol mixtures. Before (or concurrent with) extraction, it is vital that endogenous α-galactosidase and invertase are inactivated. This can be achieved by refluxing the flour in ethanol or in an aqueous ethanol mixture before the flour is subjected to aqueous extraction. Identification and quantification of the extracted galactosyl- sucrose oligosaccharides have been achieved using an array of chromatographic procedures, however many of these methods are, at best, semi-quantitative. Chromatographic procedures employing high performance liquid chromatography and low pressure liquid chromatography (using Bio-Gel P2) are quantitative, but can be time consuming, particularly in the area of sample preparation. It is well known that raffinose, stachyose and verbascose are hydrolysed by α-galactosidase to D-galactose and sucrose. Biochemical kits for the measurement of raffinose are commercially available.
    [Show full text]
  • 6) Dextran Antibody → Behavior of an Anti
    Position Effects of Variable Region Carbohydrate on the Affinity and In Vivo Behavior of an Anti-(1→6) Dextran Antibody This information is current as M. Josefina Coloma, Ryan K. Trinh, Alexander R. Martinez of September 27, 2021. and Sherie L. Morrison J Immunol 1999; 162:2162-2170; ; http://www.jimmunol.org/content/162/4/2162 Downloaded from References This article cites 45 articles, 14 of which you can access for free at: http://www.jimmunol.org/content/162/4/2162.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 27, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1999 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Position Effects of Variable Region Carbohydrate on the Affinity and In Vivo Behavior of an Anti-(136) Dextran Antibody1 M. Josefina Coloma, Ryan K. Trinh, Alexander R. Martinez, and Sherie L. Morrison2 IgG is a glycoprotein with an N-linked carbohydrate structure attached to the CH2 domain of each of its heavy chains.
    [Show full text]
  • YKL107W from Saccharomyces Cerevisiae Encodes a Novel Aldehyde Reductase for Detoxification of Acetaldehyde, Glycolaldehyde, and Furfural
    YKL107W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of acetaldehyde, glycolaldehyde, and furfural Hanyu Wang, Qian Li, Zhengyue Zhang, Chang Zhou, Ellen Ayepa, Getachew Tafere Abrha, Xuebing Han, Xiangdong Hu, Xiumei Yu, et al. Applied Microbiology and Biotechnology ISSN 0175-7598 Volume 103 Number 14 Appl Microbiol Biotechnol (2019) 103:5699-5713 DOI 10.1007/s00253-019-09885-x 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag GmbH Germany, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Applied Microbiology and Biotechnology (2019) 103:5699–5713 https://doi.org/10.1007/s00253-019-09885-x BIOTECHNOLOGICALLY RELEVANT ENZYMES AND PROTEINS YKL107W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of acetaldehyde, glycolaldehyde, and furfural Hanyu Wang1 & Qian Li1 & Zhengyue Zhang1 &
    [Show full text]
  • Properties of Formaldehyde Dismutation Catalyzing Enzymeof
    Agric. Biol. Chem., 48 (8), 2017-2023, 1984 2017 Properties of Formaldehyde Dismutation Catalyzing Enzymeof Pseudomonas putida F61 Nobuo Kato, Hisataka Kobayashi, Masayuki Shimao and Chikahiro Sakazawa Department of Environmental Chemistry and Technology, Tottori University, Tottori 680, Japan Received January 9, 1984 Twoforms of formaldehyde dismutase distinguishable on disc-gel electrophoresis were isolated from the cell-free extract of Pseudomonasputida ¥61. The mobilities on SDS-gel electrophoresis and the NH2-terminal amino acids (arginine) of the two enzyme species were identical. The COOH- terminal amino acid sequence was found to be -Ser-Gly-Lys. The enzyme was inhibited by carbonyl, reducing and sulfhydryl reagents. The enzyme catalyzed the cross-dismutation reaction between formaldehyde and an aldehyde, such as propionaldehyde, acrolein, butyraldehyde, isobutyraldehyde and crotonaldehyde. The enzyme also catalyzed a coupled oxidoreduction between an alcohol and an aldehyde (RCH2OH+ R CHO^RCHO+R CH2OH) without addition of an electron acceptor. Aliphatic alcohols and aldehydes of C2 to C4 were utilized in this reaction. In the preceding study,1} we found an en- (E; formaldehyde dismutase, X; unknown zyme, which catalyzed dismutation of form- prosthetic group, and XH2; its reduced form.) aldehyde to form equimolar amounts of meth- Furthermore, we have found that the enzyme anol and formic acid, in Pseudomonas putida catalyzes a unique alcohol: aldehyde oxido- F61. The enzyme, given the trivial name of reduction reaction: formaldehyde dismutase, was purified and RCH2OH+R CHO >RCHO+R CH2OH partially characterized. On the other hand, mammalian alcohol dehydrogenase (EC In this work, we describe more detailed 1.1.1.1) was reported to catalyze formalde- properties of this enzyme and its substrate hyde dismutation on the addition of a cata- specificities in the cross-dismutation and al- lytic amount of NAD+or one of its deriva- cohol: aldehyde oxidoreduction reactions.
    [Show full text]
  • University of Groningen Physiology and Biochemistry of Primary Alcohol
    University of Groningen Physiology and biochemistry of primary alcohol oxidation in the gram-positive bacteria "amycolatopsis methanolica" and "bacillus methanolicus" Hektor, Harm Jan IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 1997 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hektor, H. J. (1997). Physiology and biochemistry of primary alcohol oxidation in the gram-positive bacteria "amycolatopsis methanolica" and "bacillus methanolicus". s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 30-09-2021 Chapter 2 Formaldehyde dismutase activities in Gram-positive bacteria oxidizing methanol L.V.
    [Show full text]