Growing Brassicas Please Bear with Us, Be Patient and Sue Kraemer Understanding If Any Technical Glitches Master Gardener Pop-Up During Tonight’S Presentation

Total Page:16

File Type:pdf, Size:1020Kb

Growing Brassicas Please Bear with Us, Be Patient and Sue Kraemer Understanding If Any Technical Glitches Master Gardener Pop-Up During Tonight’S Presentation 2/28/21 A Note About Our Class Tonight We Master Gardeners are all volunteers, and while we have acquired basic Zoom skills, sometimes unforeseen technical issues arise. Class 7: Growing Brassicas Please bear with us, be patient and Sue Kraemer understanding if any technical glitches Master Gardener pop-up during tonight’s presentation. 1 2 Another note The information contained in Growing Groceries presentations is based on WSU home gardening publications and other science and research based materials. Resource lists are provided on the King County Growing Groceries website and at the end of some presentations. To enliven the learning experience, speakers may use examples from their own garden experience and draw from their personal gardening successes and failures. Photo Credit: Sue Kraemer 3 4 1 2/28/21 The Mustard Family (Brassicaceae/Cruciferae) Brassicaceae Includes Many Vegetables Photo Credit: Sue Kraemer • Arugula (Eruca vesicaria and • Horseradish (Armoracia rusticana) Diplotaxis tenuifolia) • Kale (Brassica oleracea) • Broccoli (Brassica oleracea) • Kohlrabi (Brassica oleracea) • Brussels sprouts (Brassica oleracea) • Mustard greens (Brassica juncea) • Cabbage (Brassica oleracea) • Pac Choi (Brassica rapa) • Cauliflower (Brassica oleracea) • Radish (Raphanus sativus) • Collards (Brassica oleracea) • Rutabaga (Brassica napus) • Sea kale (Crambe maritima) • Turnip (Brassica rapa) 5 6 Growing Brassicaceae Leafy Greens Arugula, Collard greens, Kale, and Mustard greens Graphic Credits: vox.com 7 8 2 2/28/21 Kale and Collards Kale and Collards (Brassica oleracea and Brassica napus) (Brassica oleracea and Brassica napus) Soil Temp Days to Thin Row Seed Fertilizer Champion Winterbor Seed Depth • Collard Greens for Germ. Emergence Plants To Spacing Life Needs ○Champion ○Flash 55-75°F 1/4" 5-17 12-24" 18-36" 3 years Medium • Kale from Territorial Seeds ○Winterbor • Start indoors February to May for April ○Redbor to mid-July transplanting ○Red Russian • Direct seed March to mid-July for ○Dwarf Green Curled summer to winter harvest (row cover ○Dwarf Scotch Curly recommended) ○Lacinato • Direct seed or transplant in August for ○Scarlet winter harvest Photo Credit: Sue Kraemer Red Russian Lacinato (B. napus) 9 10 Kale and Collards Kale and Collards Photo Credit: sunset.com • One of the most cost-effective vegetables! • Harvest leaves from the bottom up at any size • Cool weather and frost bring out best flavor • Stores well in refrigerator • Nutritional value: low fat; high in vitamins K, A, and C Photo Credits: Sue Kraemer Biennial: lateral buds in spring 11 12 3 2/28/21 Kale and Collards Mustard Greens (Brassica juncea) (Brassica oleracea and Brassica napus) Soil Temp Seed Days to Thin Row Seed Fertilizer for Germ. Depth Emergence Plants To Spacing Life Needs • Edible flowers the 40-75°F 1/4" 2-15 6-18" 9-18" 3 years Medium next spring! • Direct seed early spring or late summer • Very easy to grow! • Early pollen for • Avoid heat to prevent bolting bees • Harvest young leaves or full heads Green Wave Mustard Mix Tatsoi Photo Credits: Sue Kraemer 13 14 Pac Choi (Brassica rapa) Arugula Soil Temp Seed Days to Thin Row Seed Fertilizer for Germ. Depth Emergence Plants To Spacing Life Needs Roquette (Eruca vesicaria) 45-75°F 1/4" 2-15 12-18" 18-36" 3 years Medium • Direct seed early spring or fall • Best in spring and fall • Best directly sown • Direct sow after danger of frost • Most tolerate moderate • Start indoors 4 weeks before frosts transplanting in spring or fall • Harvest frequently and Wild (Diplotaxis tenuifolia) • Avoid heat to prevent bolting Joi Choi when young • Harvest as soon as mature to avoid • Flowers are edible! bolting Photo Credits: commons wikimedia Bopak 15 16 4 2/28/21 Perennial Kale Favorite Recipes • Seakale (Crambe Maritima) Kale pasta Arugula salad ○ Buy transplants in spring ○ Grown by Thomas Jefferson ○ Hardy to -5°F Photo Credits: https://www.monticelloshop.org/ • Kosmic (Brassica Oleracea) ○ Transplant