Phyllotreta Cruciferae Striped Flea Beetle

Total Page:16

File Type:pdf, Size:1020Kb

Phyllotreta Cruciferae Striped Flea Beetle Flea Beetle Management in Brassica Greens Ruth Hazzard, Caryn Andersen, Roy Van Driesche, Francis Mangan University of Massachusetts Crucifer Flea Beetle • Predominant flea beetle species in this area • Solid black in color, with metallic sheen • Feeds only on brassicas • Introduced to America in the 1900’s • Scientific name: Phyllotreta cruciferae Striped Flea Beetle • Much less numerous in New England • Black with one yellow stripe down each wing cover • Emerges slightly earlier • Feeds only on brassicas • Scientific name: Photo courtesy of Manitoba Agriculture and Food Phyllotreta striolata Host Crops for Crucifer and Striped Flea Beetle Brassica oleracea Broccoli, Brussels Sprouts, Cabbage, Cauliflower, Kale, Collards, White- flowering Chinese Broccoli, Gai Lan Brassica rapa Chinese cabbage, Turnip, Hon Tsai Tai, Yellow-flowering Chinese Broccoli, Broccoli Raab, Komatsuna, Pac Choi, Tat Soi Brassica juncea Mustard Greens, Bok Choy Brassica nigra Black Mustard Brassica napus Red Russian Kale, Rutabaga, Oilseed rape, Canola Brassica campestris Canola, Turnip Raphanus sativus Radish, Daikon Eruca vesicaria Arugula Host Crops for Crucifer and Striped Flea Beetle Brassica oleracea Broccoli, Brussels Sprouts, Cabbage, Cauliflower, Kale, Collards, White-flowering Chinese Broccoli, Gai Lan Brassica rapa Chinese cabbage, Turnip, Hon Tsai Tai, Yellow-flowering Chinese Broccoli, Broccoli Raab, Komatsuna, Pac Choi, Tat Soi Brassica juncea Mustard Greens, Bok Choy Brassica nigra Black Mustard Brassica napus Red Russian Kale, Rutabaga, Oilseed rape, Canola Brassica campestris Canola, Turnip Raphanus sativus Radish, Daikon Eruca vesicaria Arugula Host Crops for Crucifer and Striped Flea Beetle Brassica oleracea Broccoli, Brussels Sprouts, Cabbage, Cauliflower, Kale, Collards, White-flowering Chinese Broccoli, Gai Lan Brassica rapa Chinese cabbage, Turnip, Hon Tsai Tai, Yellow-flowering Chinese Broccoli, Broccoli Raab, Komatsuna, Pac Choi, Tat Soi Brassica juncea Mustard Greens, Bok Choy Brassica nigra Black Mustard Brassica napus Red Russian Kale, Rutabaga, Oilseed rape, Canola Brassica campestris Canola, Turnip Raphanus sativus Radish, Daikon Eruca vesicaria Arugula Host Crops for Crucifer and Striped Flea Beetle Brassica oleracea Broccoli, Brussels Sprouts, Cabbage, Cauliflower, Kale, Collards, White-flowering Chinese Broccoli, Gai Lan Brassica rapa Chinese cabbage, Turnip, Hon Tsai Tai, Yellow- flowering Chinese Broccoli, Broccoli Raab, Komatsuna, Pac Choi, Tat Soi Chinese broccoli Chinese cabbage Bok Choy Host Crops for Crucifer and Striped Flea Beetle, continued Brassica juncea Mustard Greens Brassica nigra Black Mustard Brassica napus Red Russian Kale, Rutabaga, Oilseed rape, Canola Brassica campestris Canola, Turnip Raphanus sativus Radish, Daikon Eruca vesicaria Arugula Mustards Daikon Cabbage root maggot damage is also a serious problem on daikon Flea Beetle Damage Shot-hole Damage • Tends to occur on non-waxy leaves • Examples: Brassica rapa, B. napa, B. juncea Flea Beetle Damage Marginal Damage • Tends to occur on waxy leaves • Examples: Brassica oleracea, B. napus Why are flea beetles getting worse in the Northeast US? 1. More production of preferred crops 2. Succession planting from May to October 3. Small farms with few rotation options 4. Low mortality from insecticides, esp. on organic farms Flea beetle life cycle Above ground, on foliage ADULT Underground, near plant roots PUPA EGGS LARVA How many flea beetle generations are there per year? Emerge → feed → head to overwintering sites 2nd Summer generation Some emerge → feed → reproduce → die 1st Summer generation Some