Properties of Formaldehyde Dismutation Catalyzing Enzymeof

Total Page:16

File Type:pdf, Size:1020Kb

Properties of Formaldehyde Dismutation Catalyzing Enzymeof Agric. Biol. Chem., 48 (8), 2017-2023, 1984 2017 Properties of Formaldehyde Dismutation Catalyzing Enzymeof Pseudomonas putida F61 Nobuo Kato, Hisataka Kobayashi, Masayuki Shimao and Chikahiro Sakazawa Department of Environmental Chemistry and Technology, Tottori University, Tottori 680, Japan Received January 9, 1984 Twoforms of formaldehyde dismutase distinguishable on disc-gel electrophoresis were isolated from the cell-free extract of Pseudomonasputida ¥61. The mobilities on SDS-gel electrophoresis and the NH2-terminal amino acids (arginine) of the two enzyme species were identical. The COOH- terminal amino acid sequence was found to be -Ser-Gly-Lys. The enzyme was inhibited by carbonyl, reducing and sulfhydryl reagents. The enzyme catalyzed the cross-dismutation reaction between formaldehyde and an aldehyde, such as propionaldehyde, acrolein, butyraldehyde, isobutyraldehyde and crotonaldehyde. The enzyme also catalyzed a coupled oxidoreduction between an alcohol and an aldehyde (RCH2OH+ R CHO^RCHO+R CH2OH) without addition of an electron acceptor. Aliphatic alcohols and aldehydes of C2 to C4 were utilized in this reaction. In the preceding study,1} we found an en- (E; formaldehyde dismutase, X; unknown zyme, which catalyzed dismutation of form- prosthetic group, and XH2; its reduced form.) aldehyde to form equimolar amounts of meth- Furthermore, we have found that the enzyme anol and formic acid, in Pseudomonas putida catalyzes a unique alcohol: aldehyde oxido- F61. The enzyme, given the trivial name of reduction reaction: formaldehyde dismutase, was purified and RCH2OH+R CHO >RCHO+R CH2OH partially characterized. On the other hand, mammalian alcohol dehydrogenase (EC In this work, we describe more detailed 1.1.1.1) was reported to catalyze formalde- properties of this enzyme and its substrate hyde dismutation on the addition of a cata- specificities in the cross-dismutation and al- lytic amount of NAD+or one of its deriva- cohol: aldehyde oxidoreduction reactions. tives.2) The enzyme from P. putida F61, which is distinct from the mammalian one, catalyz- MATERIALS AND METHODS ed the dismutation without addition of an electron acceptor, such as a pyridine nucleo- Organism and cultivation. P. putida F61 was grown on a tide coenzyme or artificial dye.X) Another uni- nutrient medium as reported previously.1* The harvested que property of the formaldehyde dismutase cells were washed twice with lOmMpotassium phosphate buffer, pH 7.0, and the cell paste was stored at -15°C was the catalytic activity of cross-dismutation until use. between two different aldehydes: RCHO"+H2O+Eà"X >RCOOH+Eà"XH2 Enzymeassay. Formaldehyde dismutase was assayed by determination of formic acid formed by means of pHstat R CHO+Eà"XH2 >R CH2OH+Eà"X titration with NaOHat pH 7.O.1* Protein determination. Protein was estimated by the Bio- RCHO+H2O+R CHO > Rad Protein Assay (Bio-Rad Laboratories) with bovine RCOOH+R CH2OH serum albumin as the standard. The protein concentra- tion of the purified enzyme was determined with an 2018 N. Kato et al. 4280nmvalue of 8.2 which was obtained from the absor- raise the yield of the purified enzyme, the purification bance and dry weight determinations. procedures were modified as follows. Amino acid determination. For determination of the (0 Acetone fractionation. The protamine-treated en- amino acid composition, the purified enzyme was hy- (v/v)zymepreparationwith cold acetone(20.6 g(-20°C),as protein)and wasthe broughtresulting to pre-30% drolyzed in 6n HC1 containing 2% thioglycolic acid at cipitate was removedby centrifugation. Cold acetone was 105°C for 20~70'hr in an evacuated sealed tube. Before added to the supernatant solution to 70%. The precipitate hydrolysis, norleucine was added to the enzymesolution collected by centrifugation was dissolved in 100ml of to the concentration of 0.5 /miol/mg protein as an internal 10mMpotassium phosphate