BPSC 2020 - Monday 13 January - AM
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Planetary Science Division Status Report
Planetary Science Division Status Report Jim Green NASA, Planetary Science Division January 26, 2017 Astronomy and Astrophysics Advisory CommiBee Outline • Planetary Science ObjecFves • Missions and Events Overview • Flight Programs: – Discovery – New FronFers – Mars Programs – Outer Planets • Planetary Defense AcFviFes • R&A Overview • Educaon and Outreach AcFviFes • PSD Budget Overview New Horizons exploresPlanetary Science Pluto and the Kuiper Belt Ascertain the content, origin, and evoluFon of the Solar System and the potenFal for life elsewhere! 01/08/2016 As the highest resolution images continue to beam back from New Horizons, the mission is onto exploring Kuiper Belt Objects with the Long Range Reconnaissance Imager (LORRI) camera from unique viewing angles not visible from Earth. New Horizons is also beginning maneuvers to be able to swing close by a Kuiper Belt Object in the next year. Giant IcebergsObjecve 1.5.1 (water blocks) floatingObjecve 1.5.2 in glaciers of Objecve 1.5.3 Objecve 1.5.4 Objecve 1.5.5 hydrogen, mDemonstrate ethane, and other frozenDemonstrate progress gasses on the Demonstrate Sublimation pitsDemonstrate from the surface ofDemonstrate progress Pluto, potentially surface of Pluto.progress in in exploring and progress in showing a geologicallyprogress in improving active surface.in idenFfying and advancing the observing the objects exploring and understanding of the characterizing objects The Newunderstanding of Horizons missionin the Solar System to and the finding locaons origin and evoluFon in the Solar System explorationhow the chemical of Pluto wereunderstand how they voted the where life could of life on Earth to that pose threats to and physical formed and evolve have existed or guide the search for Earth or offer People’sprocesses in the Choice for Breakthrough of thecould exist today life elsewhere resources for human Year forSolar System 2015 by Science Magazine as exploraon operate, interact well as theand evolve top story of 2015 by Discover Magazine. -
Comet Interceptor: a Proposed ESA Mission to a Dynamically New Comet
EPSC Abstracts Vol. 13, EPSC-DPS2019-1679-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Comet Interceptor: A proposed ESA Mission to a Dynamically New Comet Geraint H. Jones(1,2), Colin Snodgrass(3), and The Comet Interceptor Consortium (see www.cometinterceptor.space ) (1) UCL Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, RH5 6NT, UK ([email protected]) (2) The Centre for Planetary Sciences at UCL/Birkbeck, London, UK (3) University of Edinburgh, United Kingdom ([email protected]) Abstract allow valuable multi-point measurements of the solar wind over different lengtH-scales as tHese craft In response to the recent European Space Agency’s separate. call for proposals for a Fast (F) Mission, a multi- spacecraft project has been submitted to ESA to For the comet encounter, the primary spacecraft, encounter a dynamically new comet or interstellar planned to also act as the primary communication object. SucH an encounter with a comet approacHing point for the whole constellation, would be targetted the Sun for the first time would provide valuable data to pass outside the hazardous inner coma, on the to complement that from all previous comet missions, sunward side of tHe comet. At least one sub-spacecraft whicH Have by necessity studied sHort-period comets would be targetted for tHe nucleus/inner coma region. that Have evolved from their original condition during The various component spacecraft will carry a range their time orbiting near the Sun. of miniaturised instruments for remote and in situ studies of tHe object’s composition, nucleus, coma, The mission’s primary science goal is to cHaracterise, and plasma environment. -
NASA's Dragonfly Program: Commercialized Robotics
