Uno Et Al., 2011

Total Page:16

File Type:pdf, Size:1020Kb

Uno Et Al., 2011 Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores Kevin T. Unoa,1, Thure E. Cerlinga,b, John M. Harrisc, Yutaka Kunimatsud, Meave G. Leakeye, Masato Nakatsukasad,f, and Hideo Nakayaf aDepartment of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112; bDepartment of Biology, University of Utah, Salt Lake City, UT 84112; cGeorge C. Page Museum, Los Angeles, CA 90036; dLaboratory of Physical Anthropology, Kyoto University, Kyoto 606-8502, Japan; eTurkana Basin Institute, Stony Brook University, Stony Brook, NY 11790; and fDepartment of Earth and Environmental Sciences, Kagoshima University, Kagoshima 890-0065, Japan Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 5, 2011 (received for review December 14, 2010) Stable isotope and molecular data suggest that C4 grasses first Lothagam (7). All carbon isotope data from pedogenic carbo- appeared globally in the Oligocene. In East Africa, stable isotope nates older than 9 Ma indicate C3 environments, with the ex- data from pedogenic carbonate and fossil tooth enamel suggest ception of the Tugen Hills (2). No pedogenic carbonates have a first appearance between 15–10 Ma and subsequent expansion been found in the Nakali Formation, and none have been sampled during the Plio-Pleistocene. The fossil enamel record has the po- from the Namurungule Formation in the Samburu Hills. The tential to provide detailed information about the rates of dietary earliest robust evidence for C4 vegetation from pedogenic car- adaptation to this new resource among different herbivore line- bonate is in the Lower Nawata Formation (7.4 Ma) at Lothagam, 13 ages. We present carbon isotope data from 452 fossil teeth that where the δ C values (−9.0 to −2.2‰) indicate C3 to mixed C3/C4 fi record differential rates of diet change from C3 to mixed C3/C4 or environments that included signi cant amounts of C4 grass (7). C4 diets among East African herbivore families at seven different Although isotope records from Late Miocene pedogenic carbo- time periods during the Late Miocene to the Pliocene (9.9–3.2 Ma). nates are rare, abundant records show that C4 grasses became Significant amounts of C4 grasses were present in equid diets be- widespread during the Late Pliocene to Pleistocene throughout ginning at 9.9 Ma and in rhinocerotid diets by 9.6 Ma, although East Africa (ref. 5 and references therein). 13 there is no isotopic evidence for expansive C4 grasslands in this Feakins et al. (4) analyzed the δ Cvaluesofn-alkanoic acids part of the Late Miocene. Bovids and hippopotamids followed suit in sediments from a Gulf of Aden core (Deep Sea Drilling with individuals that had C4-dominated (>65%) diets by 7.4 Ma. Project Site 231) that coincide with two time periods repre- Suids adopted C4-dominated diets between 6.5 and 4.2 Ma. Gom- sented in our record. The biomarker record shows input of photheriids and elephantids had mostly C3-dominated diets predominantly C3-derived leaf waxes at 9.4 Ma and 5–15% C4 through 9.3 Ma, but became dedicated C4 grazers by 6.5 Ma. Dein- vegetation from 3.8 to 3.2 Ma (4). The data from the Gulf of fi otheriids and giraf ds maintained a predominantly C3 diet Aden core record a noncontinuous, regional-scale signal that is throughout the record. The sequence of differential diet change well dated with high temporal resolution. Collectively, the fossil among herbivore lineages provides ecological insight into a key enamel, pedogenic carbonate, and biomarker records from period of hominid evolution and valuable information for future East Africa indicate C3-dominated ecosystems throughout the studies that focus on morphological changes associated with Middle and Late Miocene and an expansion of C4 grasses in the diet change. Late Pliocene and Pleistocene. However, none of these pre- viously published datasets provides a detailed record of the carbon isotopes | herbivore diet | bioapatite | paleodiet | mammal response of the fauna during this period. We use stable carbon isotope ratios from fossil tooth enamel table carbon isotope ratios from fossil tooth enamel, pedo- identified from family to species level (SI Appendix, Table S1) to Sgenic carbonates, and terrestrial plant biomarkers are com- evaluate rates of change in herbivore diets from the Late Mio- cene to the Early Pliocene from three fossil localities in East monly used to determine the relative amounts of C3 and C4 vegetation in ancient habitats (1–4). These paleovegetation Africa (Fig. 1). The sites range in age from 9.9 to 3.2 Ma; lith- proxies integrate over different spatial and temporal scales, and ostratigraphy, radiometric ages, and stratigraphic intervals where each proxy has inherent strengths and weaknesses when used samples were collected are shown in Fig. 2. The stable