Selection and Characteristics of the Dragonfly Landing Site Near Selk
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NASA's Dragonfly Program: Commercialized Robotics
35th Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America Presented on April 8th, 2019 NASA’s Dragonfly Program: Commercialized Robotics - Enabling a New Generation of Evolvable, Resilient Assets in Orbit John Lymer Maxar† Abstract Commercialized, affordable robotics for in-space assembly of large platforms and structures are being prepared for flight in 2021. Integrating easily with standard GEO and LEO satellite command and control architectures, these automation systems enable a new operating paradigm for on-orbit assets – one that includes incremental growth, on-demand payload refresh to match user needs, and in-situ warehousing for rapid expansion, augmentation, or dispersion on a timeline independent of launch. Introduction The Dragonfly Robotic System, developed first as a DARPA seedling and then maturing through the NASA Tipping Point Program, successfully completed a ground demonstration in late 2017, shown in Figure 1 assembling a Ka band antenna. Critical Design Review occurred in 2018. Ultra-lightweight and affordable, the Dragonfly Robotic System is designed to fit into existing satellite command and data handling (C&DH) subsystems and low rate command/telemetry links for inexpensive integration – it behaves like any other satellite subsystem. The supervised autonomy operating concept facilitates command and control from a standard Mission Operations Center. Current satellite operations personnel can plan and execute robotic operations with only minor additional training. Dragonfly represents the first ‘commercialized’ robotic system – affordable and accessible to satellite owners without the risk of infrastructure changes. † The operations of DigitalGlobe, SSL and Radiant Solutions were unified under the Maxar brand in February. MDA continues to operate as an independent business unit within the Maxar organization. -
OPAG Update to the Planetary Science Advisory Committee (PAC)
OPAG Update to the Planetary Science Advisory Committee (PAC) ? Linda Spilker OPAG Vice-Chair, JPL PAC Meeting September 24, 2019 Large KBOs: Outer Planets Assessment Group (OPAG) Charter https://www.lpi.usra.edu/opag/ • NASA's community-based forum to provide science input for planning and prioritizing outer planet exploration activities for the next several decades • Evaluates outer solar system exploration goals, objectives, investigations and required measurements on the basis of the widest possible community outreach • Meets twice per year, summer and winter – Next meeting: Feb. 3-4, 2020, LPI, Houston, TX • OPAG documents are inputs to the Decadal Surveys • OPAG and Small Bodies Assessment Group (SBAG) have Joint custody of Pluto system and other planets among Kuiper Belt Objects KBO planets OPAG Steering Committee Jeff Moore Linda Spilker OPAG Chair OPAG Vice-Chair * =New Member Ames Research Center Jet Propulsion Lab Alfred McEwen Lynnae Quick* Kathleen Mandt* University of Arizona NASA Goddard Applied Physics Laboratory OPAG Steering Committee Scott Edgington Amanda Hendrix Mark Hofstadter Jet Propulsion Lab Planetary Science Institute Jet Propulsion Lab Terry Hurford Carol Paty Goddard Space Flight Center Georgia Institute of Technology OPAG Steering Committee Morgan Cable* Britney Schmidt Kunio Sayanagi Jet Propulsion Lab Georgia Institute of Technology Hampton University * =New Member Tom Spilker* Abigail Rymer* Consultant Applied Physics Lab Recent and Upcoming OPAG-related Meetings • OPAG Subsurface Needs for Ocean Worlds -
Overview of Dragonfly Entry Aerosciences Measurements (Dream) J