buffer (pH 7.0) and dialyzed standard. The hydrolyzate was analyzed with an amino for 18hr against 10 liters of the same buffer. acid autoanalyzer (Kyowa Seimitsu Co., type K-101). (ii) DEAE-Sephacel column chromatography. The dia- Cysteine and cystine were determined as cysteic acid after lyzed solution (5.7g as protein) was applied to a DEAE- performate oxidation of the sample according to Hirs.3) Sephacel column (2.5 by 45 cm). The column was washed Tryptophan was determined spectrophotometrically.4) once with 2.5 liters of the equilibration buffer, lOmM The NH2-terminal amino acid was determined by the potassium phosphate (pH 7.0), and then with 2 liters of the dansyl method according to Ikenaka.5) To identify the buffer containing 100mMNaCl. The enzyme was eluted dansyl amino acids produced during acid hydrolysis, thin with a linear gradient of increasing NaCl concentration layer chromatography on Polyamide Layer Sheets between 100 and 300mM (total volume, 2.5 liters). The (Seikagaku Kogyo) was performed. A spotted sheet was active fractions collected and pooled were dialyzed for sequentially developed with four kinds of solvents accord- 24hr against 3 changes of a 10 liter volume of 10mM ing to Woods and Wang.6) The COOH-terminal amino phosphate buffer, pH 7.0, and concentrated to a one- acid was determined with carboxypeptidases (CPase) A tenth volume by ultra filtration with a Minimodule and B (Sigma Chemical Co., type, I-DFP), the molar (Asahikasei Co., Ltd.). ratio of which to the formaldehyde dismutase was 1/ Through the purification procedures, the enzyme was 25.7) The released amino acids were determined with the purified about 22-fold from the cell-free extract of P. autoanalyzer mentioned above. putida F61 (Table I). The enzyme yield after DEAE- Sephacel chromatography was two times higher than that Electrophoresis. Polyacrylamide gel electrophoresis with the previous methods.1* was carried out in 5%polyacrylamide gels in Tris-glycine (Hi) Phenyl-Sepharose CL-4B column chromatography. buffer (pH 8.3) according to Davis.8) The zone of the To the concentrated solution (50ml, 256mg as protein) formaldehyde dismutase activity was visualized by in- was added solid NaCl to a concentration of 4m, and the cubating the gels for 60min at 30°C in 5ml of a reaction mixture was applied to a Phenyl-Sepharose column (2.5 by mixture containing 50mMpotassium phosphate buffer 20 cm) equilibrated with lO mMpotassium phosphate (pH (pH 7.5), 20mM formaldehyde, 0.2mM NAD+, 0.02mg of 7.0) containing 4mNaCl. Elution was carried out with a phenazine methosulfate per ml, 1 mg 2,3,5-triphenyltetra- gradient of decreasing NaCl concentration and increasing zolium chloride per ml, and 2 units of formate dehy- ethylene glycol concentration (the final concentrations drogenase per ml. The reaction was stopped by adding were 0 and 50%, respectively; total volume, 500ml). The 0.5ml of acetic acid and then the gels were removed and elution pattern of the enzyme is described below. The stored in 7% (v/v) acetic acid. The electrophoresis on polyacrylamide gels containing sodium dodecylsulfate withactivea fractionsMinimodule,collectedand dialyzedand pooledforwere24hrconcentratedagainst 3 (SDS) was carried out according to Shapiro et al.9) changes of a 10 liter volume of 10mMpotassium phos- phate buffer (pH 7.0). Gas chromatography. Alcohols, aldehydes and acids were determined by gas chromatography (Shimadzu Preparative polyaerylamide gel electrophoresis. A 0.5-ml GC-8A) with a flame ionization detector. A glass col- aliquot of the enzyme solution (5 mgprotein) obtained at umn (0.26x200cm) was filled with 80/100 mesh Gasu- the Phenyl-Sepharose step was applied to a slab gel (16 by kuropack 54 (Gasukuro Kogyo Inc.). The temperatures 14cm, 2mmthick) which was in contact with a cooling of the column and inlet were maintained at 180 and plate, and electrophoresis was carried out at 15mAac- 200°C, respectively. The flow rate of nitrogen carrier cording to Bringer et al.10) After the electrophoresis, gas was 60ml/min. The reaction mixture was directly in- the gel was blotted with a filter paper (Toyo Roshi No. jected into the column. 