isotope data address two important issues in the East African fossil re- to reconstruct the relative amounts of C3 and C4 vegetation in ancient habitats (5, 6). cord. First, they illustrate the diverse paleoecological response of Carbon isotopes from fossil enamel of East African herbivores large herbivores to paleoenvironmental change associated with the appearance of C4 grasses during a key period of hominid indicate C3 diets and presumably, C3 environments, in the records from Buluk, Fort Ternan, and the Tugen Hills that range evolution. Paleoenvironmental context is integral to under- standing East African hominid emergence, radiation, and evo- in age from 17 to ∼9 Ma (7–9). An exception is carbon isotope lution from the Late Miocene onward. All sites in this study have data from four equid teeth from Chorora, Ethiopia, dated at yielded important hominid material. Nakali and the Samburu 10.7–10.1 Ma, which indicate a mixed C /C diet (10). Previously 3 4 Hills, located in the Suguta Valley, Kenya, have yielded the Late published isotope data on enamel from the Nakali, Namur- Miocene hominids Nakalipithecus nakayami (18) and Sambur- ungule, Nawata, and Nachukui formations (included and ex- upithecus kiptalami (19), respectively, which likely represent stem panded significantly here) indicate a shift toward C4-dominated EVOLUTION diets between 9.6 and 4.2 Ma (7). The previously published fossil 13 enamel δ C record from East Africa shows that herbivores in- Author contributions: K.T.U., T.E.C., J.M.H., Y.K., M.G.L., M.N., and H.N. designed corporated C4 vegetation into their diets as early as ∼10 Ma and research; K.T.U., T.E.C., J.M.H., Y.K., M.G.L., M.N., and H.N. performed research; K.T.U., is generally consistent with the Late Miocene (8–6 Ma) global T.E.C., J.M.H., and M.G.L. analyzed data; and K.T.U. wrote the paper. fl expansion of C4 vegetation documented in the Siwaliks, North The authors declare no con ict of interest. America, and South America (1, 11–14). This article is a PNAS Direct Submission. Early to early Late Miocene pedogenic carbonate records 1To whom correspondence should be addressed. E-mail: [email protected]. from fossil sites in East Africa include Rusinga Island (15), the This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. ANTHROPOLOGY Lothidok Hills (16), Fort Ternan (17), the Tugen Hills (2), and 1073/pnas.1018435108/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1018435108 PNAS | April 19, 2011 | vol. 108 | no. 16 | 6509–6514 Fig. 1. Map of northern Kenya showing the three fossil localities in the Suguta Valley and the Turkana Basin. hominines (23). With Chororapithecus abyssinicus, these are the only known East African hominids between 11 and 9 Ma (24). The third site, Lothagam, is located west of Lake Turkana in northern Kenya (Fig. 1). The Nawata and Nachukui formations at Lothagam have yielded hominid material dated at ∼5 and 3.5 Ma. The older specimens are attributed to Hominidae indet., whereas the younger specimens are likely Kenyanthropus platyops or, possibly, Australopithecus cf Au. afarensis (25) (SI Appendix, Table S2). Second, the stable isotope record of diet change will allow paleontologists to compare the timing and rate of diet change to morphological changes associated with the dietary shift toward C4 grazing in herbivore lineages. Examples of cra- niodental and postcranial ecomorphic characteristics influenced by the transition from browsing to grazing include tooth mor- phology (i.e., hypsodonty, enamel thickness, and size), jaw structure, and forelimb bone length (26, 27). Results and Discussion Carbon Isotope Data by Age. We use the terms “C3-dominated 13 diet” for δ C values < −8‰, “mixed C3/C4 diet” for −8‰ to −2‰, and “C4-dominated diet” for values > −2‰. These delineations are based on estimated paleoatmospheric δ13C values and an enrichment factor of 14.1‰ between diet and enamel (SI Appendix, Table S3) (28, 29). A Shapiro–Wilk test for normality demonstrates that the data are not distributed nor- mally (SI Appendix, Table S4). Thus, the median and range of 13 δ C values are more appropriate than the mean and SD for Fig. 2. Lithostratigraphy, magnetostratigraphy, and radiometric ages from describing central location and variance. Mann–Whitney U test Nakali, the Samburu Hills, and Lothagam. Geomagnetic Polarity Time Scale results indicate significant shifts (P < 0.05) in the median δ13C (GPTS) changes at the break between 9.0 and 8.0 Ma. The uppermost age value between successive age increments (i.e., 9.9–9.6 Ma) where from the Nakali Formation (10.10 ± 0.12 Ma) is from a pyroclastic flow and there are more than five isotope analyses within a family essentially synchronous with the two slightly younger ages below. Modified – (SI Appendix, Table S5). All isotopic results are reported in SI from refs.