feed → head to overwintering sites Emerge from overwintering→ feed → reproduce → die Overwintered generation eggs May June July August September October Above ground, on foliage ADULT Underground, near plant roots PUPA EGGS LARVA Where do flea beetles spend the winter? Fall crop Sampling Site- 2002 Average Number of Flea Beetles per sample Overwintering Study Winter 2001-2002 30 25 les 20 et e b f 15 e # o ag 10 aver 5 0 woods shrubby grassy location of sample Spring Movement into Fields • Flea beetles rapidly locate new crops • Heavy damage (or death) to young plants may result • Numbers are high from May - early July When and how much do Flea beetles feed? Feeding Experiment • 1 collard plant (3-4 leaf stage) per cage • 5 flea beetles • 24 hours in growth chamber at 25°C and 16L:8D • 10 reps per week • Recorded # of feeding holes per plant Average number of holes per plant after being caged for 24 hours with 5 flea beetles (2003 data) 120 a 100 July 14 Emergence of 1st ab generation 80 abc ant l p bcd / bcd s bcd e bcd l 60 o bcde bcdef bcdef defg 40 bcd bcdef August 26 avg # h defg defg cdef Emergence of 2nd generation 20 efg fg g 0 7 4 4 8 2 9 6 6 3 0 30 1 21 28 11 1 25 1 23 30 13 20 27 1 17 5/ / 6/ 7/ 7/ 8/ 9/ 4/ 5/ 5 5/ 6/ 6/ 6/ 7/ 7/ 7/ 8/ 8/ 8/ 9/ 9/ date Conclusions Feeding exp’t • Propensity to feed significantly higher in early August • Early August peak may reflect emergence of first new generation of adults • Increase in feeding in mid-September may reflect emergence of 2nd generation and their feeding before moving to overwintering sites Response to sticky cards Percentage of beetles captured by a yellow sticky card during 24 hour cage exp't 100 a 90 July 14 st 80 Emergence of 1 generation ab 70 ab ab ab ab ab d e 60 abc r u bcd t p 50 ab a bcd ab abc 40 % c bcd 30 August 26 bcd Emergence of 2nd 20 generation cd 10 d 0 4 4 8 2 6 6 3 3 0 30 /7 1 21 28 11 1 25 /9 1 23 30 1 20 27 1 5 6/ 7/ 7 8/ 9/ 4/ 5/ 5/ 5/ 6/ 6/ 6/ 7/ 7/ 7/ 8/ 8/ 8/ 9/ date Overlay of feeding graph and response to Feeding and response to sticky cards peak in late July/August sticky cards graph 4 / 3 0 5/ 7 5 / 14 5 / 2 1 5 / 2 8 6/ 4 6/ 11 6 / 18 6 / 2 5 7/ 2 7/ 9 da 7 / 16 te 7 / 2 3 7 / 3 0 8/ 6 8 / 13 8 / 2 0 8 / 2 7 9/ 3 9 / 10 Management Strategies for Flea Beetles… 1. Escape them (rotate to new fields) 2. Starve them (don’t till after overwintered adults die) 3. Kill them (use insecticides) 4. Shut them out (use row cover) 5. Combine as many of these as possible 1. Escape: Crop Rotation • Plant spring crops into fields that have NOT had brassica crops in the past 2-3 years • Avoid fields with brassica weeds, which also harbor flea beetles • Plant fall crops (seeded after late July) in fields that are isolated from early season crops. • How far? As far as possible. Rotate to new a field to escape the next flush of adult beetles 2nd Summer generation Brassicas in field 2 1st Summer generation Brassicas in field 1 Overwintered generation eggs May June July August September October 2. Starve Them: Delayed Planting • No brassica crops until late July, after overwintered adults are dead or departed >No food plants for overwintering adults >No place for eggs, no roots for larvae to feed >No new adults emerge in late summer >Reduces the population of adults NEXT year May require major changes in marketing plans eg. Mesclun without brassica greens 3.Kill them: Insecticides for flea beetles Organic Insecticides for Flea Beetle Control on Brassica Greens or Eggplant approved for organic production: Pyrethrin PyGanic EC 5.0 (no DH restriction; rate 4.5-18 oz/acre) Spinosad Entrust (Labeled for use on all Brassicas, but not for control of flea beetles; states differ in whether it can be recommended) Kaolin Surround WP (labeled for