51A), which was immediately stained with Coomassie brilliant blue. The gel zone corresponding to the stained Enzyme purification. As described previously,1* the en- protein band on the paper was cut out and crushed with zyme waspurified from the cell-free extract of P. putida a teflon homogenizer. From the disintegrated gel, the en- F61 by protamine treatment, ammoniumsulfate fraction- zyme was eluted with 10mMphosphate buffer (pH 7.0) ation, and chromatographies on Phenyl-Sepharose CL- with stirring overnight. The polyacrylamide was remov- 4B, DEAE-Sephacel and hydroxyapatite. In order to ed by centrifugation, and the supernatant wasdialyzed Formaldehyde Dismutation Catalyzing Enzyme 2019 Table I. Purification of the Formaldehyde Dismutase from Pseudomonas putida F61 Total Total Specific Step protein activity activity Purification f (mg) (U) (U/mg) ( /o) Cell-free extract 21 ,400 90,000 4.21 1.0 100 Protamine sulfate 20,600 87,200 4.23 1.0 96.9 Acetone fractionation 5,700 52,600 9.23 2.2 58.4 DEAE-Sephacel 256 24, 100 91. 1 21.6 26.8 against lOmMphosphate buffer (pH 7.0), and then con- centrated with an Immersible CX-10 ultra filter (Millipore Corp.) to 0.5ml. RESULTS Protein nature of the purified enzyme As shownin Fig. 1, two active fractions of formaldehyde dismutase appeared on Phenyl- Sepharose column chromatography as de- ; v...^ 100 150 scribed under Materials and Methods. The 20 * å : 10ml/fraction first fraction (A; fractions 104~130) was Fig. 1. Phenyl-Sepharose CL-4B Column Chromatog- identical with the enzyme which was purified raphy of the Formaldehyde Dismutase. previously. The specific activity of the latter The details are given in Materials and Methods. ----, fraction (B; fractions 183-234), 92/miol/ NaCl; - --, ethylene glycol. minà"mg,was about half of that of the A-frac- tion. On polyacrylamide gel electrophoresis, the A-fraction preparation gave two distinct Molecular weight and subunit of the B-fraction protein bands (A-l and A-2) whose migra- enzyme tion rates were 0.38 and 0.44, respectively.
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0089535 A1 Yamashiro Et Al
    US 2013 0089535A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0089535 A1 Yamashiro et al. (43) Pub. Date: Apr. 11, 2013 (54) AGENT FOR REDUCING ACETALDEHYDE Publication Classification NORAL CAVITY (51) Int. Cl. (75) Inventors: Kan Yamashiro, Kakamigahara-shi (JP); A68/66 (2006.01) Takahumi Koyama, Kakamigahara-shi A638/51 (2006.01) (JP) A61O 11/00 (2006.01) A638/44 (2006.01) Assignee: AMANOENZYME INC., Nagoya-shi (52) U.S. Cl. (73) CPC. A61K 8/66 (2013.01); A61K 38/44 (2013.01); (JP) A61 K38/51 (2013.01); A61O II/00 (2013.01) (21) Appl. No.: 13/703,451 USPC .......... 424/94.4; 424/94.5; 435/191: 435/232 (22) PCT Fled: Jun. 7, 2011 (57) ABSTRACT Disclosed herein is a novel enzymatic agent effective in (86) PCT NO.: PCT/UP2011/062991 reducing acetaldehyde in the oral cavity. It has been found S371 (c)(1), that an aldehyde dehydrogenase derived from a microorgan (2), (4) Date: Dec. 11, 2012 ism belonging to the genus Saccharomyces and a threonine aldolase derived from Escherichia coli are effective in reduc (30) Foreign Application Priority Data ing low concentrations of acetaldehyde. Therefore, an agent for reducing acetaldehyde in the oral cavity is provided, Jun. 19, 2010 (JP) ................................. 2010-140O26 which contains these enzymes as active ingredients. Patent Application Publication Apr. 11, 2013 Sheet 1 of 2 US 2013/0089535 A1 FIG 1) 10.5 1 0 9.9.5 8. 5 CONTROL TA AD (BSA) ENZYME Patent Application Publication Apr. 11, 2013 Sheet 2 of 2 US 2013/0089535 A1 FIG 2) 110 the CONTROL (BSA) 100 354.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0028333 A1 Piatesi Et Al