root cuttings Photo Credits: cookpad.com Photo Credits: foodnetwork.com in spring Kale, bacon, and sun-dried Arugula, olive oil, lemon juice, ○ Does not flower tomatoes and Parmesan cheese ○ Hardy to 10°F 17 18 Broccoli (Brassica oleracea) • Broccoli Growing Brassicaceae ○Umpqua ○Thompson for Buds and Flowering ○Waltham Heads ○Green Magic Umpqua ○Emerald Jewel Broccoli, Brussel Sprouts, Cabbage, and Cauliflower • Brokali or sprouting broccoli ○Atlantis ○Apollo Apollo Photo Credit: UBC Botanical Garden 19 20 5 2/28/21 Broccoli (Brassica oleracea) Broccoli (Brassica oleracea) Soil Temp Seed Days to Thin Row Seed Fertilizer for Germ. Depth Emergence Plants To Spacing Life Needs 55-75°F 1/4" 5-17 12-24" 18-36" 3 years High • Direct seed April through June (row cover recommended) • Start indoors 4 – 6 weeks before transplant in April through June • Start autumn overwintering varieties May-July for transplanting June-August • Harvest when heads are tight and dense • Start overwintering sprouting broccoli from mid-May to • Cut side shoots to promote production June, transplant by end of July-September • Stores well in refrigerator 21 22 Cabbage (Brassica oleracea) Cabbage (Brassica oleracea) Soil Temp Seed Days to Thin Row Seed Fertilizer for Germ. Depth Emergence Plants To Spacing Life Needs • Early types grow fast, so 55-75°F 1/4" 5-17 18-24" 2-4’ 3 years Medium harvest promptly • Include 2 or 3 wrapper leaves • Direct seed March – June (not recommended for fall when cutting heads planting) • Early types store for 1-2 • Start indoors 4 – 6 weeks before transplant in March months at 36⁰F through June • Later types up to 6 months at 36⁰F Charmant Ruby Ball Photo Credit: frugalupstate.com 23 24 6 2/28/21 Cauliflower (Brassica oleracea) Cauliflower (Brassica oleracea) Soil Temp Seed Days to Thin Row Seed Fertilizer for Germ. Depth Emergence Plants To Spacing Life Needs 55-75°F 1/4" 5-17 12-24" 18-36” 3 years High • Direct seed April – June (not recommended for fall planting) • Start indoors 4 – 6 weeks before transplant • Blanching: to ensure completely white heads, tie the inner • Harvest heads when florets are tight and dense leaves around the head when it starts to form • Overmature florets will separate • Stores well refrigerated Snow Crown Graffiti 25 26 (Brassica oleracea) Brussels Sprouts Brussels Sprouts (Brassica oleracea) Soil Temp Seed Days to Thin Plants Row Seed Fertilizer for Germ. Depth Emergence To Spacing Life Needs 3-4 • Best after couple of frosts 55-75°F 1/4" 5-17 24" 18-36” High years • Mature buds will be about 1 • Direct seed: not recommended to 1 ½ inches • Start indoors 4 – 6 weeks before transplant • Harvest from the bottom up • Start May-June for transplanting June-August for fall crop • Or, mature entire stock by • Timing is important: follow variety specific instructions cutting off top at growing point • Store refrigerated Rubine Hestia 27 28 7 2/28/21 Turnips (Brassica rapa) and Rutabagas (Brassica napus) Soil Temp Seed Days to Thin Plants Row Seed Fertilizer for Germ. Depth Emergence To Spacing Life Needs Growing Brassicaceae 55-75°F 1/4-1/2" 5-17 6-8" 12-16” 3 years Low Root Crops • Direct seed spring through summer • Sow turnips July-early Sept for fall/winter crop Radishes, Rutabagas, and • Sow rutabagas in July for fall/winter crop Turnips • Thin when form two true leaves • Harvest when small for sweetness • Pick young turnip greens • Store refrigerated Purple top Joan turnip rutabaga Photo Credits: UBCDIYnetwork Botanical Garden Photo Credits: Sue Kraemer 29 30 Radish (Raphanus sativus) Radishes Soil Temp Seed Days to Thin Row Seed Fertilizer for Germ. Depth Emergence Plants To Spacing Life Needs • Let flower and reseed over winter 55-75°F 1/2" 4-11 1-2" 8-12” 4 years Low • Flowers are edible • Direct seed spring to early summer • Direct sow mid-August to early September for fall crop • Extend harvest by planting every two weeks • Thin promptly when form two true leaves • Avoid dry or crowded conditions (slow growth, pithy, hot) • Harvest young • Let a few bolt: green seed pods are edible • Remove tops before refrigerating Cherry Belle Daikon 31 32 8 2/28/21 Horseradish (Armoracia rusticana) Brassicaceae Pests and Diseases • Perennial for years of harvest • Fertilize top 3-4 inches of soil and dig shallow trench • Space 1 to 2 feet apart and cover with 