eggplant; 1/2lb/gal in backpack, 12.5 to 50 lb/acre) Eggplant and potato flea beetles Prevention: Row cover • Keeps all beetles out! • Use hoops Sprays you can use for flea beetle Surround WP on eggplant Kaolin clay Organic status uncertain: not currently approved Hot Pepper Wax Broad label – many pests and crops showed efficacy in one of Umass trials. would be very expensive. Effect of treatment on leaf damage in Komatsuna (# holes per plant) at harvest (2002 Trial) 350 a 300 t an l 250 p r b e 200 b es p 150l o c c 100 # h g c av 50 d 0 control kaolin htpepw rowcov carbaryl spinos thiameth Treatment Effect of treatment on leaf damage (holes per plant) in Komatsuna Weekly samples, cotyledon stage to harvest, 2003 180 control ab 160 row cover 140 Sevin abc Pyganic 120 abc t n spinosad (Entrust) la p 100 er spinosad (Spintor) p 80 es l thiamethoxam (furrow) o cd # h 60 cd 40 d 20 0 e 12345 Weekly Samples from June 9 to July 8, 2003 Entrust (spinosad, organic formulation) • Manufacturer: Dow AgroSciences • EPA Classification: Caution -- General Use – NOP approved. – “the ingredients in this product meet the requirements of the USDA national organic program” • Derived from soil micro-organism -- natural source • Toxicity – very low toxicity to mammals, birds, aquatic invertebrates. Slightly toxic to fish – easy on beneficial insects – rat LD50 oral and dermal > 5,000 mg/kg • Mode of action – nerve poison ( by contact with treated surfaces) – stomach poison (by ingestion of treated surfaces) Entrust (spinosad, organic formulation) • Insect groups controlled: Colorado potato beetle (adults and larvae), caterpillars, leafminers, thrips • Crops labeled: Brassicas, fruiting vegetables, leafy vegetables, potatoes & tuberous and corm vegetables, sweet corn, cucurbits • Rates: 0.5 – 3 oz per acre depending on the pest • REI: 4 hours • Pre-harvest interval: 1 day for brassicas, leafy and fruiting vegetables • Use limits for resistance management: no more than 3 times in 30 day period (brasssicas); no more than 9 oz per year (sweet corn, peppers) Pesticide Trial Summary: Rate and Cost of Tested Products (2002 & 2003) cost per treatment- treatment- rate per acre
Recommended publications
  • Brassica Rapa Domestication: Untangling Wild and Feral Forms and Convergence of Crop Morphotypes Alex C
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.05.438488; this version posted April 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Brassica rapa domestication: untangling wild and feral forms and convergence of crop morphotypes Alex C. McAlvay, Aaron P. Ragsdale, Makenzie E. Mabry, Xinshuai Qi, Kevin A. Bird, Pablo Velasco, Hong An, J. Chris Pires, Eve Emshwiller Abstract The study of domestication contributes to our knowledge of evolution and crop genetic resources. Human selection has shaped wild Brassica rapa into diverse turnip, leafy, and oilseed crops. Despite its worldwide economic importance and potential as a model for understanding diversification under domestication, insights into the number of domestication events and initial crop(s) domesticated in B. rapa have been limited due to a lack of clarity about the wild or feral status of conspecific non-crop relatives. To address this gap and reconstruct the domestication history of B. rapa, we analyzed 68,468 genotyping-by-sequencing-derived SNPs for 416 samples in the largest diversity panel of domesticated and weedy B. rapa to date. To further understand the center of origin, we modeled the potential range of wild B. rapa during the mid-Holocene. Our analyses of genetic diversity across B. rapa morphotypes suggest that non-crop samples from the Caucasus, Siberia, and Italy may be truly wild, while those occurring in the Americas and much of Europe are feral.