Recommended publications
  • The Late Miocene Mammalian Fauna of Chorora, Awash Basin
    The late Miocene mammalian fauna of Chorora, Awash basin, Ethiopia: systematics, biochronology and 40K-40Ar ages of the associated volcanics Denis Geraads, Zeresenay Alemseged, Hervé Bellon To cite this version: Denis Geraads, Zeresenay Alemseged, Hervé Bellon. The late Miocene mammalian fauna of Chorora, Awash basin, Ethiopia: systematics, biochronology and 40K-40Ar ages of the associated volcanics. Tertiary Research, 2002, 21 (1-4), pp.113-122. halshs-00009761 HAL Id: halshs-00009761 https://halshs.archives-ouvertes.fr/halshs-00009761 Submitted on 24 Mar 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The late Miocene mammalian fauna of Chorora, Awash basin, Ethiopia: systematics, biochronology and 40K-40Ar ages of the associated volcanics Denis GERAADS - EP 1781 CNRS, 44 rue de l'Amiral Mouchez, 75014 PARIS, France Zeresenay ALEMSEGED - National Museum, P.O.Box 76, Addis Ababa, Ethiopia Hervé BELLON - UMR 6538 CNRS, Université de Bretagne Occidentale, BP 809, 29285 BREST CEDEX, France ABSTRACT New whole-rock 40K-40Ar ages on lava flows bracketing the Chorora Fm, Ethiopia, confirm that its Hipparion-bearing sediments must be in the 10-11 Ma time-range. The large Mammal fauna includes 10 species.
    [Show full text]
  • Hippos We Do Not Have Any Complete Skeletons of the Langebaanweg Hippos (Hippopotamids)
    Hippos We do not have any complete skeletons of the Langebaanweg hippos (hippopotamids). These animals are mainly represented by jawbones or single teeth and postcranial bones including several foot and hand bones (carpals, tarsals, metapodials, phalanges). In order to work out how hippo evolution has occurred it is necessary to explore the relationship of the Langebaanweg hippos to other fossil hippo species from eastern and central Africa which are of the same age, or slightly older or younger. The hippo fossils from Langebaanweg appear to belong to one species and show a primitive dental pattern also found in other early Hippopotaminae, notably Archaeopotamus from Turkana Basin (Kenya) and Hexaprotodon garyam (northern Chad). However, some of the dental features seen in the Langebaanweg hippos are unique and may indicate that they represent an endemic form. Hippos are very dependent on water and are restricted in their movements as they need to stay close to rivers or lakes. The relationship of the Langebaanweg hippo to other hippos in Africa should therefore provide information on the relationship of rivers, and the availability of water bodies, during the transition between the Miocene and the Pliocene. In terms of paleoecology, the Langebaanweg hippopotamid had a C3-based diet (see ‘You are what you eat...’), which is different from the mixed to C4-dominant diet (see ‘You are what you eat...’), observed in eastern and central African hippo species. A micro-wear study of the hippotamid teeth was made in order to find out if this difference is linked to the fact that the Langebaanweg hippo is a browser, or if this hippopotamid was feeding on C3 grass.