Overview of Dragonfly Entry Aerosciences Measurements (DrEAM) J. Santos1, A. Brandis2, H. Hwang1, A. Gülhan3, T. Thiele3, F. Siebe3, 1NASA Ames Research Center, Moffett Field, CA 94035, USA; 2AMA, Inc. at NASA Ames Research Center, Moffett Field, CA 94035, USA; 3German Aerospace Center (DLR e.V.), Supersonic and Hypersonic Technologies Department, Linder Höhe, 51147 Köln, Germany. Abstract: NASA Ames Research Center (ARC) (COSSTA). Since the methane concentration in the Ti- leads the Dragonfly Entry Aerosciences Measurements tan atmosphere is directly proportional to the radiative (DrEAM) project, which is an aeroshell instrumentation heat flux, the COSSTA measurements will be used to suite on the Dragonfly mission that fulfills the Engineer- reduce the current uncertainty in the methane volume ing Science Investigation requirement for the New fraction. Atmospheric density measurements and cap- Frontiers mission. NASA ARC is partnering with sule aerodynamic data will be obtained through the NASA Langley Research Center (LaRC) and the Ger- onboard Inertial Measurement Unit (IMU), supple- man Aerospace Center (DLR) to provide a comprehen- mented by pressure transducers similar to those used by sive sensor suite, including a DLR-provided Data Ac- the MEDLI and MEDLI2 projects. The DrEAM pres- quisition System (DAS). DrEAM will provide key aer- sure sensors will be known as the Dragonfly Atmos- othermodynamic data and performance analysis for pheric Flight Transducers. (DrAFT). The pressure Dragonfly’s forebody and backshell Thermal Protection measurements, when combined with data from the on- System (TPS). board IMU, will allow for reconstruction of such quan- Titan’s atmosphere predominantly consists of nitro- tities as vehicle Mach number, freestream density, and gen (~98% by mole) with small amounts of methane atmospheric winds. -
Banks in Lebanon
932-933.qxd 14/01/2011 09:13 Õ Page 2 AL BAYAN BUSINESS GUIDE USEFUL NUMBERS Airport International Calls (100) Ports - Information (1) 628000-629065/6 Beirut (1) 580211/2/3/4/5/6 - 581400 - ADMINISTRATION (1) 629125/130 Internal Security Forces (112) Byblos (9) 540054 - Customs (1) 629160 Chika (6) 820101 National Defense (1701) (1702) Jounieh (9) 640038 Civil Defence (125) Saida (7) 752221 Tripoli (6) 600789 Complaints & Review (119) Ogero (1515) Tyr (7) 741596 Consumer Services Protection (1739) Police (160) Water Beirut (1) 386761/2 Red Cross (140) Dbaye (4) 542988- 543471 Electricity (145) (1707) Barouk (5) 554283 Telephone Repairs (113) Jounieh (9) 915055/6 Fire Department (175) Metn (1) 899416 Saida (7) 721271 General Security (1717) VAT (1710) Tripoli (6) 601276 Tyr (7) 740194 Information (120) Weather (1718) Zahle (8) 800235/722 ASSOCIATIONS, SYNDICATES & OTHER ORGANIZATIONS - MARBLE AND CEMENT (1)331220 KESRWAN (9)926135 BEIRUT - PAPER & PACKAGING (1)443106 NORTH METN (4)926072-920414 - PHARMACIES (1)425651-426041 - ACCOUNTANTS (1)616013/131- (3)366161 SOUTH METN (5)436766 - PLASTIC PRODUCERS (1)434126 - ACTORS (1)383407 - LAWYERS - PORT EMPLOYEES (1) 581284 - ADVERTISING (1)894545 - PRESS (1)865519-800351 ALEY (5)554278 - AUDITOR (1)322075 BAABDA (5)920616-924183 - ARTIST (1)383401 - R.D.C.L. (BUSINESSMEN) (1)320450 DAIR AL KAMAR (5)510244 - BANKS (1)970500 - READY WEAR (3)879707-(3)236999 - CARS DRIVERS (1)300448 - RESTAURANTS & CAFE (1)363040 JBEIL (9)541640 - CHEMICAL (1)499851/46 - TELEVISIONS (5)429740 JDEIDET EL METN (1)892548 - CONTRACTORS (5)454769 - TEXTILLES (5)450077-456151 JOUNIEH (9)915051-930750 - TOURISM JOURNALISTS (1)349251 - DENTISTS (1)611222/555 - SOCKS (9)906135 - TRADERS (1)347997-345735 - DOCTORS (1)610710 - TANNERS (9)911600 - ENGINEERS (1)850111 - TRADERS & IND. -
JAXA's Planetary Exploration Plan
Planetary Exploration and International Collaboration Institute of Space and Astronautical Science Japan Aerospace Exploration Agency Yoshio Toukaku, Director for International Strategy and Coordination Naoya Ozaki, Assistant Professor, Dept of Spacecraft Engineering ISAS/JAXA September, 2019 The Path Japanese Planetary Exploration 1985 1995 2010 2018 Sakigake/ Nozomi Akatsuki BepiColombo Suisei MMO/MPO Comet flyby Planned and Venus Climate Mercury Orbiter launched Mars Orbiter orbiter Asteroid Sample Asteroid Sample Martian Moons Lunar probe Return Mission Return Mission explorer Hiten Hayabusa Hayabusa2 MMX 1992 2003 2014 2020s (TBD) Recent Science Missions HAYABUSA 2003-2010 HINODE(SOLAR-B)2006- KAGUYASELENE)2007-2009 Asteroid Explorer SolAr OBservAtion Lunar Exploration AKATSUKI 2010- Venus Meteorology IKAROS 2010 HisAki 2013 SolAr SAil PlAnetary atmosphere