    [Show full text]
  • Nutritional Guidance in Sakado Folate Project
    Chapter 4 Nutritional Guidance in Sakado Folate Project Notification of thethe C677T GenotypeGenotype of of Methylenetetrahydrofolate Reductase IncreasedIncreased both both Serum Serum Folate Folate and and the the Intake Intake of ofGreen Green Veg‐ etablesVegetables MayumiMayumi Yurimoto, Yurimoto, Mami Hiraoka,Mami Hiraoka, MitsuyoMitsuyo Kageyama, Kageyama, Yoshiko Kontai,Yoshiko Kontai, ChiharuChiharu Nishijima, Nishijima, KaoriKaori Sakamoto Sakamoto and YasuoYasuo Kagawa Kagawa Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.74396 Abstract Background: Serum folate levels are lower in TT homozygotes of the single-nucleotide polymorphism (rs1801133) of methylenetetrahydrofolate reductase (MTHFR) than in CC homozygotes and CT heterozygotes. Objective: To improve folate status, the genotype was notified to each subject to motivate them to eat more green-yellow vegetables. Design: Genotype, dietary folate intake, and blood biochemistry were determined and statistically analyzed for 404 subjects (109 males, mean 58.9 years; 295 females, mean 61.8 years). Their serum folate and total homocysteine (tHcy) concentrations were mea- sured before and after receiving nutritional guidance and genotype notification. Results: The frequencies of the CC, CT, and TT MTHFR genotypes were 35.4, 49.7, and 14.8%, respectively. TT homozygote participants significantly increased their intake of green-yellow vegetables (p < 0.01) and of food-derived folate (p < 0.05) following nutritional guidance. The increase in serum folate (p < 0.001) and the decrease in tHcy (p < 0.001) in TT homozygotes following nutritional guidance were more than twice that of the CC homozygote and CT heterozygote participants. An increase in broccoli, spinach and Komatsuna intake was observed following nutritional guidance, irrespective of the season.
    [Show full text]
  • Pollination of Rapeseed (Brassica Napus) by Africanized Honeybees (Hymenoptera: Apidae) on Two Sowing Dates
    Anais da Academia Brasileira de Ciências (2014) 86(4): 2087-2100 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201420140134 www.scielo.br/aabc Pollination of Rapeseed (Brassica napus) by Africanized Honeybees (Hymenoptera: Apidae) on Two Sowing Dates EMERSON D. CHAMBÓ1, NEWTON T.E. DE OLIVEIRA1, REGINA C. GARCIA1, JOSÉ B. DUARTE-JÚNIOR1, MARIA CLAUDIA C. RUVOLO-TAKASUSUKI2 and VAGNER A. TOLEDO3 1Universidade Estadual do Oeste do Paraná, Campus Universitário de Marechal Cândido Rondon, Centro de Ciências Agrárias, Rua Pernambuco, 1777, 85960-000 Marechal Cândido Rondon, PR, Brasil 2Universidade Estadual de Maringá, Centro de Ciências Biológicas, Departamento de Biotecnologia, Genética e Biologia Celular, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brasil 3Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Maringá, Centro de Ciências Agrárias, Av. Colombo, 5790, Bloco J45, Campus Universitário 87020-900 Maringá, PR, Brasil Manuscript received on January 21, 2014; accepted for publication on June 23, 2014 ABSTRACT In this study, performed in the western part of the state of Paraná, Brazil, two self-fertile hybrid commercial rapeseed genotypes were evaluated for yield components and physiological quality using three pollination tests and spanning two sowing dates. The treatments consisted of combinations of two rapeseed genotypes (Hyola 61 and Hyola 433), three pollination tests (uncovered area, covered area without insects and covered area containing a single colony of Africanized Apis mellifera honeybees) and two sowing dates (May 25th, 2011 and June 25th, 2011). The presence of Africanized honeybees during flowering time increased the productivity of the rapeseed.