35th Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America Presented on April 8th, 2019 NASA’s Dragonfly Program: Commercialized Robotics - Enabling a New Generation of Evolvable, Resilient Assets in Orbit John Lymer Maxar† Abstract Commercialized, affordable robotics for in-space assembly of large platforms and structures are being prepared for flight in 2021. Integrating easily with standard GEO and LEO satellite command and control architectures, these automation systems enable a new operating paradigm for on-orbit assets – one that includes incremental growth, on-demand payload refresh to match user needs, and in-situ warehousing for rapid expansion, augmentation, or dispersion on a timeline independent of launch. Introduction The Dragonfly Robotic System, developed first as a DARPA seedling and then maturing through the NASA Tipping Point Program, successfully completed a ground demonstration in late 2017, shown in Figure 1 assembling a Ka band antenna. Critical Design Review occurred in 2018. Ultra-lightweight and affordable, the Dragonfly Robotic System is designed to fit into existing satellite command and data handling (C&DH) subsystems and low rate command/telemetry links for inexpensive integration – it behaves like any other satellite subsystem. The supervised autonomy operating concept facilitates command and control from a standard Mission Operations Center. Current satellite operations personnel can plan and execute robotic operations with only minor additional training. Dragonfly represents the first ‘commercialized’ robotic system – affordable and accessible to satellite owners without the risk of infrastructure changes. † The operations of DigitalGlobe, SSL and Radiant Solutions were unified under the Maxar brand in February. MDA continues to operate as an independent business unit within the Maxar organization. -
Astronomy News KW RASC FRIDAY JANUARY 8 2021
Astronomy News KW RASC FRIDAY JANUARY 8 2021 JIM FAIRLES What to expect for spaceflight and astronomy in 2021 https://astronomy.com/news/2021/01/what-to-expect-for- spaceflight-and-astronomy-in-2021 By Corey S. Powell | Published: Monday, January 4, 2021 Whatever craziness may be happening on Earth, the coming year promises to be a spectacular one across the solar system. 2020 - It was the worst of times, it was the best of times. First landing on the lunar farside, two impressive successes in gathering samples from asteroids, the first new pieces of the Moon brought home in 44 years, close-up explorations of the Sun, and major advances in low-cost reusable rockets. First Visit to Jupiter's Trojan Asteroids First Visit to Jupiter's Trojan Asteroids In October, NASA is set to launch the Lucy spacecraft. Over its 12-year primary mission, Lucy will visit eight different asteroids. One target lies in the asteroid belt. The other seven are so-called Trojan asteroids that share an orbit with Jupiter, trapped in points of stability 60 degrees ahead of or behind the planet as it goes around the sun. These objects have been trapped in their locations for billions of years, probably since the time of the formation of the solar system. They contain preserved samples of water-rich and carbon-rich material in the outer solar system; some of that material formed Jupiter, while other bits moved inward to contribute to Earth's life-sustaining composition. As a whimsical aside: When meteorites strike carbon-rich asteroids, they create tiny carbon crystals. -
OPAG Update to the Planetary Science Advisory Committee (PAC)
OPAG Update to the Planetary Science Advisory Committee (PAC) ? Linda Spilker OPAG Vice-Chair, JPL PAC Meeting September 24, 2019 Large KBOs: Outer Planets Assessment Group (OPAG) Charter https://www.lpi.usra.edu/opag/ • NASA's community-based forum to provide science input for planning and prioritizing outer planet exploration activities for the next several decades • Evaluates outer solar system exploration goals, objectives, investigations and required measurements on the basis of the widest possible community outreach • Meets twice per year, summer and winter – Next meeting: Feb. 3-4, 2020, LPI, Houston, TX • OPAG documents are inputs to the Decadal Surveys • OPAG and Small Bodies Assessment Group (SBAG) have Joint custody of Pluto system and other planets among Kuiper Belt Objects KBO planets OPAG Steering Committee