2 inches soil • Will grow fast and spread • Harvest in fall and winter after leaves have died back Photo Credit: Heidi McKibbin Photo Credits: Heidi McKibbin 33 34 Integrated Pest Management (IPM) Clubroot • Identity pests • Prevent problems before they start • Affected Crops: all members • Monitor with careful observation of the family • Control with mechanical and biological practices first (not eradicate) • Prevention and Control ○ Rotate crops ○ Check pH: above 6.8 Photo Credit: agric.wa.gov.au ○ Provide adequate calcium and magnesium ○ Provide drainage Photo Credit: Wikipedia ○ Remove weeds Braconid wasp Aleiodes indiscretus laying eggs in a caterpillar Photo Credit: Sue Kraemer Photo Credit: /articles.extension.org 35 36 9 2/28/21 Downy Mildew Aphids • Affected Crops: broccoli, • Affected Crops: all members Brussels sprouts, cabbage, of the family cauliflower, and kale • Prevention and Control • Prevention and Control ○Remove plant debris ○ Rotate crops Photo Credit: wsu.edu ○Avoid high levels of nitrogen ○ Avoid overhead watering ○Encourage natural enemies ○ Give plants plenty of space ○Spray off with water hose ○ Remove diseased plants ○Control honeydew collecting and plant parts (don’t place ants in home compost!)
Recommended publications
  • Crambe: a North Dakotan Case Study
    Crambe: A North Dakotan case study Sue Knights Joint Centre for Crop Innovation, The University of Melbourne, Horsham, Vic. 3401 www.jcci.unimelb.edu.au Email [email protected] Abstract Crambe (Crambe abyssinica), an industrial oilseed, has been successfully grown, processed and marketed on a commercial scale in North Dakota, USA, since 1990. A major reason for its success has been a multidisciplinary team involved in the research, development and commercialisation of the species through the auspices of the High Erucic Acid Development Effort (HEADE). Ecologically, crambe has offered a unique opportunity for farmers to diversify their crop rotations in North Dakota as it shares few pests with more commonly grown crops. It also shows tolerance to a wide range of insects and is produced using standard small grain equipment. However, crambe has one short fall; due to its low-test weight it is only economic to process it locally. In recent years, the production of crambe in North Dakota has fluctuated as the commercial players involved in the industry have changed. Its future will depend upon both the future of biorenewable resources together with innovative research to develop additional markets for the crop. This paper presents a brief case study of the development of the North Dakotan crambe industry. Key Words Crambe, oilseed, new crop, case study Introduction Hundreds of crops have been domesticated and cultivated by humankind during the history of agriculture, utilised for food, forage, fibre and medicine. However, only a small number provide the bulk of the raw material necessary for human survival. The limited diversity has increased the vulnerability of crops to adverse climatic conditions and fluctuating markets.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Agrobiodiversity.2019.2585-8246.323-332
    https://doi.org/10.15414/agrobiodiversity.2019.2585-8246.323-332 AGROBIODIVERSITY FOR IMPROVING NUTRITION , HEALTH AND LIFE QUALITY 2019 ACCUMULATION OF NUTRIENTS IN THE RAW OF CRAMBE L. SPECIES Vergun Olena*, Shymanska Oksana, Rakhmetov Dzhamal, Fishchenko Valentyna, Bondarchuk Oleksandr, Rakhmetova Svitlana M.M. Gryshko National Botanical Garden of the NAS of Ukraine, Kyiv, Ukraine Received: 29. 11. 2019 Revised: 1. 12. 2019 Published: 6. 12. 2019 Investigation of accumulation of different compounds in above-ground part of these plants an important aspect for evaluation of perspective of use. The aim of this study was to compare the peculiarities of the biochemical composition of Crambe species dynamically. Plant material collected from the experimental collection of M.M. Gryshko National Botanical Garden of the NAS of Ukraine. It was studied above-ground parts of C. cordifolia Steven, C. koktebelica (Junge) N. Busch, C. maritima L., C. steveniana parameters was studied: dry matter by drying to consist weight at the 105 °C; content of sugars by Bertrand‘s method Rupr. At using the spring of glucose vegetation, scale; buddingascorbic stage, acids flowering, with 2.6-dichlorophenolindophenol, and fruitage. Following biochemical tannins with indigo carmine discoloration, organic acids by sodium hydroxide titration with phenolphthalein; vegetation was from 9.76 (C. cordifolia, budding) to 22.54 (C. maritima at the fruitage) %, total content ofcarotene sugars withfrom gasoline6.54 (C. maritimegalosh spectrophotometrically; at the fruitage) to 33.18 ash ( C.in cordifolia muffle over. at the The budding) dry matter %, ascorbic during acid from 139.85 (C. maritima at the spring vegetation) to 987.02 (C.