    [Show full text]
  • Brassica Rapa)Ssp
    Li et al. Horticulture Research (2020) 7:212 Horticulture Research https://doi.org/10.1038/s41438-020-00449-z www.nature.com/hortres ARTICLE Open Access A chromosome-level reference genome of non- heading Chinese cabbage [Brassica campestris (syn. Brassica rapa)ssp. chinensis] Ying Li 1,Gao-FengLiu1,Li-MingMa2,Tong-KunLiu 1, Chang-Wei Zhang 1, Dong Xiao1, Hong-Kun Zheng2, Fei Chen1 and Xi-Lin Hou 1 Abstract Non-heading Chinese cabbage (NHCC) is an important leafy vegetable cultivated worldwide. Here, we report the first high-quality, chromosome-level genome of NHCC001 based on PacBio, Hi-C, and Illumina sequencing data. The assembled NHCC001 genome is 405.33 Mb in size with a contig N50 of 2.83 Mb and a scaffold N50 of 38.13 Mb. Approximately 53% of the assembled genome is composed of repetitive sequences, among which long terminal repeats (LTRs, 20.42% of the genome) are the most abundant. Using Hi-C data, 97.9% (396.83 Mb) of the sequences were assigned to 10 pseudochromosomes. Genome assessment showed that this B. rapa NHCC001 genome assembly is of better quality than other currently available B. rapa assemblies and that it contains 48,158 protein-coding genes, 99.56% of which are annotated in at least one functional database. Comparative genomic analysis confirmed that B. rapa NHCC001 underwent a whole-genome triplication (WGT) event shared with other Brassica species that occurred after the WGD events shared with Arabidopsis. Genes related to ascorbic acid metabolism showed little variation among the three B. rapa subspecies. The numbers of genes involved in glucosinolate biosynthesis and catabolism 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; were higher in NHCC001 than in Chiifu and Z1, due primarily to tandem duplication.
    [Show full text]
  • Data on Cerambycidae and Chrysomelidae (Coleoptera: Chrysomeloidea) from Bucureªti and Surroundings
    Travaux du Muséum National d’Histoire Naturelle © Novembre Vol. LI pp. 387–416 «Grigore Antipa» 2008 DATA ON CERAMBYCIDAE AND CHRYSOMELIDAE (COLEOPTERA: CHRYSOMELOIDEA) FROM BUCUREªTI AND SURROUNDINGS RODICA SERAFIM, SANDA MAICAN Abstract. The paper presents a synthesis of the data refering to the presence of cerambycids and chrysomelids species of Bucharest and its surroundings, basing on bibliographical sources and the study of the collection material. A number of 365 species of superfamily Chrysomeloidea (140 cerambycids and 225 chrysomelids species), belonging to 125 genera of 16 subfamilies are listed. The species Chlorophorus herbstii, Clytus lama, Cortodera femorata, Phytoecia caerulea, Lema cyanella, Chrysolina varians, Phaedon cochleariae, Phyllotreta undulata, Cassida prasina and Cassida vittata are reported for the first time in this area. Résumé. Ce travail présente une synthèse des données concernant la présence des espèces de cerambycides et de chrysomelides de Bucarest et de ses environs, la base en étant les sources bibliographiques ainsi que l’étude du matériel existant dans les collections du musée. La liste comprend 365 espèces appartenant à la supra-famille des Chrysomeloidea (140 espèces de cerambycides et 225 espèces de chrysomelides), encadrées en 125 genres et 16 sous-familles. Les espèces Chlorophorus herbstii, Clytus lama, Cortodera femorata, Phytoecia caerulea, Lema cyanella, Chrysolina varians, Phaedon cochleariae, Phyllotreta undulata, Cassida prasina et Cassida vittata sont mentionnées pour la première fois dans cette zone Key words: Coleoptera, Chrysomeloidea, Cerambycidae, Chrysomelidae, Bucureºti (Bucharest) and surrounding areas. INTRODUCTION Data on the distribution of the cerambycids and chrysomelids species in Bucureºti (Bucharest) and the surrounding areas were published beginning with the end of the 19th century by: Jaquet (1898 a, b, 1899 a, b, 1900 a, b, 1901, 1902), Montandon (1880, 1906, 1908), Hurmuzachi (1901, 1902, 1904), Fleck (1905 a, b), Manolache (1930), Panin (1941, 1944), Eliescu et al.