    [Show full text]
  • The Phylogeny and Taxonomy of Hippopotamidae (Mammalia: Artiodactyla): a Review Based on Morphology and Cladistic Analysis
    Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2005? 2005 143? 126 Original Article J.-R. BOISSERIEHIPPOPOTAMIDAE PHYLOGENY AND TAXONOMY Zoological Journal of the Linnean Society, 2005, 143, 1–26. With 11 figures The phylogeny and taxonomy of Hippopotamidae (Mammalia: Artiodactyla): a review based on morphology and cladistic analysis JEAN-RENAUD BOISSERIE1,2* 1Laboratoire de Géobiologie, Biochronologie et Paléontologie Humaine, UMR CNRS 6046, Université de Poitiers, 40 avenue du Recteur, Pineau 86022 Cedex, France 2Laboratory for Human Evolutionary Studies, Department of Integrative Biology, Museum of Vertebrate Zoology, University of California at Berkeley, 3101 Valley Life Science Building, Berkeley, CA 94720-3160, USA Received August 2003; accepted for publication June 2004 The phylogeny and taxonomy of the whole family Hippopotamidae is in need of reconsideration, the present confu- sion obstructing palaeoecology and palaeobiogeography studies of these Neogene mammals. The revision of the Hip- popotamidae initiated here deals with the last 8 Myr of African and Asian species. The first thorough cladistic analysis of the family is presented here. The outcome of this analysis, including 37 morphological characters coded for 15 extant and fossil taxa, as well as non-coded features of mandibular morphology, was used to reconstruct broad outlines of hippo phylogeny. Distinct lineages within the paraphyletic genus Hexaprotodon are recognized and char- acterized. In order to harmonize taxonomy and phylogeny, two new genera are created. The genus name Choeropsis is re-validated for the extant Liberian hippo. The nomen Hexaprotodon is restricted to the fossil lineage mostly known in Asia, but also including at least one African species.
    [Show full text]
  • Leeds Thesis Template
    Middle to Late Miocene terrestrial biota and climate by Matthew James Pound M.Sci., Geology (University of Bristol) Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Earth and Environment September 2012 - 2 - Declaration of Authorship The candidate confirms that the work submitted is his/her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. Chapter 2 has been published as: Pound, M.J., Riding, J.B., Donders, T.H., Daskova, J. 2012 The palynostratigraphy of the Brassington Formation (Upper Miocene) of the southern Pennines, central England. Palynology 36, 26-37. Chapter 3 has been published as: Pound, M.J., Haywood, A.M., Salzmann, U., Riding, J.B. 2012. Global vegetation dynamics and latitudinal temperature gradients during the mid to Late Miocene (15.97 - 5.33 Ma). Earth Science Reviews 112, 1-22. Chapter 4 has been published as: Pound, M.J., Haywood, A.M., Salzmann, U., Riding, J.B., Lunt, D.J. and Hunter, S.J. 2011. A Tortonian (Late Miocene 11.61-7.25Ma) global vegetation reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 300, 29-45. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2012, The University of Leeds, British Geological Survey and Matthew J.
    [Show full text]
  • Evolution and Development of Cetacean Appendages Across the Cetartiodactylan Land-To-Sea Transition
    EVOLUTION AND DEVELOPMENT OF CETACEAN APPENDAGES A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Lisa Noelle Cooper December, 2009 Dissertation written by Lisa Noelle Cooper B.S., Montana State University, 1999 M.S., San Diego State University, 2004 Ph.D., Kent State University, 2009 Approved by _____________________________________, Chair, Doctoral Dissertation Committee J.G.M. Thewissen _____________________________________, Members, Doctoral Dissertation Committee Walter E. Horton, Jr. _____________________________________, Christopher Vinyard _____________________________________, Jeff Wenstrup Accepted by _____________________________________, Director, School of Biomedical Sciences Robert V. Dorman _____________________________________, Dean, College of Arts and Sciences Timothy Moerland ii TABLE OF CONTENTS LIST OF FIGURES ........................................................................................................................... v LIST OF TABLELS ......................................................................................................................... vii ACKNOWLEDGEMENTS .............................................................................................................. viii Chapters Page I INTRODUCTION ................................................................................................................ 1 The Eocene Raoellid Indohyus ........................................................................................