    US 20120028333A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0028333 A1 Piatesi et al. (43) Pub. Date: Feb. 2, 2012 (54) USE OF ENZYMES TO REDUCE ALDEHYDES (30) Foreign Application Priority Data FROMALDEHYDE-CONTAINING PRODUCTS Apr. 7, 2009 (EP) .................................. O9157522.5 Publication Classification (76) Inventors: Andrea Piatesi, Mannheim (DE); (51) Int. Cl. Tilo Habicher, Speyer (DE); CI2N 9/02 (2006.01) Michael Bischel, Worms (DE); CI2N I/00 (2006.01) Li-Wen Wang, Mannheim (DE): CI2N 15/63 (2006.01) Jirgen Reichert, Limburgerhof A62D 3/02 (2007.01) (DE); Rainer Packe-Wirth, C7H 2L/04 (2006.01) Trostberg (DE); Kai-Uwe (52) U.S. Cl. ... 435/189: 435/262:536/23.2:435/320.1; Baldenius, Heidelberg (DE); Erich 435/243 Kromm, Weisenheim am Sand (57) ABSTRACT (DE); Stefan Häfner, Speyer (DE); Carsten Schwalb. Mannheim (DE); The invention relates to the use of an enzyme preparation Hans Wolfgang Höffken, which catalyzes the degradation of formaldehyde for reduc Ludwigshafen (DE) ing the formaldehyde content in a formaldehyde-containing formulation. In a preferred embodiment, the enzyme prepa ration contains a formaldehyde dismutase from a Pseudomo (21) Appl. No.: 13/262,662 nas putida Strain. Further, the invention refers to a process for reducing the formaldehyde content in cross-linking agents for textile finishing or in polymer dispersions used, e.g. in con (22) PCT Filed: Mar. 31, 2010 struction chemistry. Further the invention relates to the use of an enzyme preparation which catalyzes the degradation of (86). PCT No.: PCT/EP1OAS4284 aldehydes for reducing the formaldehyde content in an alde hyde-containing formulation.
    [Show full text]
  • 2021 Code Changes Reference Guide
    Boston University Medical Group 2021 CPT Code Changes Reference Guide Page 1 of 51 Background Current Procedural Terminology (CPT) was created by the American Medical Association (AMA) in 1966. It is designed to be a means of effective and dependable communication among physicians, patients, and third-party payers. CPT provides a uniform coding scheme that accurately describes medical, surgical, and diagnostic services. CPT is used for public and private reimbursement systems; development of guidelines for medical care review; as a basis for local, regional, and national utilization comparisons; and medical education and research. CPT Category I codes describe procedures and services that are consistent with contemporary medical practice. Category I codes are five-digit numeric codes. CPT Category II codes facilitate data collection for certain services and test results that contribute to positive health outcomes and quality patient care. These codes are optional and used for performance management. They are alphanumeric five-digit codes with the alpha character F in the last position. CPT Category III codes represent emerging technologies. They are alphanumeric five-digit codes with the alpha character T in the last position. The CPT Editorial Panel, appointed by the AMA Board of Trustees, is responsible for maintaining and updating the CPT code set. Purpose The AMA makes annual updates to the CPT code set, effective January 1. These updates include deleted codes, revised codes, and new codes. It’s important for providers to understand the code changes and the impact those changes will have to systems, workflow, reimbursement, and RVUs. This document is meant to assist you with this by providing a summary of the changes; a detailed breakdown of this year’s CPT changes by specialty, and HCPCS Updates for your reference.
    [Show full text]
  • University of Groningen Physiology and Biochemistry of Primary Alcohol
    University of Groningen Physiology and biochemistry of primary alcohol oxidation in the gram-positive bacteria "amycolatopsis methanolica" and "bacillus methanolicus" Hektor, Harm Jan IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 1997 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hektor, H. J. (1997). Physiology and biochemistry of primary alcohol oxidation in the gram-positive bacteria "amycolatopsis methanolica" and "bacillus methanolicus". s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 30-09-2021 Chapter 2 Formaldehyde dismutase activities in Gram-positive bacteria oxidizing methanol L.V.