    [Show full text]
  • Materials for Beating Flea Beetles in Brassicas
    Materials for Beating Flea Beetles in Brassicas Ruth Hazzard, Extension Vegetable Program, University of Massachusetts – Amherst, Department of Plant, Soil and Insect Science, Agricultural Engineering Building, Amherst MA 01003-9295, 413-545-3696 [email protected] Early spring plantings of Brassica crops are often hit hard by flea beetles. Crucifer and striped flea beetles feed on Brassica crops as well as weeds that are in the same family, such as yellow rocket or wild mustard. The crucifer flea beetle (Phyllotreta cruciferae) is uniformly black and shiny, about 2 mm in length, while the striped flea beetle (Phyllotreta striolata) has two yellow stripes on its back. Other species of flea beetles attack other crop families: solanaceous crops such as eggplant, potato, and tomato, or sweet corn. These beetles may look very similar to those found on Brassicas, but if they are feeding on a different crop group, they are almost certainly a different species of flea beetle. While this article will discuss biorational insecticides that will suppress flea beetle, it is important for growers to be familiar with the life cycle of flea beetles and to combine insecticides with many cultural practices to reduce damage and keep populations from building up to unmanageable levels. Feeding damage and crop preference. Flea beetle adults feed on leaves and stems, resulting in numerous ‘shot-holes’. Heavy feeding can kill plants, especially seedlings, and moderate damage can reduce plant size, delay maturity, reduce yield, or render crops unmarketable. Flea beetle larvae feed on roots. The impact of their feeding damage on crop yield is not well understood.
    [Show full text]
  • Analysis of Yield and Plant Traits of Oilseed Rape (Brassica Napus
    Acta Agrobotanica DOI: 10.5586/aa.1696 REVIEW Publication history Received: 2016-05-20 Accepted: 2016-10-30 Analysis of yield and plant traits of oilseed Published: 2016-12-15 rape (Brassica napus L.) cultivated in Handling editor Alina Syp, Institute of Soil Science and Plant Cultivation, temperate region in light of the possibilities State Research Institute, Poland of sowing in arid areas Authors’ contributions TZ, AKK: study idea and design; TZ, AKK AO, ALK: publication 1 1 1 search; TZ, AKK, AO: analysis Tadeusz Zając , Agnieszka Klimek-Kopyra , Andrzej Oleksy *, and interpretation of results; Anna Lorenc-Kozik1, Karolina Ratajczak2 TZ, AKK, KR: comments on the 1 manuscript; ALK, KR, AO: writing Department of Crop Production, Institute of Plant Production, Faculty of Agriculture and the manuscript; AKK, AO: Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland 2 revision prior to submission Department of Agronomy, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 1, 60-632 Poznań, Poland Funding * Corresponding author. Email: [email protected] Research supported by the Ministry of Science and Higher Education of Poland as part of the statutory activities of the Abstract Institute of Plant Production, This work is a review of selected literature on the species of Brassica with the University of Agriculture in Krakow. greatest economic significance. Oilseed rape Brassica( napus ssp. oleifera) cur- rently ranks third worldwide among oilseed crops used for oil production and is Competing interests the most important in the temperate zone. The manifold uses of rape include not No competing interests have been declared.