HAYABUSA2 2014-2020 Hitomi(ASTRO-H) 2016 ArAse (ERG) 2016 Asteroid Explorer X-Ray Astronomy Van Allen Belt proBe Hayabusa & Hayabusa 2 Asteroid Sample Return Missions “Hayabusa” spacecraft brought back the material of Asteroid Itokawa while establishing innovative ion engines. “Hayabusa2”, while utilizing the experience cultivated in “Hayabusa”, has arrived at the C type Asteroid Ryugu in order to elucidate the origin and evolution of the solar system and primordial materials that would have led to emergence of life. Hayabusa Hayabusa2 Target Itokawa Ryugu Launch 2003 2014 Arrival 2005 2018 Return 2010 2020 ©JAXA Asteroid Ryugu 6 Martian Moons eXploration (MMX) Sample return from Marian moon for detailed analysis. Strategic L-Class A key element in the ISAS roadmap for small body exploration. Phase A n Science Objectives 1. Origin of Mars satellites. - Captured asteroids? - Accreted debris resulting from a giant impact? 2. Preparatory processes enabling to the habitability of the solar system. -
AVIATR—Aerial Vehicle for In-Situ and Airborne Titan Reconnaissance a Titan Airplane Mission Concept
Exp Astron DOI 10.1007/s10686-011-9275-9 ORIGINAL ARTICLE AVIATR—Aerial Vehicle for In-situ and Airborne Titan Reconnaissance A Titan airplane mission concept Jason W. Barnes · Lawrence Lemke · Rick Foch · Christopher P. McKay · Ross A. Beyer · Jani Radebaugh · David H. Atkinson · Ralph D. Lorenz · Stéphane Le Mouélic · Sebastien Rodriguez · Jay Gundlach · Francesco Giannini · Sean Bain · F. Michael Flasar · Terry Hurford · Carrie M. Anderson · Jon Merrison · Máté Ádámkovics · Simon A. Kattenhorn · Jonathan Mitchell · Devon M. Burr · Anthony Colaprete · Emily Schaller · A. James Friedson · Kenneth S. Edgett · Angioletta Coradini · Alberto Adriani · Kunio M. Sayanagi · Michael J. Malaska · David Morabito · Kim Reh Received: 22 June 2011 / Accepted: 10 November 2011 © The Author(s) 2011. This article is published with open access at Springerlink.com J. W. Barnes (B) · D. H. Atkinson · S. A. Kattenhorn University of Idaho, Moscow, ID 83844-0903, USA e-mail: [email protected] L. Lemke · C. P. McKay · R. A. Beyer · A. Colaprete NASA Ames Research Center, Moffett Field, CA, USA R. Foch · Sean Bain Naval Research Laboratory, Washington, DC, USA R. A. Beyer Carl Sagan Center at the SETI Institute, Mountain View, CA, USA J. Radebaugh Brigham Young University, Provo, UT, USA R. D. Lorenz Johns Hopkins University Applied Physics Laboratory, Silver Spring, MD, USA S. Le Mouélic Laboratoire de Planétologie et Géodynamique, CNRS, UMR6112, Université de Nantes, Nantes, France S. Rodriguez Université de Paris Diderot, Paris, France Exp Astron Abstract We describe a mission concept for a stand-alone Titan airplane mission: Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVI- ATR). With independent delivery and direct-to-Earth communications, AVI- ATR could contribute to Titan science either alone or as part of a sustained Titan Exploration Program. -
Dragonfly: Thermal Design Overview
ICES-2020-160 Dragonfly: Thermal Design Overview G. Allan Holtzman1, Robert F. Coker2, Carl J. Ercol3 and Douglas S. Adams4 Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 and Loren C. Zumwalt5 Lockheed Martin Space Systems Company, 12257 S Wadsworth Blvd, Littleton, Colorado 80125 Dragonfly is a NASA New Frontiers mission that will send a rotorcraft lander to Titan, Saturn’s largest moon. Titan has a dense atmosphere and low gravity, making flight an ideal way to traverse its surface. Powered flight will be achieved by employing a battery charged by a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). The temperature of Titan at its surface is nearly constant but extremely cold at 94 K, so the lander’s thermal control system (TCS) will retain the excess heat from the MMRTG and distribute it throughout the lander body with a pumped fluid loop. During cruise to Titan, a cruise stage with a second pumped fluid loop will maintain spacecraft components and the MMRTG within allowable flight temperatures. The performance of the lander TCS as well as all components exposed to the Titan environment will be verified with testing on Earth in a Titan-relevant environment. This paper will provide an overview of the lander and cruise stage still-evolving thermal design details with a discussion of the planned thermal testing campaign. Nomenclature APL = Johns Hopkins Applied Physics Laboratory AU = Astronomical Unit CCHP = Constant Conductance Heat Pipe CFC-11 = ChloroFluoroCarbon fluid, also known as -