    [Show full text]
  • Biogeography and Diversification of Brassicales
    Molecular Phylogenetics and Evolution 99 (2016) 204–224 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Biogeography and diversification of Brassicales: A 103 million year tale ⇑ Warren M. Cardinal-McTeague a,1, Kenneth J. Sytsma b, Jocelyn C. Hall a, a Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada b Department of Botany, University of Wisconsin, Madison, WI 53706, USA article info abstract Article history: Brassicales is a diverse order perhaps most famous because it houses Brassicaceae and, its premier mem- Received 22 July 2015 ber, Arabidopsis thaliana. This widely distributed and species-rich lineage has been overlooked as a Revised 24 February 2016 promising system to investigate patterns of disjunct distributions and diversification rates. We analyzed Accepted 25 February 2016 plastid and mitochondrial sequence data from five gene regions (>8000 bp) across 151 taxa to: (1) Available online 15 March 2016 produce a chronogram for major lineages in Brassicales, including Brassicaceae and Arabidopsis, based on greater taxon sampling across the order and previously overlooked fossil evidence, (2) examine Keywords: biogeographical ancestral range estimations and disjunct distributions in BioGeoBEARS, and (3) determine Arabidopsis thaliana where shifts in species diversification occur using BAMM. The evolution and radiation of the Brassicales BAMM BEAST began 103 Mya and was linked to a series of inter-continental vicariant, long-distance dispersal, and land BioGeoBEARS bridge migration events. North America appears to be a significant area for early stem lineages in the Brassicaceae order. Shifts to Australia then African are evident at nodes near the core Brassicales, which diverged Cleomaceae 68.5 Mya (HPD = 75.6–62.0).
    [Show full text]
  • Removal of Heavy Metals from a Contaminated Soil Using Phytoremediation
    MATEC Web of Conferences 305, 00061 (2020) https://doi.org/10.1051/matecconf/202030500061 SESAM 2019 Removal of heavy metals from a contaminated soil using phytoremediation Georgiana Luiza Arnold Tatu, Nicolae Valentin Vladut, Iulian Voicea, Nicoleta Alexandra Vanghele, and Mirabela Augustina Pruteanu*, National Research - Development Institute for Machines and Installations Designed to Agriculture and Food Industry, 6 Ion Ionescu De La Brad Blv., 013813 Bucharest, Sector 1, Romania Abstract. Environment pollution with heavy metals, can be a cause of the industrialization activities and technological processes, and has become an important issue. Soil contamination due to natural or anthropogenic causes (such as mining, smelting, warfare and military training, electronic industries, fossil fuel consumption, waste disposal, agrochemical use and irrigation) is a major environmental hazard. Various remediation techniques have been highlighted to clean or restore soils contaminated with heavy metals such physical, chemical or biological. Phytoremediation is a relatively new approach to removing contaminants from the environmental. It may be defined as the use of plants to remove, destroy or sequester hazardous substances from environmental. This paper is a review of removal of heavy metals from a contaminated soil using phytoremediation. 1 Introduction Brassicaceae is one of the largest angiosperm families, predominant in the temperate region and best cultivated around the Mediterranean. They belong to a group of natural plants conduplicate cotyledons (rare acumbent or existing) and the segment (rare lomentaceous or nucciform) fruit, usually in general, tanks and have flowers with four petals of equal size in the shape of a cross "crucifer" [1-5]. The Brassicaceae family can have a large number of genres and species: ranging from 338 to 380 genres and from 2500 to ca.