Jeff Moore Linda Spilker OPAG Chair OPAG Vice-Chair * =New Member Ames Research Center Jet Propulsion Lab Alfred McEwen Lynnae Quick* Kathleen Mandt* University of Arizona NASA Goddard Applied Physics Laboratory OPAG Steering Committee Scott Edgington Amanda Hendrix Mark Hofstadter Jet Propulsion Lab Planetary Science Institute Jet Propulsion Lab Terry Hurford Carol Paty Goddard Space Flight Center Georgia Institute of Technology OPAG Steering Committee Morgan Cable* Britney Schmidt Kunio Sayanagi Jet Propulsion Lab Georgia Institute of Technology Hampton University * =New Member Tom Spilker* Abigail Rymer* Consultant Applied Physics Lab Recent and Upcoming OPAG-related Meetings • OPAG Subsurface Needs for Ocean Worlds -
Overview of Dragonfly Entry Aerosciences Measurements (Dream) J
Overview of Dragonfly Entry Aerosciences Measurements (DrEAM) J. Santos1, A. Brandis2, H. Hwang1, A. Gülhan3, T. Thiele3, F. Siebe3, 1NASA Ames Research Center, Moffett Field, CA 94035, USA; 2AMA, Inc. at NASA Ames Research Center, Moffett Field, CA 94035, USA; 3German Aerospace Center (DLR e.V.), Supersonic and Hypersonic Technologies Department, Linder Höhe, 51147 Köln, Germany. Abstract: NASA Ames Research Center (ARC) (COSSTA). Since the methane concentration in the Ti- leads the Dragonfly Entry Aerosciences Measurements tan atmosphere is directly proportional to the radiative (DrEAM) project, which is an aeroshell instrumentation heat flux, the COSSTA measurements will be used to suite on the Dragonfly mission that fulfills the Engineer- reduce the current uncertainty in the methane volume ing Science Investigation requirement for the New fraction. Atmospheric density measurements and cap- Frontiers mission. NASA ARC is partnering with sule aerodynamic data will be obtained through the NASA Langley Research Center (LaRC) and the Ger- onboard Inertial Measurement Unit (IMU), supple- man Aerospace Center (DLR) to provide a comprehen- mented by pressure transducers similar to those used by sive sensor suite, including a DLR-provided Data Ac- the MEDLI and MEDLI2 projects. The DrEAM pres- quisition System (DAS). DrEAM will provide key aer- sure sensors will be known as the Dragonfly Atmos- othermodynamic data and performance analysis for pheric Flight Transducers. (DrAFT). The pressure Dragonfly’s forebody and backshell Thermal Protection measurements, when combined with data from the on- System (TPS). board IMU, will allow for reconstruction of such quan- Titan’s atmosphere predominantly consists of nitro- tities as vehicle Mach number, freestream density, and gen (~98% by mole) with small amounts of methane atmospheric winds. -
Arxiv:2005.12932V1 [Astro-Ph.EP] 26 May 2020 with Eccentricity, E = 1.2, ‘Oumuamua Encountered the Solar System with V∞ = 26 Km S
Draft version May 28, 2020 Typeset using LATEX default style in AASTeX63 Evidence that 1I/2017 U1 (`Oumuamua) was composed of molecular hydrogen ice. Darryl Seligman1 and Gregory Laughlin2 1 Dept. of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 2Dept. of Astronomy, Yale University, New Haven, CT 06517 (Received April 14, 2020; Revised May 22, 2020; Accepted May 28, 2020) Submitted to ApJL ABSTRACT `Oumuamua (I1 2017) was the first macroscopic (l ∼ 100 m) body observed to traverse the inner solar system on an unbound hyperbolic orbit. Its light curve displayed strong periodic variation, and it showed no hint of a coma or emission from molecular outgassing. Astrometric measurements indicate that 'Oumuamua experienced non-gravitational acceleration on its outbound trajectory, but energy balance arguments indicate this acceleration is inconsistent with a water ice sublimation-driven jet of the type exhibited by solar system comets. We show that all of `Oumaumua's observed properties can be explained if it contained a significant fraction of molecular hydrogen (H2) ice. H2 sublimation at a rate proportional to the incident solar flux generates a surface-covering jet that reproduces the observed acceleration. Mass wasting from sublimation leads to monotonic increase in the body axis ratio, explaining `Oumuamua's shape. Back-tracing `Oumuamua's trajectory through the Solar System permits calculation of its mass and aspect ratio prior to encountering the Sun. We show that H2-rich bodies plausibly form in the coldest dense cores of Giant Molecular Clouds, where number densities are of order n ∼ 105, and temperatures approach the T = 3 K background. -