Panama, by Nick Donnelly
ISSN 1061-8503 TheA News Journalrgia of the Dragonfly Society of the Americas Volume 23 14 October 2011 Number 3 Published by the Dragonfly Society of the Americas http://www.DragonflySocietyAmericas.org/ ARGIA Vol. 23, No. 3, 14 October 2011 In This Issue .................................................................................................................................................................1 DSA is on Facebook ....................................................................................................................................................1 Calendar of Events ......................................................................................................................................................1 2011 Annual Meeting of DSA held in Fort Collins, Colorado, by Dave Leatherman ...............................................2 Northeast Regional DSA Meeting, by Joshua Rose ...................................................................................................8 2011 Annual Oregon Aeshna Blitz Sets New Records, by Steve Gordon .................................................................10 2012 Annual DSA Meeting: Baldcypress Swamps, Sandy Ponds, Blackwater Rivers, and Clubtails, by Chris Hill ....................................................................................................................................................................12 Northeast Meetings Update, by Bryan Pfeiffer .........................................................................................................12 -
BPSC 2020 - Monday 13 January - AM
BPSC 2020 - Monday 13 January - AM 08:30 Registration 09:00 WELCOME - Colin Wilson Outer planet atmospheres Jupiter's tropical circulation revealed via Juno radiometry and ground-based 09:10 Leigh Fletcher Leicester University infrared spectroscopy Modelling Jupiter's Dynamic Weather Layer: Turbulence, Clouds & Moist 09:23 Peter Read Oxford University Convection Exploring Clouds and Composition of Ice Giants with Ground- and Space-Based 09:36 Patrick Irwin Oxford University Telescopes Using Visible/Near-IR Longitudinal Variations in the Stratosphere of Uranus from the Spitzer Infrared 09:49 Naomi Rowe-Gurney Leicester University Spectrometer Uranus and Neptune in the Mid-Infrared: Atmospheric Temperatures and 10:02 Michale Roman Leicester University Circulation Inferred from Thermal Imaging 10:15 Karen Aplin Bristol University Atmospheric Ionisation and Lightning at the Ice Giant Planets Temporal and Spectral Studies of Jupiter's X-Ray Aurorae with XMM-Newton 10:28 Affelia Wibisono UCL/MSSL During a Compression Event 10:41 Richard Haythornthwaite UCL/MSSL Fast and slow water ion populations in the Enceladus plume 10:55 COFFEE Atmospheres posters: authors in attendance Terrestrial Planet atmospheres Detecting Pre-Biosignatures in the Atmospheres of Earth-Like Planets around 11:25 Sarah Rugheimer Oxford University Other Stars Energetic and Thermodynamic Limits on Continental Silicate Weathering 11:38 Robert Graham Oxford University Strongly Impact the Habitability of Wet, Rocky Worlds Multiple Superrotating States in an Idealized Model -
Formation Et Développement Des Lacs De Titan : Interprétation Géomorphologique D’Ontario Lacus Et Analogues Terrestres Thomas Cornet