    [Show full text]
  • OXPHOS Remodeling in High-Grade Prostate Cancer Involves Mtdna Mutations and Increased Succinate Oxidation
    ARTICLE https://doi.org/10.1038/s41467-020-15237-5 OPEN OXPHOS remodeling in high-grade prostate cancer involves mtDNA mutations and increased succinate oxidation Bernd Schöpf 1, Hansi Weissensteiner 1, Georg Schäfer2, Federica Fazzini1, Pornpimol Charoentong3, Andreas Naschberger1, Bernhard Rupp1, Liane Fendt1, Valesca Bukur4, Irina Giese4, Patrick Sorn4, Ana Carolina Sant’Anna-Silva 5, Javier Iglesias-Gonzalez6, Ugur Sahin4, Florian Kronenberg 1, ✉ Erich Gnaiger 5,6 & Helmut Klocker 7 1234567890():,; Rewiring of energy metabolism and adaptation of mitochondria are considered to impact on prostate cancer development and progression. Here, we report on mitochondrial respiration, DNA mutations and gene expression in paired benign/malignant human prostate tissue samples. Results reveal reduced respiratory capacities with NADH-pathway substrates glu- tamate and malate in malignant tissue and a significant metabolic shift towards higher succinate oxidation, particularly in high-grade tumors. The load of potentially deleterious mitochondrial-DNA mutations is higher in tumors and associated with unfavorable risk factors. High levels of potentially deleterious mutations in mitochondrial Complex I-encoding genes are associated with a 70% reduction in NADH-pathway capacity and compensation by increased succinate-pathway capacity. Structural analyses of these mutations reveal amino acid alterations leading to potentially deleterious effects on Complex I, supporting a causal relationship. A metagene signature extracted from the transcriptome of tumor samples exhibiting a severe mitochondrial phenotype enables identification of tumors with shorter survival times. 1 Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University Innsbruck, Schöpfstraße 41, A-6020 Innsbruck, Austria. 2 Institute of Pathology, Neuropathology and Molecular Pathology, Medical University Innsbruck, Müllerstraße 44, A-6020 Innsbruck, Austria.
    [Show full text]
  • Glutathione-Dependent Formaldehyde Dehydrogenase Homolog from Bacillus Subtilis Strain R5 Is a Propanol-Preferring Alcohol Dehydrogenase
    ISSN 0006-2979, Biochemistry (Moscow), 2017, Vol. 82, No. 1, pp. 13-23. © Pleiades Publishing, Ltd., 2017. Published in Russian in Biokhimiya, 2017, Vol. 82, No. 1, pp. 64-75. Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM16-211, October 31, 2016. Glutathione-Dependent Formaldehyde Dehydrogenase Homolog from Bacillus subtilis Strain R5 is a Propanol-Preferring Alcohol Dehydrogenase Raza Ashraf1, Naeem Rashid1*, Saadia Basheer1, Iram Aziz1, and Muhammad Akhtar2 1School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan; E-mail: [email protected], [email protected] 2School of Biological Sciences, University of Southampton, Southampton SO16 7PX, UK Received July 2, 2016 Revision received August 26, 2016 Abstract—Genome search of Bacillus subtilis revealed the presence of an open reading frame annotated as glutathione- dependent formaldehyde dehydrogenase/alcohol dehydrogenase. The open reading frame consists of 1137 nucleotides cor- responding to a polypeptide of 378 amino acids. To examine whether the encoded protein is glutathione-dependent formaldehyde dehydrogenase or alcohol dehydrogenase, we cloned and characterized the gene product. Enzyme activity assays revealed that the enzyme exhibits a metal ion-dependent alcohol dehydrogenase activity but no glutathione-depend- ent formaldehyde dehydrogenase or aldehyde dismutase activity. Although the protein is of mesophilic origin, optimal tem- perature for the enzyme activity is 60°C. Thermostability analysis by circular dichroism spectroscopy revealed that the pro- tein is stable up to 60°C. Presence or absence of metal ions in the reaction mixture did not affect the enzyme activity. However, metal ions were necessary at the time of protein production and folding.