Extraformational Sediment Recycling on Mars Kenneth S
Research Paper GEOSPHERE Extraformational sediment recycling on Mars Kenneth S. Edgett1, Steven G. Banham2, Kristen A. Bennett3, Lauren A. Edgar3, Christopher S. Edwards4, Alberto G. Fairén5,6, Christopher M. Fedo7, Deirdra M. Fey1, James B. Garvin8, John P. Grotzinger9, Sanjeev Gupta2, Marie J. Henderson10, Christopher H. House11, Nicolas Mangold12, GEOSPHERE, v. 16, no. 6 Scott M. McLennan13, Horton E. Newsom14, Scott K. Rowland15, Kirsten L. Siebach16, Lucy Thompson17, Scott J. VanBommel18, Roger C. Wiens19, 20 20 https://doi.org/10.1130/GES02244.1 Rebecca M.E. Williams , and R. Aileen Yingst 1Malin Space Science Systems, P.O. Box 910148, San Diego, California 92191-0148, USA 2Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK 19 figures; 1 set of supplemental files 3U.S. Geological Survey, Astrogeology Science Center, 2255 N. Gemini Drive, Flagstaff, Arizona 86001, USA 4Department of Astronomy and Planetary Science, Northern Arizona University, P.O. Box 6010, Flagstaff, Arizona 86011, USA CORRESPONDENCE: [email protected] 5Department of Planetology and Habitability, Centro de Astrobiología (CSIC-INTA), M-108, km 4, 28850 Madrid, Spain 6Department of Astronomy, Cornell University, Ithaca, New York 14853, USA 7 CITATION: Edgett, K.S., Banham, S.G., Bennett, K.A., Department of Earth and Planetary Sciences, The University of Tennessee, 1621 Cumberland Avenue, 602 Strong Hall, Knoxville, Tennessee 37996-1410, USA 8 Edgar, L.A., Edwards, C.S., Fairén, A.G., Fedo, C.M., National Aeronautics -
FY 2021 Mission Fact Sheets
FY 2021 Budget Request Deep Space Exploration Systems ($ Millions) FY 2019 FY 2020 FY 2021 FY 2022 FY 2023 FY 2024 FY 2025 Deep Space Exploration Systems 5,044.8 6,017.6 8,761.7 10,299.7 11,605.1 10,887.7 8,962.2 Exploration Systems Development 4,086.8 3,713.9 4,042.3 4,011.2 4,071.7 3,767.7 3,634.8 Orion Program 1,350.0 981.0 1,400.5 1,322.3 1,391.0 1,239.9 1,084.7 Space Launch System 2,144.0 2,203.3 2,257.1 2,238.3 2,249.2 2,091.8 2,087.1 Exploration Ground Systems 592.8 529.6 384.7 450.6 431.6 436.0 463.0 Exploration Research & Development 958.0 2,303.7 4,719.4 6,288.5 7,533.4 7,120.0 5,327.4 Advanced Exploration Systems 348.9 255.6 258.2 226.9 146.7 130.1 130.1 Adv Cislunar and Surface Capabilities 132.1 1,294.2 212.1 821.4 1,664.5 1,502.1 1,152.6 Gateway 332.0 613.9 739.3 712.1 481.8 376.5 476.4 Human Research Program 145.0 140.0 140.0 140.0 140.0 140.0 140.0 Human Landing System 0.0 0.0 3,369.8 4,388.1 5,100.4 4,971.3 3,428.3 Grand Total 5,044.8 6,017.6 8,761.7 10,299.7 11,605.1 10,887.7 8,962.2 The FY 2021 Budget for the Deep Space Exploration Systems account consists of two areas, Exploration Systems Development (ESD) and Exploration Research and Development (ERD), which provide for the development of systems and capabilities needed for human exploration of the Moon and Mars. -
SMSC March 2021 Newsletter
SMSC March 2021 Newsletter News This Month OSIRIS-REx seeks answers to the questions that are central to the human experience: Where did we come from? What is our destiny? Asteroids, the leftover debris from the solar system formation process, can answer these questions and teach us about the history of the sun and planets. OSIRIS-REx is scheduled to depart Bennu on May 10 and begin its two-year journey back to Earth. The spacecraft will deliver the samples of Bennu to the Utah Test and Training Range on Sep. 24, 2023. Credit: NASA/Goddard/University of Arizona March skies feature many dazzling stars and constellations but two of the brightest stars are the focus of our attention this month: Sirius and Procyon, the dog stars! Discover more about these two nearby star systems in this month's edition of Night Sky Notes! We have a slack channel - if you would like to be added to the channel to discuss ways to