    [Show full text]
  • Early Miocene Hippopotamids (Cetartiodactyla) Constrain the Phylogenetic and Spatiotemporal Settings of Hippopotamid Origin
    Early Miocene hippopotamids (Cetartiodactyla) constrain the phylogenetic and spatiotemporal settings of hippopotamid origin Maeva Orliaca,1, Jean-Renaud Boisserieb,c, Laura MacLatchyd, and Fabrice Lihoreaua aInstitut des Sciences de l’Evolution, Unité Mixte de Recherche 5554, Université Montpellier 2, 34000 Montpellier, France; bCentre Français des Etudes Ethiopiennes/French Centre for Ethiopian Studies, Centre National de la Recherche Scientifique Unité de Service et de Recherche 3137, Addis Ababa, Ethiopia; cInstitut International de Paléoprimatologie, Paléontologie Humaine: Evolution et Paléoenvironnements, Unité Mixte de Recherche 6046, Université de Poitiers, F-86022 Poitiers, France; and dDepartment of Anthropology, University of Michigan, Ann Arbor, MI 48109 Edited* by David Pilbeam, Harvard University, Cambridge, MA, and approved May 5, 2010 (received for review February 3, 2010) The affinities of the Hippopotamidae are at the core of the phy- ctyl clades (Cetancodonta, Ruminantia, Suoidea, and Tylopoda) logeny of Cetartiodactyla (even-toed mammals: cetaceans, ru- remained unresolved in recent combined analyses of extinct and minants, camels, suoids, and hippos). Molecular phylogenies extant data (ref. 9, figure 2; refs. 15 and 16). However, these and support Cetacea as sister group of the Hippopotamidae, implying other recent large-scale analyses aiming at clarifying cetartio- a long ghost lineage between the earliest cetaceans (∼53 Ma) and dactyl basal relationships (10, 11, 17–20) included none or only the earliest hippopotamids (∼16 Ma). Morphological studies have a limited subset of fossil “suiforms” classically and more con- proposed two different sister taxa for hippopotamids: suoids (no- troversially interpreted as hippopotamid stem groups and, in all tably palaeochoerids) or anthracotheriids. Evaluating these phylo- cases, no fossil hippopotamids.
    [Show full text]
  • Unexpected Evolutionary Patterns of Dental Ontogenetic Traits in Cetartiodactyl Mammals Helder Gomes Rodrigues, Fabrice Lihoreau, Maëva Orliac, J
    Unexpected evolutionary patterns of dental ontogenetic traits in cetartiodactyl mammals Helder Gomes Rodrigues, Fabrice Lihoreau, Maëva Orliac, J. Thewissen, Jean-Renaud Boisserie To cite this version: Helder Gomes Rodrigues, Fabrice Lihoreau, Maëva Orliac, J. Thewissen, Jean-Renaud Boisserie. Un- expected evolutionary patterns of dental ontogenetic traits in cetartiodactyl mammals. Proceed- ings of the Royal Society B: Biological Sciences, Royal Society, The, 2019, 286 (1896), pp.20182417. 10.1098/rspb.2018.2417. hal-03098504 HAL Id: hal-03098504 https://hal.archives-ouvertes.fr/hal-03098504 Submitted on 5 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Unexpected evolutionary patterns of dental ontogenetic traits in cetartiodactyl mammals Helder GOMES RODRIGUES1, Fabrice LIHOREAU1, Maëva ORLIAC1, J.G.M. THEWISSEN2, Jean-Renaud BOISSERIE3 1Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France 2Department of Anatomy, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272, USA 3Laboratoire Paléontologie Evolution Paléoécosystèmes Paléoprimatologie, CNRS, Université de Poitiers - UFR SFA, Bât B35 - TSA 51106, 86073 Poitiers Cedex 9, France Corresponding author: Helder Gomes Rodrigues Email address: [email protected] Telephone: +33 1 40 79 36 73 1 Abstract Studying ontogeny in both extant and extinct species can unravel the mechanisms underlying mammal diversification and specialization.
