Mission Planning for Close-Proximity Satellites
Total Page:16
File Type:pdf, Size:1020Kb
Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-9-2009 Mission Planning for Close-Proximity Satellites Barry R. Witt Follow this and additional works at: https://scholar.afit.edu/etd Part of the Astrodynamics Commons Recommended Citation Witt, Barry R., "Mission Planning for Close-Proximity Satellites" (2009). Theses and Dissertations. 2419. https://scholar.afit.edu/etd/2419 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. MISSION PLANNING FOR CLOSE-PROXIMITY SATELLITES THESIS Barry R. Witt, Captain, USAF AFIT/GA/ENY/09-M10 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. AFIT/GA/ENY/09-M10 MISSION PLANNING FOR CLOSE-PROXIMITY SATELLITIES THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Astronautical Engineering Barry R. Witt, BS Captain, USAF March 2009 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GA/ENY/09-M10 MISSION PLANNING FOR CLOSE-PROXIMITY SATELLITES Barry R. Witt, BS Captain, USAF Approved: __________/signed_____________________ William E. Wiesel (Chairman) Date __________/signed___________ _________ Kerry D. Hicks (Member) Date __________/signed______________________ Douglas D. Decker (Member) Date AFIT/GA/ENY/09-M10 Abstract Given an initial orbit and a set of other orbits of interest, the path requiring the lowest change in velocity between them is of high value. Software was developed to visualize the change in velocity required from a user defined window of burn to a user defined window of intercept. The time between burn and intercept is unrestricted. Multiple intercepts require searching an n! solution space. Research then is focused on ways to pick optimal choices without fully calculating out the cost of doing all possible combinations. Some code was translated from BASIC and the rest was newly developed in MATLAB. The code was validated using orbits with known intercept solutions. iv AFIT/GA/ENY/09-M10 Soli Deo Gloria v Acknowledgements I would like to express my sincere appreciation to my faculty advisor, Dr William Wiesel, for his guidance, support and computer code throughout the course of this thesis effort. The insight, experience and extension on the p-iteration technique was certainly appreciated and in the case of the code, necessary for this thesis. I would, also, like to thank the help of Dr David Vallado and Dr Jeff Beck with using their computer code. Their pioneering work using the SGP4 propagator was fundamental to the success of the code presented here. Barry R. Witt vi Table of Contents Page Abstract ........................................................................................................................................................ iv Acknowledgements ...................................................................................................................................... vi Table of Contents ........................................................................................................................................ vii List of Figures ............................................................................................................................................. viii List of Tables ................................................................................................................................................ ix I. Introduction .......................................................................................................................................... 1 II. Problem Setup....................................................................................................................................... 5 III. Results ................................................................................................................................................. 12 IV. Further Research ................................................................................................................................. 31 V. Bibliography ........................................................................................................................................ 33 Appendix A. TLEs used ............................................................................................................................... 34 Appendix B. Classical Orbital Elements ...................................................................................................... 36 Appendix C. Source Code ........................................................................................................................... 37 vii List of Figures Page Figure I-1. XSS-10 ......................................................................................................................................... 2 Figure I-2. XSS-11 ......................................................................................................................................... 2 Figure I-3. Picture of upper stage from XSS-10 ............................................................................................ 2 Figure II-1. Vector Geometry of Burn ........................................................................................................... 8 Figure II-2. Method of Calculating Delta V’s. ............................................................................................... 9 Figure II-3. P-iter Geometry ....................................................................................................................... 10 Figure II-4. Total Calculation for Each Burn/Intercept Combination ......................................................... 11 Figure III-1. Orbit of XSS-11 ........................................................................................................................ 15 Figure III-2. Orbit of Hubble Space Telescope ............................................................................................ 15 Figure III-3. Orbit of International Space Station ....................................................................................... 16 Figure III-4. Orbit of OFEQ 5 ....................................................................................................................... 16 Figure III-5. Phasing Only Intercept Solutions ............................................................................................ 20 Figure III-6. Side-on View of Phasing Only Intercept Solution ................................................................... 21 Figure III-7. 7 Day Perturbation of Phasing Only ........................................................................................ 22 Figure III-8. 30 Day Perturbation of Phasing Only ...................................................................................... 23 Figure III-9. 90 Day Perturbation of Phasing Only ...................................................................................... 24 Figure III-10. XSS to ISS with 1 Day of Separation ...................................................................................... 24 Figure III-11. XSS to ISS with 30 Days of Separation .................................................................................. 25 Figure III-12. XSS to Resurs with 1 Day of Separation ................................................................................ 25 Figure III-13. XSS to Resurs at 90 Days of Separation ................................................................................ 26 Figure III-14. Burn Wait Time Analysis ....................................................................................................... 28 Figure III-15. Elapsed Time vs Burn Cost .................................................................................................... 28 Figure III-16. Trending Burn Cost vs Change in Mean Motion ................................................................... 29 Figure III-17. Elapsed Time vs Change in Mean Motion ............................................................................. 29 viii List of Tables Page Table III-1. Orbits Used for Analysis ........................................................................................................... 12 Table III-2. Single Burn Data ....................................................................................................................... 18 Table III-3. Multiple Burn Data ................................................................................................................... 26 Table III-4. Further Analysis on Multiple Burn ........................................................................................... 27 ix MISSION PLANNING FOR CLOSE-PROXIMITY SATELLITIES I. Introduction Close-proximity operations have long been of interest to space-faring nations. The ability to observe and