    [Show full text]
  • The Life History and Management of Phyllotreta Cruciferae and Phyllotreta Striolata (Coleoptera: Chrysomelidae), Pests of Brassicas in the Northeastern United States
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2004 The life history and management of Phyllotreta cruciferae and Phyllotreta striolata (Coleoptera: Chrysomelidae), pests of brassicas in the northeastern United States. Caryn L. Andersen University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Andersen, Caryn L., "The life history and management of Phyllotreta cruciferae and Phyllotreta striolata (Coleoptera: Chrysomelidae), pests of brassicas in the northeastern United States." (2004). Masters Theses 1911 - February 2014. 3091. Retrieved from https://scholarworks.umass.edu/theses/3091 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THE LIFE HISTORY AND MANAGEMENT OF PHYLLOTRETA CRUCIFERAE AND PHYLLOTRETA STRIOLATA (COLEOPTERA: CHRYSOMELIDAE), PESTS OF BRASSICAS IN THE NORTHEASTERN UNITED STATES A Thesis Presented by CARYN L. ANDERSEN Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE September 2004 Entomology © Copyright by Caryn L. Andersen 2004 All Rights Reserved THE LIFE HISTORY AND MANAGEMENT OF PHYLLOTRETA CRUCIFERAE AND PHYLLOTRETA STRIOLATA (COLEOPTERA: CHRYSOMELIDAE), PESTS OF BRASSICAS IN THE NORTHEASTERN UNITED STATES A Thesis Presented by CARYN L. ANDERSEN Approved as to style and content by: Tt, Francis X. Mangan, Member Plant, Soil, and Insect Sciences DEDICATION To my family and friends. ACKNOWLEDGMENTS I would like to thank my advisors, Roy Van Driesche and Ruth Hazzard, for their continual support, encouragement and thoughtful advice.
    [Show full text]
  • Environmental and Genetic Variation in Essential Mineral Nutrients and Nutritional Value Among Brassica Vegetables
    Journal of Agricultural Science; Vol. 10, No. 7; 2018 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Environmental and Genetic Variation in Essential Mineral Nutrients and Nutritional Value Among Brassica Vegetables Moo Jung Kim1, Tyler J. Simpson1, Yu-Chun Chiu1, Talon M. Becker2, John A. Juvik3 & Kang-Mo Ku1 1 Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, USA 2 Extension-Commercial Agriculture, University of Illinois at Urbana-Champaign, Benton, IL, USA 3 Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA Correspondence: Kang-Mo Ku, Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26505, USA. Tel: 1-304-293-2549. E-mail: [email protected] Received: March 20, 2018 Accepted: April 28, 2018 Online Published: June 15, 2018 doi:10.5539/jas.v10n7p1 URL: https://doi.org/10.5539/jas.v10n7p1 Abstract Dietary minerals play an important role in human nutrition and proper metabolism. We grew various Brassica crops under field conditions in 2012 and 2013 and analyzed 8 essential minerals from edible tissues of those crops. Among the investigated crops, pak choi (Brassica rapa), mustard greens (B. juncea; B. nigra), and komatsuna (B. rapa) were generally high in most minerals, according to dry weight-based concentrations. The percentage recommended daily intake (RDA) or adequate intake (AI) values, calculated using fresh weight-based concentrations, suggest that Brassica vegetables are a good source of iron, calcium, and manganese, providing > 20% of %RDA/AI depending on crop. Kale (B. oleracea; B. napus) was generally higher in %RDA/AI, in particular for calcium (Ca), phosphorous (P), magnesium (Mg), and manganese (Mn).