    [Show full text]
  • Transcriptomic Analysis of Eruca Vesicaria Subs
    Huang et al. BMC Plant Biology (2019) 19:419 https://doi.org/10.1186/s12870-019-1997-2 RESEARCH ARTICLE Open Access Transcriptomic analysis of Eruca vesicaria subs. sativa lines with contrasting tolerance to polyethylene glycol-simulated drought stress Bang-Lian Huang1,2, Xuan Li1, Pei Liu1, Lan Ma1, Wenhua Wu1, Xuekun Zhang3, Zaiyun Li4 and Bangquan Huang1* Abstract Background: Eruca vesicaria subsp. sativa is one of the Cruciferae species most tolerant to drought stress. In our previous study some extremely drought-tolerant/sensitive Eruca lines were obtained. However little is known about the mechanism for drought tolerance in Eruca. Methods: In this study two E. vesicaria subs. sativa lines with contrasting drought tolerance were treated with liquid MS/PEG solution. Total RNA was isolated from 7-day old whole seedlings and then applied to Illumina sequencing platform for high-throughput transcriptional sequencing. Results: KEGG pathway analysis indicated that differentially expressed genes (DEGs) involved in alpha-Linolenic acid metabolism, Tyrosine metabolism, Phenylalanine, Tyrosine and tryptophan biosynthesis, Galactose metabolism, Isoquinoline alkaloid biosynthesis, Tropane, Piperidine and pyridine alkaloid biosynthesis, Mineral absorption, were all up-regulated specifically in drought-tolerant (DT) Eruca line under drought stress, while DEGs involved in ribosome, ribosome biogenesis, Pyrimidine metabolism, RNA degradation, Glyoxylate and dicarboxylate metabolism, Aminoacyl-tRNA biosynthesis, Citrate cycle, Methane metabolism,
    [Show full text]
  • 14/ 20176 EXTRAPOLATION TABLE for EFFECTIVENESS of FUNGICIDES ► DISEASES on VEGETABLE BRASSICAS
    14/ 20176 EXTRAPOLATION TABLE for EFFECTIVENESS of FUNGICIDES ► DISEASES ON VEGETABLE BRASSICAS INTRODUCTION The table provides detailed lists of acceptable extrapolations organized by crop groups, for regulatory authorities and applicants, in the context of the registration of plant protection products for minor uses. The table should be used in conjunction with the EPPO Standard PP1/257(1) - Efficacy and crop safety extrapolations for minor uses. It is important to ensure that expert judgment and regulatory experience are employed when using these tables. EPPO excludes liability as to the reliability of the information provided through these tables. The scope for extrapolation may be extended as data and experience with a certain plant protection products increases. The applicant should always provide appropriate justification and information to support the proposed extrapolation. For example, comparability of target biology may be a relevant factor, either in extrapolating to other target species or for the same target onto another crop. For crops, factors such as comparable growth habit, structure etc. should be considered. TABLE FORMAT The main pest species for the crop group are listed in Column 1 (although this is not exhaustive), and the pest group to which they belong is specified in Column 2. Companies may choose if they wish to provide data only for individual named species, which would then appear individually listed on the label. But underlined species have been identified as key major targets and as such it is advisable to generate data on these. Furthermore, data on these species then allow a claim to be made for the whole pest group (as specified in Column 2), if required.