use NASA resources locally, or if you have questions about how we can help you meet your goals, please send an email to [email protected] or you can follow us on Facebook or Twitter. NASA NEWS Lucy Mission in Space Contest - deadline March 16, 2021 ● Middle school students will design a “mission patch” showing how the process of evolution on Earth may parallel the evolution of the solar system and explain the patch design with a poem or short essay. ● High school students will create a message to any future finders of the Lucy spacecraft, which will likely orbit the sun for more than one million years and could be recovered by our descendants in the distant future. -
Espinsights the Global Space Activity Monitor
ESPInsights The Global Space Activity Monitor Issue 2 May–June 2019 CONTENTS FOCUS ..................................................................................................................... 1 European industrial leadership at stake ............................................................................ 1 SPACE POLICY AND PROGRAMMES .................................................................................... 2 EUROPE ................................................................................................................. 2 9th EU-ESA Space Council .......................................................................................... 2 Europe’s Martian ambitions take shape ......................................................................... 2 ESA’s advancements on Planetary Defence Systems ........................................................... 2 ESA prepares for rescuing Humans on Moon .................................................................... 3 ESA’s private partnerships ......................................................................................... 3 ESA’s international cooperation with Japan .................................................................... 3 New EU Parliament, new EU European Space Policy? ......................................................... 3 France reflects on its competitiveness and defence posture in space ...................................... 3 Germany joins consortium to support a European reusable rocket......................................... -
Report on Czech COSPAR-Related Activities in 2019
Report on Czech COSPAR-related activities in 2019 This report summarizes selected results of five Czech institutions represented in the Czech National Committee of COSPAR, namely the Institute of Atmospheric Physics (IAP) of the Czech Academy of Sciences (CAS), the Astronomical Institute (AI) of CAS, the Faculty of Mathematics and Physics of the Charles University (FMP CU), BBT - Materials Processing, and the Czech Space Office. Both selected scientific results and Czech participation in space experiments are reported. There are also significant outreach/PR activities. Participation in space experiments Solar Orbiter (AI CAS, IAP CAS, FMP CU, IPP CAS - TOPTEC) The Solar Orbiter (SOLO) satellite, project ESA-NASA, was successfully launched from Florida on February 10, 2020 at 05:03 CET. Czech institutions have been participating in four out of ten scientific instruments on board of SOLO (STIX, Metis, RPW, and SWA/PAS). Czech commitment to the STIX (remote sensing X-ray telescope led by Switzerland) instrument was fully accomplished. Figure: STIX telescope Another instrument on board the Solar Orbiter is the coronagraph Metis led by Italian PI, with Germany and Czech Republic as Co-PIs. Metis will observe the solar corona in UV in the hydrogen Lyman- line and simultaneously in the visible light. The main optics (two mirrors) were designed and manufactured in the Czech Republic by TOPTEC (section of the Institute of Plasma Physics (IPP) of CAS). The third instrument called RPW (Radio and Plasma Waves) has PI in France, with participation of the AI and IAP CAS. The team at IAP CAS developed and delivered the Time Domain Sampler (TDS) subsystem which will characterize the processes of beam-plasma interactions responsible for generation of Langmuir waves and their conversion to radio emissions.