    [Show full text]
  • Plant Trichomes and a Single Gene GLABRA1 Contribute to Insect
    bioRxiv preprint doi: https://doi.org/10.1101/320903; this version posted May 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Plant trichomes and a single gene GLABRA1 contribute to insect 2 community composition on field-grown Arabidopsis thaliana 3 4 Yasuhiro Sato1,2, Rie Shimizu-Inatsugi3, Misako Yamazaki3, Kentaro K. Shimizu3,4*, and 5 Atsushi J. Nagano5* 6 7 1PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan 8 2Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, 9 Otsu, Shiga 520-2194, Japan 10 3Department of Evolutionary Biology and Environmental Studies, University of Zurich, 11 Winterthurerstrasse 190, 8057 Zurich, Switzerland 12 4Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, 13 244-0813 Totsuka-ward, Yokohama, Japan 14 5Department of Plant Life Sciences, Faculty of Agriculture, Ryukoku University, Yokotani 15 1-5, Seta Oe-cho, Otsu, Shiga 520-2194, Japan 16 *Co-corresponding authors: K.K. Shimizu (Phone: +41-44-635-6740) and A.J. Nagano 17 (Phone: +81-77-599-5656) 18 E-mail address: YS, [email protected]; RSI, [email protected]; MY, 19 [email protected]; KKS, [email protected]; AJN, 20 [email protected] 21 22 Short title: Field study of insects on Arabidopsis 23 24 p. 1 bioRxiv preprint doi: https://doi.org/10.1101/320903; this version posted May 13, 2018.
    [Show full text]
  • “Cooking Has Done the Most to Advance the Cause of Civilization”
    The Broadcaster ▪ June13th 2013▪ 715-432-4683 ▪ [email protected] ▪ www.stoneyacresfarm.net “Cooking has done the most to advance the cause of civilization” -Jean Anthelme Brillat-Savarin (in Michael Pollan’s Cooked) - In Your Box Lettuce heads- News from the Farm leaf, baby red Welcome to CSA Season 2013. This is our 7th CSA season and despite a late and romain, oak leaf, increasingly wet spring we think this may very well be our best season yet! We apologize for and/or butterhead. the late start and encourage everyone to make sure that you note that the final delivery Broccoli will now be October 24th, one week later than planned. Chinese cabbage If you want to receive an email reminder, e-newsletter or text reminder please call, (napa cabbage) text or email! See communications on the other side of the newsletter for details. Purple Kohlrabi with greens In crop news, many of the leafy greens are “on schedule” and other spring crops like Radishes carrots, beets, spinach are a little behind. Snap and snow peas are the most behind of any Scallions spring crop, since they were planted a full month late, but they look beautiful so a little wait Bok Choy (pac will lead to a bountiful crop! It has been wet and cool which has made some planting choi) difficult and made some of our crops less than happy, but most of our veggies are planted Maple Syrup in raised beds which helps with drainage in our heavy soils. Rhubarb th The pancake breakfast is still on June 29 ! Pea picking will not take place Baby turnips with that day but may be rescheduled as a series of u-pick times as the weather and crop allow.
    [Show full text]
  • PIGWEED FLEA BEETLE (Disonycha Glabrata) (Coleoptera: Chrysomelidae)
    Rose Hiskes, Diagnostician and Horticulturist Department of Entomology The Connecticut Agricultural Experiment Station 123 Huntington Street, P. O. Box 1106 New Haven, CT 06504 Phone: (203) 974-8600 Fax: (203) 974-8502 Founded in 1875 Email: [email protected] Putting science to work for society Website: www.ct.gov/caes PIGWEED FLEA BEETLE (Disonycha glabrata) (Coleoptera: Chrysomelidae) Pigweeds are serious agricultural weeds in the This native beetle is found from California to Amaranth family. This would lead one to Florida in the Southern United States. In the believe a pigweed flea beetle would be a great Northern United States it is found from New biological control organism. However, there York to the foothills of the Rockies. are species of amaranth used for food, both as a grain and a leafy vegetable, and as In the Caribbean it is found on the islands of ornamentals (e.g., Love-Lies-Bleeding). In Jamaica and Trinidad. It is also found in Jamaica, callaloo refers to Amaranthus Central and South America. viridis, a pigweed that is harvested prior to flowering and mainly used as a steamed green vegetable. If left to flower, the grain produced is high in lysine and when combined with other grains, provides good human nutrition. The pigweed flea beetle is becoming a problem for callaloo producers in Connecticut. Figure 2. Damage to callaloo caused by the pigweed flea beetle. Photo by Richard Cowles. DAMAGE Adults feed on foliage, chewing small, round holes (Fig. 2). Larvae are also foliage feeders. Heavy feeding results in early leaf drop and Figure 1.
    [Show full text]