    [Show full text]
  • On the Tayassuid Affinities of Xenohyusginsburg, 1980, and the Description of New Fossils from Spain*
    Estudios geol., 45: 233-237 (1989) ON THE TAYASSUID AFFINITIES OF XENOHYUSGINSBURG, 1980, AND THE DESCRIPTION OF NEW FOSSILS FROM SPAIN* M. Pickford** and J. Morales*** ABSTRACf In 1980, Ginsburg created the new genus Xenobyus for a large suiform artiodactyl which he considered to belong to the family Suidae. Among the distinguishing characters of the genus, Ginsburg cited the enlarged, strongly curved and inflated central upper incisors possessing a distal accessory cusplet, the shortened muzzle, the enlarged lower fllSt and second incisors, and the c10se packing of the entire tootb row (i.e. reduced to absent diastemata). These and other characters, such as the vertically implanted mandibular canines, tbe sympbyseal morpbology, and the shape of the third upper incisor, suggest that Xenobyus belongs instead to the family Tayassuidae, subfa­ mily Doliochoerinae. Wbereas Ginsburg suggested that Xenobyus had an unknown ancestry and that it represented an immigrant into Europe at about the beginning of wne MN2b, it now seems more likely tbat it represents a late doliochoere of the sort represented by DoJiocboerus quercyi which occurs in late Stampian deposits (Ginsburg, 1974). In many ways it is merely an enlarged version of tbis spe­ cies, but tbere are sufficient morphological difIerences to warrant retention of tbe genus Xenobyus. Viewed witbin a tayassuid framework, Xenobyus is not seen to be unusual and not to run counter to evolutionary trends in tbe Suidae, the latter view being a necessity following its identi­ fiation as a suid. Sorne fundamental similarities between tbe molars of Xenobyus and Kenyapotamus could pro­ vide a link between late doliochoeres and early hippopotamids, an hypothesis already mentioned by Pickford (1983).
    [Show full text]
  • Early Miocene Hippopotamids (Cetartiodactyla) Constrain the Phylogenetic and Spatiotemporal Settings of Hippopotamid Origin
    Early Miocene hippopotamids (Cetartiodactyla) constrain the phylogenetic and spatiotemporal settings of hippopotamid origin Maeva Orliaca,1, Jean-Renaud Boisserieb,c, Laura MacLatchyd, and Fabrice Lihoreaua aInstitut des Sciences de l’Evolution, Unité Mixte de Recherche 5554, Université Montpellier 2, 34000 Montpellier, France; bCentre Français des Etudes Ethiopiennes/French Centre for Ethiopian Studies, Centre National de la Recherche Scientifique Unité de Service et de Recherche 3137, Addis Ababa, Ethiopia; cInstitut International de Paléoprimatologie, Paléontologie Humaine: Evolution et Paléoenvironnements, Unité Mixte de Recherche 6046, Université de Poitiers, F-86022 Poitiers, France; and dDepartment of Anthropology, University of Michigan, Ann Arbor, MI 48109 Edited* by David Pilbeam, Harvard University, Cambridge, MA, and approved May 5, 2010 (received for review February 3, 2010) The affinities of the Hippopotamidae are at the core of the phy- ctyl clades (Cetancodonta, Ruminantia, Suoidea, and Tylopoda) logeny of Cetartiodactyla (even-toed mammals: cetaceans, ru- remained unresolved in recent combined analyses of extinct and minants, camels, suoids, and hippos). Molecular phylogenies extant data (ref. 9, figure 2; refs. 15 and 16). However, these and support Cetacea as sister group of the Hippopotamidae, implying other recent large-scale analyses aiming at clarifying cetartio- a long ghost lineage between the earliest cetaceans (∼53 Ma) and dactyl basal relationships (10, 11, 17–20) included none or only the earliest hippopotamids (∼16 Ma). Morphological studies have a limited subset of fossil “suiforms” classically and more con- proposed two different sister taxa for hippopotamids: suoids (no- troversially interpreted as hippopotamid stem groups and, in all tably palaeochoerids) or anthracotheriids. Evaluating these phylo- cases, no fossil hippopotamids.
    [Show full text]
  • From the Late Miocene Baynunah Formation, Abu Dhabi, United Arab Emirates
    ARTICLE A new species of hippopotamine (Cetartiodactyla, Hippopotamidae) from the late Miocene Baynunah Formation, Abu Dhabi, United Arab Emirates JEAN-RENAUD BOISSERIEa,b*, MATHIEU SCHUSTERc, MARK J. BEECHd, ANDREW HILL† & FAYSAL BIBIe a Centre Français des Études Éthiopiennes, USR 3137 CNRS, Ambassade de France en Éthiopie, P.O. BOX 5554 Addis Abeba, Éthiopie b Institut de paléoprimatologie, Paléontologie Humaine : Évolution et Paléoenvironnements, UMR 7262 CNRS, Université de Poitiers, 6 rue Michel Brunet 86000 Poitiers, France c Institut de Physique du Globe de Strasbourg, UMR 7516 CNRS, École et Observatoire des Sciences de la Terre (EOST), Univer- sité de Strasbourg, 1 rue Blessig, 67084 Strasbourg, France d Coastal Heritage and Palaeontology Section, Historic Environment Department, Abu Dhabi Tourism and Culture Authority (TCA Abu Dhabi), 12th Floor – Tower B – Nation Towers Corniche, P.O. Box 94000, Abu Dhabi, United Arab Emirates e Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany * Corresponding author: [email protected] Abstract: The discovery of new hippopotamid material from the late Miocene Baynunah Formation (Abu Dhabi, United Arab Emirates) has prompted the revision of the existing material of this as yet unnamed fossil taxon. The Baynunah hippopotamid appears to be distinct from all other contemporary and later species in having a relatively more elongate symphysis, a feature similar to the earlier (and more primitive) Kenyapotamus. Yet, the Baynunah hippopotamid presents a dentition typical of the Hippopotaminae. It is therefore a distinct species attributed to the later subfamily, described and named in this contribution. This species provides further evidence for a ca.