Formation et Développement des Lacs de Titan : Interprétation Géomorphologique d’Ontario Lacus et Analogues Terrestres Thomas Cornet To cite this version: Thomas Cornet. Formation et Développement des Lacs de Titan : Interprétation Géomorphologique d’Ontario Lacus et Analogues Terrestres. Planétologie. Ecole Centrale de Nantes (ECN), 2012. Français. NNT : 498 - 254. tel-00807255v2 HAL Id: tel-00807255 https://tel.archives-ouvertes.fr/tel-00807255v2 Submitted on 28 Nov 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecole Centrale de Nantes ÉCOLE DOCTORALE SCIENCES POUR L’INGENIEUR, GEOSCIENCES, ARCHITECTURE Année 2012 N° B.U. : Thèse de DOCTORAT Spécialité : ASTRONOMIE - ASTROPHYSIQUE Présentée et soutenue publiquement par : THOMAS CORNET le mardi 11 Décembre 2012 à l’Université de Nantes, UFR Sciences et Techniques TITRE FORMATION ET DEVELOPPEMENT DES LACS DE TITAN : INTERPRETATION GEOMORPHOLOGIQUE D’ONTARIO LACUS ET ANALOGUES TERRESTRES JURY Président : M. MANGOLD Nicolas Directeur de Recherche CNRS au LPGNantes Rapporteurs : M. COSTARD François Directeur de Recherche CNRS à l’IDES M. DELACOURT Christophe Professeur des Universités à l’Université de Bretagne Occidentale Examinateurs : M. BOURGEOIS Olivier Maître de Conférences HDR à l’Université de Nantes M. GUILLOCHEAU François Professeur des Universités à l’Université de Rennes I M. -
Drams) for Titan
DEVELOPMENT OF THE DRAGONFLY MASS SPECTROMETER (DRAMS) FOR TITAN. M. G. Trainer1, W. B. Brinckerhoff1, A. Grubisic1, R. M. Danell1,2, D. Kaplan1,3, F. H. W. van Amerom1,4, X. Li1,5, C. Freissinet6, C. Szopa6, A. Buch7, J. C. Stern1, S. Teinturier1,8, C. A. Malespin1, P. W. Barfknecht1, P. R. Stysley1, D. B. Coyle1, M. W. Mullin1, B. L. James1, E. I. Lyness1,9, R. S. Wilkinson1,10, J. W. Kellogg1, K. Zacny9, D. C. Wegel1, E. P. Turtle10, and the Dragonfly Team. 1NASA Goddard Space Flight Center, Greenbelt MD ([email protected]), 2Danell Consulting, Winterville NC, 3Kapscience, Tewksbury MA, 1,4Mini-Mass Consulting, Hyattsville MD, 5University of Maryland Baltimore County, Baltimore MD, 6LATMOS, Guyancourt, France, 7LPGM, Gif-sur-Yvette, France, 8Universities Space Research Association, Columbia MD, 9Microtel, Greenbelt MD, 10ATA Aerospace, Greenbelt MD, 11Honeybee Robotics, Altadena CA, 12Johns Hopkins University Applied Physics Laboratory, Columbia MD. Introduction: Titan's abundant compleX carbon- Table 1. DraMS Specifications rich chemistry, interior ocean, and past presence of Characteristic Predicted Performance liquid water on the surface make it an ideal destination to study prebiotic chemical processes and habitability of Mass Sensor Linear Ion Trap an extraterrestrial environment [e.g., 1-4]. NASA's Mass Range 15 – 1950 Da a Dragonfly New Frontiers mission is a rotorcraft lander Mass Resolution 0.4 – 3 Da (FWHM) b [5] designed to perform wide-ranging in situ exploration Mass Accuracy ± 0.4 Da on this moon of Saturn by flying to different geologic Ion polarity Positive and Negative ion detection c settings up to ~180 km apart. -
NASA PSD Update
Lori S. Glaze, Ph.D. NASA Planetary Science Division Director 2023–2032 Planetary Science and Astrobiology Decadal Survey Venus Panel October 20, 2020 1 Lunar Discovery and Exploration 3 Artemis and PSD • Initial Commercial Lunar Payload Service (CLPS) flights will study the lunar surface and resources at the lunar poles, starting from 2021 • VIPER: Golf-cart-sized rover will investigate volatiles in lunar polar soil • Astrobotic CLPS delivery by end of 2023 • Artemis III (2024): Crew will travel to the Moon and use Human Landing System to touch down on the lunar surface • Science Definition Team (chaired by Renee Weber, MSFC, and HLS Science Lead) will define detailed science objectives • Working with ESSIO on many lunar projects, e.g., ANGSA, instrument and technology development, international collaborations 4 Mars Program 5 Mars Sample Return • New Mars Sample Return (MSR) Program, Director: Jeff Gramling • Michael Meyer is serving as Lead/Chief Scientist for MEP and MSR • NASA/ESA MOU signed on October 5th • SMD-commissioned Independent Review for MSR will provide findings in late October • Working towards two launches in 2026 (NASA lander and ESA orbiter) – on track to enter Phase A this fall • NASA/ESA MSR Sample Planning Group - Phase 2 will address science and curation planning questions • Perseverance/MSR Caching Strategy Workshop is being planned for January 2020 Future Mars activities • Mars Architecture Strategy Working Group (MASWG) established by PSD in October 2019 to: • Determine science exploration of Mars beyond MSR