    [Show full text]
  • Index of Recommended Enzyme Names
    Index of Recommended Enzyme Names EC-No. Recommended Name Page 1.2.1.10 acetaldehyde dehydrogenase (acetylating) 115 1.2.1.38 N-acetyl-y-glutamyl-phosphate reductase 289 1.2.1.3 aldehyde dehydrogenase (NAD+) 32 1.2.1.4 aldehyde dehydrogenase (NADP+) 63 1.2.99.3 aldehyde dehydrogenase (pyrroloquinoline-quinone) 578 1.2.1.5 aldehyde dehydrogenase [NAD(P)+] 72 1.2.3.1 aldehyde oxidase 425 1.2.1.31 L-aminoadipate-semialdehyde dehydrogenase 262 1.2.1.19 aminobutyraldehyde dehydrogenase 195 1.2.1.32 aminomuconate-semialdehyde dehydrogenase 271 1.2.1.29 aryl-aldehyde dehydrogenase 255 1.2.1.30 aryl-aldehyde dehydrogenase (NADP+) 257 1.2.3.9 aryl-aldehyde oxidase 471 1.2.1.11 aspartate-semialdehyde dehydrogenase 125 1.2.1.6 benzaldehyde dehydrogenase (deleted) 88 1.2.1.28 benzaldehyde dehydrogenase (NAD+) 246 1.2.1.7 benzaldehyde dehydrogenase (NADP+) 89 1.2.1.8 betaine-aldehyde dehydrogenase 94 1.2.1.57 butanal dehydrogenase 372 1.2.99.2 carbon-monoxide dehydrogenase 564 1.2.3.10 carbon-monoxide oxidase 475 1.2.2.4 carbon-monoxide oxygenase (cytochrome b-561) 422 1.2.1.45 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase .... 323 1.2.99.6 carboxylate reductase 598 1.2.1.60 5-carboxymethyl-2-hydroxymuconic-semialdehyde dehydrogenase . 383 1.2.1.44 cinnamoyl-CoA reductase 316 1.2.1.68 coniferyl-aldehyde dehydrogenase 405 1.2.1.33 (R)-dehydropantoate dehydrogenase 278 1.2.1.26 2,5-dioxovalerate dehydrogenase 239 1.2.1.69 fluoroacetaldehyde dehydrogenase 408 1.2.1.46 formaldehyde dehydrogenase 328 1.2.1.1 formaldehyde dehydrogenase (glutathione)
    [Show full text]
  • University of Groningen Biochemical and Functional Characterization Of
    University of Groningen Biochemical and functional characterization of Nudix hydrolase enzymes with novel regulatory roles in Gram positive methylotrophic bacteria Kloosterman, Harmen IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2005 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Kloosterman, H. (2005). Biochemical and functional characterization of Nudix hydrolase enzymes with novel regulatory roles in Gram positive methylotrophic bacteria. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 30-09-2021 Chapter 2 Nicotinoprotein methanol dehydrogenase enzymes in Gram-positive methylotrophic bacteria H.J.
    [Show full text]
  • Asymmetric Biocatalytic Cannizzaro Reaction: Control of the Redox Equilibrium
    Asymmetric biocatalytic Cannizzaro reaction: control of the redox equilibrium Diplomarbeit Zur Erlangung des akademischen Grades „Magister rerum naturalium“ an der Naturwissenschaftlichen Fakultät der Karl-Franzens Universität Graz vorgelegt von Horst Lechner Diese Arbeit wurde im Zeitraum von März 2010 bis März 2011 am Institut für Chemie an der Karl-Franzens Universität Graz unter der Betreuung von Prof. Kurt Faber durchgeführt. The scientist is not a person, who gives the right answers, he is one who asks the right questions. Claude Lévi-Strauss, Le Cru et le cuit, 1964 1 Acknowledgments At this page all the people who contributed to the successful completion of this diploma thesis should be mentioned. At first there are my parents for their support in every way. Additionally I have to mention my family and my friends for giving me the kind of atmosphere and environment I needed to become how I am. Then I want to thank Kurt Faber, my supervisor, for his scientific support and the possibility to work in his group. Silvia Glück was a big support at the beginning and at the end of my thesis, introducing me into to the work and the scientific writing. I would also like to thank the whole Fab-Crew, especially Wolfgang Kroutil, who was always there with some good ideas if problems occurred, Michi Fuchs – without him I would be a little bit lost in the fields of organic synthesis and Christiane Wünsch – she build the basis for this work with her thesis. And of course, all the other groups members working in the labs during my time there are to acknowledge: Babsi, Markus, Kathi D., Jörg, Hansi, Kathi T., Francesco, Christoph, Elina, Verena, Christine, Aashrita, Michi T, Dorina, Frau Schwarzl and Barbara.