    [Show full text]
  • Focus on the Hippopotamus (Hippopotamus Amphibious)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/316154826 Focus on the Hippopotamus (Hippopotamus amphibious) Article · June 2012 CITATIONS READS 0 2,618 1 author: Deon Furstenburg GEO WILD Consult (Pty) Ltd. 155 PUBLICATIONS 232 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Game Species Biodiversity Integrity View project Wildlife Risk Management View project All content following this page was uploaded by Deon Furstenburg on 05 September 2018. The user has requested enhancement of the downloaded file. Page 1 of 18 Deon Furstenburg Hippopotamus Hippopotamus amphibious (Linnaeus, 1758) Afrikaans Seekoei German Grossflusspferd French Hippopotame isiNdebele Imvubu isiZulu Imvubu isiXhosa Imvubu seSotho Kubu seTswana Kubu Shona Mvuu/Ngwindi Shangaan Mphubu Nama/Damara !Khaos Photo: D. Furstenburg, adult hippo cow & male youngster IUCN Conservation Status: Lower Risk, least concern (LR/lc). Page 2 of 18 Extant global population is estimated as being between 125 000-150 000. Hippo are the most unpredictable and moody of all African animals. Zee-paarden, the Dutch for “horse of the water” was the first citation on the wildlife of the Cape in Jan van Riebeeck’s journal. Eighteen days after landing in April 1652 a “zee-paard” was killed by his men for meat at the site of the present day Church Square. Van Riebeeck associated the animal with the sea, as hippo were abundant in nearby marshy lagoons, especially those of Muizenberg or Zeekoeivlei. There were also large numbers to be seen in the Berg River. Several other names followed; “zeekoe”, sea-horse, sea-cow and in the 1700’s those in the Nile River were called “Nylperd” or Nile-horse.
    [Show full text]
  • The Myth of the Hippo-Like Anthracothere: the Eternal Problem of Homology and Convergence
    HYPOTHESES OF HIPPOPOTAMID ORIGINS 31 THE MYTH OF THE HIPPO-LIKE ANTHRACOTHERE: THE ETERNAL PROBLEM OF HOMOLOGY AND CONVERGENCE Martin PICKFORD Collège de France, and Département Histoire de la Terre, UMR 5143 du CNRS, Case postale 38, 57 rue Cuvier, 75005, Paris. e-mail: [email protected] Pickford, M. 2008. The myth of the hippo-like anthracothere: The eternal problem of homology and convergence. [El mito de la similitud entre antracoterios e hipopótamos: el eterno problema entre homología y convergencia.] Revista Española de Paleontología, 23 (1), 31-90. ISSN 0213-6937. ABSTRACT The notion that anthracotheres had hippo-like body proportions, locomotion and lifestyles has been in the lit- erature for so long, and has been repeated so many times, that it has taken on the aura of unquestionable truth. However, right from the beginning of studies into hippo-anthracothere relationships over a century and a half ago, observations were made that revealed the existence of fundamental differences in dental, cranial and post- cranial anatomy in the two groups. From 1836 to 1991 two skeletal characters (a descending plate at the angle of the mandible, and raised orbits) have overshadowed all others in suggesting close relationships between hippos and a single anthracothere genus (Merycopotamus) later to be joined by a second genus, Libycosaurus, in 1991 for the descending angle, and 2003 for the raised orbits (Lihoreau, 2003; Pickford, 1991). Close examination of these structures reveals that they are not homologous in the two groups, yet they have played an inordinately stubborn role in interpretations of the relationships between them, featuring in papers as recently as 2005.
    [Show full text]