    [Show full text]
  • Pieris Brassicae
    Pieris brassicae Scientific Name Pieris brassicae (L.) Synonyms: Mancipium brassicae Linnaeus Papilio Danaus brassicae Papilio brassicae Linnaeus Pieris anthrax Graham-Smith & Graham-Smith Pieris brassicae brassicae (Linnaeus) Pieris brassicae wollastoni (Butler) Pieris carnea Graham-Smith & Figure 1. P. brassicae adult (Image courtesy of Graham-Smith Hania Berdys, Bugwood.org) Pieris chariclea (Stephens) Pieris emigrisea Rocci Pieris griseopicta Rocci Pieris infratrinotata Carhel Pieris nigrescens Cockerell Pontia brassicae Linnaeus Pontia chariclea Stephens Common Names Large white butterfly, cabbage caterpillar Type of Pest Butterfly Taxonomic Position Class: Insecta, Order: Lepidoptera, Family: Pieridae Reason for Inclusion CAPS Target: AHP Prioritized Pest List for FY 2012 Pest Description Egg: “When first laid the eggs are a very pale straw color; within twenty four hours this has darkened to yellow and in at least one subspecies (P. h. cheiranthi Hueb) they are bright orange… a few hours before hatching the eggs turn black and the form of the larva can be seen through the shell” (Gardiner, 1974). Larva: “Length [of the larva is] 40 mm. Body fawn with black patches, yellow longitudinal stripes, covered with short white hairs. First instar head black; final instar head black and gray, frons yellow (Brooks and Knight 1982, Emmett 1980)” (USDA, 1984). Last Update: July 19, 2011 1 Pupa: “Length 20-24 mm, width 5-6 mm, yellow brown marked with black dots (Avidov and Harpaz 1969)” (USDA, 1984). Adult: “Body length 20 mm (Avidov and Harpaz 1969). Antennae black, tips white. Wingspan 63 mm. Wings dorsally white. Forewing tips black; hindwing front margin with black spot. Female forewing with 2 black spots, black dash on each.
    [Show full text]
  • Early Summer Gravel Garden Plants
    Early Summer Gravel Garden Plants We give you the tools, you create the garden © GARDENCOURSES.COM 2021 Crambe maritima This is a plant which very much evokes the seaside. Its ground- hugging, glaucous crown of leaves hunker down low and in early summer it produces small sweet-scented flowers reminiscent of Alyssum. As its common name sea kale suggests, the leaves of this plant are edible. Crambe maritima does a good job as a compact filler plant, such as Alchemilla mollis might in a border. If you’re looking for a dramatic statement plant, check out its relative Crambe cordifolia. We give you the tools, you create the garden © GARDENCOURSES.COM 2021 Corokia cotoneaster ‘Ohau Yellow’ Instantly transport yourself to the Outback with a Corokia cotoneaster! This variety “Ohau Yellow’ was spotted in full flower at Kew Gardens and can be tricky to source, but there are many varieites to choose from, all sporting an intricate network of geometrically spectacular stems giving rise to the plants common name; Wire Netting bush. Place this plant where you will pass right by it. The stems are best marvelled at close up. We give you the tools, you create the garden © GARDENCOURSES.COM 2021 Self sowers Self sowing plants like this Nigella damascena ‘Miss Jekyll Alba’ will be quite happy in a dry garden and will seed themselves around gently wherever they’re happy. Beware some other drought tolerant plants that will survive in a dry spot but may be too enthusiastic with their propagation, such as Verbena bonariensis. We give you the tools, you create the garden © GARDENCOURSES.COM 2021 Origanum vulgare ‘Aureum’ This is a plant with it all really; scent, foliage colour, low maintenance requirements and flowers that are beloved by pollinators.
    [Show full text]
  • Phytogeographic Basis Plant Breeding
    PHYTOGEOGRAPHIC BASIS of PLANT BREEDING 1. Local Varieties and Their Significance :— The -varieties of cultivated plants grown in the different regions of the Soviet Union until recently were varieties introduced from various localities and countries, and were inseparable from human migration and colonization. The list of cultivated plants reflects the history of our country in its recent past, it shows the effects of individual peasant farming. In the separate groups and varieties of plants one can trace the routes by which they were brought from Western Europe, the United States, Asia Minor, Mongolia, and Iran. In the pre-revolutionary period, the introduction of new varieties in our country was haphazard. Beginning with the eighteenth century, individual amateur growers and societies unsystemati- cally introduced new varieties from abroad. Sometimes these new varieties were quite valuable but because of the vastness of our country and the com- plete absence of any state-planned system of plant introduction, the imported varieties usually restricted themselves to very limited areas and disappeared. It may be considered that pedigree seed production, in the real meaning of the term, did not exist in our country before the October Revolution. We have just begun a planned distribution of varieties in accordance with the needs of our large-scale socialized and mechanized agricultural economy. Yet, there is no doubt that the varietal materials which were introduced in our country and cultivated for decades and centuries were subjected to natural selection, and also to deliberate or casual artificial selection, and that some local varieties evolved that were ecologically adapted. The proximity of the Soviet Union to the basic centers of origin of numer- ous cultivated plants facilitated the selection of exceptionally valuable forms.