    [Show full text]
  • Mechanisms Underlying Inhibition of Muscle Disuse Atrophy During Aestivation in the Green-Striped Burrowing Frog, Cyclorana Alboguttata
    Mechanisms underlying inhibition of muscle disuse atrophy during aestivation in the green-striped burrowing frog, Cyclorana alboguttata Beau Daniel Reilly Bachelor of Marine Studies (Hons.) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2014 School of Biological Sciences Abstract In most mammals, extended inactivity or immobilisation of skeletal muscle (e.g. bed- rest, limb-casting or hindlimb unloading) results in muscle disuse atrophy, a process which is characterised by the loss of skeletal muscle mass and function. In stark contrast, animals that experience natural bouts of prolonged muscle inactivity, such as hibernating mammals and aestivating frogs, consistently exhibit limited or no change in either skeletal muscle size or contractile performance. While many of the factors regulating skeletal muscle mass are known, little information exists as to what mechanisms protect against muscle atrophy in some species. Green-striped burrowing frogs (Cyclorana alboguttata) survive in arid environments by burrowing underground and entering into a deep, prolonged metabolic depression known as aestivation. Throughout aestivation, C. alboguttata is immobilised within a cast-like cocoon of shed skin and ceases feeding and moving. Remarkably, these frogs exhibit very little muscle atrophy despite extended disuse and fasting. The overall aim of the current research study was to gain a better understanding of the physiological, cellular and molecular basis underlying resistance to muscle disuse atrophy in C. alboguttata. The first aim of this study was to develop a genomic resource for C. alboguttata by sequencing and functionally characterising its skeletal muscle transcriptome, and to conduct gene expression profiling to identify transcriptional pathways associated with metabolic depression and maintenance of muscle function in aestivating burrowing frogs.
    [Show full text]
  • WO 2010/115797 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 14 October 2010 (14.10.2010) WO 2010/115797 Al (51) International Patent Classification: (74) Common Representative: BASF SE; 67056 Lud C12N 9/04 (2006.01) D06M 16/00 (2006.01) wigshafen (DE). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/EP20 10/054284 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (22) Date: International Filing CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, 31 March 2010 (3 1.03.2010) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (30) Priority Data: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 09157522.5 7 April 2009 (07.04.2009) EP SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicant (for all designated States except US): BASF SE [DE/DE]; 67056 Ludwigshafen (DE). (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (72) Inventors; and GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (75) Inventors/Applicants (for US only): PIATESI, Andrea ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, [CH/DE]; Mollstrasse 58, 68165 Mannheim (DE).
    [Show full text]
  • Treatment of Formaldehyde-Containing Wastewater Using Membrane Bioreactor
    Treatment of Formaldehyde-Containing Wastewater Using Membrane Bioreactor Chalor Jarusutthirak1; Kamolchanok Sangsawang2; Supatpong Mattaraj3; and Ratana Jiraratananon4 Abstract: Performance of a membrane bioreactor (MBR) in removal of formaldehyde from synthetic wastewater was investigated. Batch tests for biodegradation of formaldehyde indicated that bioreactors containing acclimated sludge were able to remove up to 99.9% of the formaldehyde from solution. The 12-L MBR was equipped with a submerged hollow-fiber ultrafiltration (UF) membrane with 0:85 m2 filtration area. The unit was operated at a hydraulic retention time of 10 h in aerobic mode with formaldehyde as the sole carbon source for microbial growth. The results revealed that the MBR reduced formaldehyde concentration from 526 Æ 30 to a 1:39 Æ 0:73 mg=L, cor- responding to a removal efficiency of 99:73 Æ 0:14%. Increasing solid retention time (SRT) resulted in an increase in mixed liquor suspended solids (MLSS), leading to improved efficiency in removal of formaldehyde from the MBR. Flux decline during MBR operation was caused by accumulation of MLSS on the membrane surface. SRT did not affect flux decline, but did affect flux recovery after cleaning. Long SRT (60 days) led to greater flux recovery than shorter SRTs (30 and 10 days). DOI: 10.1061/(ASCE)EE.1943-7870.0000430. © 2012 American Society of Civil Engineers. CE Database subject headings: Membranes; Filtration; Wastewater management; Reactors; Biological processes. Author keywords: Flux decline; Formaldehyde; Membrane bioreactor; Solid retention time; Ultrafiltration. Introduction (Garrido et al. 2001; Lotfy and Rashed, 2002; El-Sayed et al. 2006). Formaldehyde removal by biological methods is generally Formaldehyde is commonly used in industrial processes for a vari- preferred because of the lower costs and the possibility of complete ety of products, for example, urea–formaldehyde adhesives, amino- mineralization.
    [Show full text]