    [Show full text]
  • Analysis of Carboxylic Acids of Crambe Cordifolia Steven
    Pharmacia 68(1): 15–21 DOI 10.3897/pharmacia.68.e56715 Research Article Analysis of carboxylic acids of Crambe cordifolia Steven Svitlana Marchyshyn1, Liudmyla Slobodianiuk1, Liliia Budniak1, Olha Skrynchuk1 1 Horbachevsky Ternopil National Medical University, Ternopil, Ukraine Corresponding author: Liliia Budniak ([email protected]) Received 20 July 2020 ♦ Accepted 21 September 2020 ♦ Published 7 January 2021 Citation: Marchyshyn S, Slobodianiuk L, Budniak L, Skrynchuk O (2021) Analysis of carboxylic acids of Crambe cordifolia Steven. Pharmacia 68(1): 15–21. https://doi.org/10.3897/pharmacia.68.e56715 Abstract Crambe cordifolia Steven is a perennial herb and contains many biologically active substances, including amino acids, quercetin and glycosides of kaempferol. In continuation of the investigation of these plant compounds, it is advisable to study the qualitative composition and quantitative contents of carboxylic acids. Using a HPLC method the quantitative content of the following organic acids was identified and determined: pyruvic (40.66 mg/g), isocitric (12.88 mg/g), citric (8.71 mg/g), succinic (38.03 mg/g) and malic (0.75 mg/g). Among fatty acids the saturated and unsaturated acids were determined by the GC/MS method. The content of poly- unsaturated fatty acids of the total fatty acids was 56.97%, saturated – 38.53% and monounsaturated – 4.50%. Linolenic and palmitic acids dominated among the determined 7 fatty acids, their content was 9.68 mg/g (47.87%) and 4.88 mg/g (24.14%). The results of the study show that Crambe cordifoliа Steven leaves is a source of carboxylic acids. Keywords Crambe cordifolia Steven, fatty acids, GC/MS, HPLC, organic acids Introduction their widespread introduction and investigation due to promising properties such as food, decorative, medicinal The importance of medicinal plants did not reduce the an- etc.
    [Show full text]
  • Seed Fatty Acid Compositions and Chemotaxonomy of Wild Crambe (Brassicaceae) Taxa in Turkey
    Turkish Journal of Agriculture and Forestry Turk J Agric For (2020) 44: 662-670 http://journals.tubitak.gov.tr/agriculture/ © TÜBİTAK Research Article doi:10.3906/tar-1912-76 Seed fatty acid compositions and chemotaxonomy of wild Crambe (Brassicaceae) taxa in Turkey İlhan SUBAŞI* Central Research Institute for Field Crops, Ankara, Turkey Received: 31.12.2019 Accepted/Published Online: 01.09.2020 Final Version: 08.12.2020 Abstract: Wild Crambe species have greater potential than Crambe hispanica in industry, medicine, as a vegetable, etc. A total of 53 germplasm accessions, belonging to 7 taxa, were collected from the natural flora of Turkey. The accessions consisted ofC. orientalis var. orientalis (18 accessions), C. orientalis var. dasycarpa (1 accession), C. orientalis var. sulphurea (2 accessions), C.tataria var. aspera (3 accessions), C. tataria var. tataria (26 accessions), C. grandiflora (1 accession), C. orientalis var. sulphurea, and C. maritima (2 accessions). In this study, the seed fatty acid compositions and oil contents were determined, and the data were used for taxonomic cluster, correlation, and principal component analyses. Important correlations were determined among the fatty acids; however, the oil contents were not correlated. Altitude was positively correlated with linolenic acid, while negatively correlated with oleic and linoleic acid. For the principal component and correlation analyses, 7 major fatty acids (>1%) were used, including palmitic (C16:0), oleic (C18:1), linoleic (C18:2), cis-11 eicosenoic (20:1), linolenic (C18:3), erucic (C22:1), and nervonic acid (C24:1). A total of 17 fatty acids were used for the cluster analyses. Two major clusters were formed, where the first consisted of C.
    [Show full text]