(Syzygium Samarangense): a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PLANT COMMUNITY FIELD GUIDE Introduction to Rainforest
PLANT COMMUNITY FIELD GUIDE Introduction to Rainforest Communities Table of Contents (click to go to page) HCCREMS Mapping ....................................................................... 3 Field Data Sheet ............................................................................. 4 Which of the following descriptions best describes your site? ................................................................ 5 Which plant community is it? .......................................................... 9 Rainforest communities of the Lower Hunter .................................. 11 Common Rainforest Species of the Lower Hunter ........................................................................ 14 A picture guide to common rainforest species of the Lower Hunter ........................................................... 17 Weeding of Rainforest Remnants ................................................... 25 Rainforest Regeneration near Black Jacks Point ............................ 27 Protection of Rainforest Remnants in the Lower Hunter & the Re-establishment of Diverse, Indigenous Plant Communities ... 28 Guidelines for a rainforest remnant planting program ..................... 31 Threatened Species ....................................................................... 36 References ..................................................................................... 43 Acknowledgements......................................................................... 43 Image Credits ................................................................................ -
An Infrageneric Classification of Syzygium (Myrtaceae)
Blumea 55, 2010: 94–99 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE doi:10.3767/000651910X499303 An infrageneric classification of Syzygium (Myrtaceae) L.A. Craven1, E. Biffin 1,2 Key words Abstract An infrageneric classification of Syzygium based upon evolutionary relationships as inferred from analyses of nuclear and plastid DNA sequence data, and supported by morphological evidence, is presented. Six subgenera Acmena and seven sections are recognised. An identification key is provided and names proposed for two species newly Acmenosperma transferred to Syzygium. classification molecular systematics Published on 16 April 2010 Myrtaceae Piliocalyx Syzygium INTRODUCTION foreseeable future. Yet there are many rewarding and worthy floristic and other scientific projects that await attention and are Syzygium Gaertn. is a large genus of Myrtaceae, occurring from feasible in the shorter time frame that is a feature of the current Africa eastwards to the Hawaiian Islands and from India and research philosophies of short-sighted institutions. southern China southwards to southeastern Australia and New One impediment to undertaking studies of natural groups of Zealand. In terms of species richness, the genus is centred in species of Syzygium, as opposed to floristic studies per se, Malesia but in terms of its basic evolutionary diversity it appears has been the lack of a framework or context within which a set to be centred in the Melanesian-Australian region. Its taxonomic of species can be the focus of specialised research. Below is history has been detailed in Schmid (1972), Craven (2001) and proposed an infrageneric classification based upon phylogenies Parnell et al. (2007) and will not be further elaborated here. -
A Revision of Syzygium Gaertn. (Myrtaceae) in Indochina (Cambodia, Laos and Vietnam) Author(S): Wuu-Kuang Soh and John Parnell Source: Adansonia, 37(1):179-275
A revision of Syzygium Gaertn. (Myrtaceae) in Indochina (Cambodia, Laos and Vietnam) Author(s): Wuu-Kuang Soh and John Parnell Source: Adansonia, 37(1):179-275. Published By: Muséum national d'Histoire naturelle, Paris DOI: http://dx.doi.org/10.5252/a2015n2a1 URL: http://www.bioone.org/doi/full/10.5252/a2015n2a1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. A revision of Syzygium Gaertn. (Myrtaceae) in Indochina (Cambodia, Laos and Vietnam) Wuu-Kuang SOH John PARNELL Botany Department, School of Natural Sciences, Trinity College Dublin (Republic of Ireland) [email protected] [email protected] Published on 31 December 2015 Soh W.-K. & Parnell J. 2015. — A revision of Syzygium Gaertn. (Myrtaceae) in Indochina (Cambodia, Laos and Vietnam). Adansonia, sér. 3, 37 (2): 179-275. http://dx.doi.org/10.5252/a2015n2a1 ABSTRACT The genusSyzygium (Myrtaceae) is revised for Indochina (Cambodia, Laos and Vietnam). -
Phytochemical Composition and Pleotropic Pharmacological Properties of Jamun, Syzygium Cumini Skeels
Review Article Phytochemical Composition and Pleotropic Pharmacological Properties of Jamun, Syzygium Cumini Skeels Ganesh Chandra Jagetia* Department of Zoology, Mizoram University, Aizawl-796004, India Abstract Plants have been employed as medicine since time immemorial, and there has been a recent resurgence in the use of plants as medicines due to their little or no toxicity at the doses used for treatment of different ailments. This review discusses in detail the phytochemical and pharmacological activities of Jamun (Syzygium cumini), a tree belonging to family Myrtaceae, which has been credited with several medicinal properties in the traditional system of medicine, the Ayurveda. The different properties attributed to Jamun are sweet, sour, astringent, ac- rid, refrigerant, carminative, diuretic, and digestive. Research and practical use in traditional medicinal systems have found Jamun to be effective in treating leucorrhoea, gastric disorders, fever, diabetes, piles, stomachache, wounds, and dental, digestive and skin disorders. Some compounds in Jamun have antioxidant, antimicrobial, an- tiallergic, antidiabetic, antihyperlipidemic, anticancer, gastroprotective, hepatoprotective, cardioprotective and radioprotective activity. Finally, Jamun has been found to contain phytochemicals including anthroquinones, al- kaloids, catechins, flavonoids, glycosides, steroids, phenols, tannins, saponins and cardiac glycosides. The diverse activities of Jamun may be due to its abilities to scavenge free radicals, increase antioxidant status of cells by increasing glutathione, glutathione peroxidase, catalase and/or superoxide dismutase, and to attenuate lipid per- oxidation. In addition, it also suppresses the transcription of peroxisome proliferator-activated receptor, Nuclear factor kappa B, cyclooxygenase, inducible nitric oxide synthase, tumor necrosis factor alpha and other proinflam- matory cytokines, accompanied by the up-regulation of nuclear factor erythroid 2-related factor 2 transcription, which is involved in regulating the antioxidant status of the cells. -
Plant Biometrics of Malay, Rose and Water Apple Guilherme Nacata1 & Renata Aparecida De Andrade2
ISSN 0100-2945 DOI: http://dx.doi.org /10.1590/0100-29452018131 Botanic and Physiology Plant biometrics of malay, rose and water apple Guilherme Nacata1 & Renata Aparecida de Andrade2 Abstract - Due to the lack of studies comparing Syzygium malaccensis(L) Meer & Perry, Syzygium aqueum Burm.f. and Syzygium jambos (L) Alston Syzygium in relation to the botanical genus Sygygium regarding the physical characteristics, the present research was conducted, aiming at biometrically characterizing each of the three species, as well as comparing them. The fruits were collected from the São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal. Syzygium plants were used for the evaluation of: fruit and seed masses (g); width and length of leaves (cm) and of seeds (cm); percentage of fruit pulp; length of leaf petiole (cm); and leaf area (cm2). Fifty fruits, leaves and seeds of each species were used, with 5 replicates of 10 samples each and the data were submitted to descriptive statistical analysis and organized into frequency tables. For comparative purposes among the species, a blocks randomized design was adopted, being analyzed by the Tukey Test at 5% of probability. The malay and water apple present fruits with high yield of pulp. The fruit of the malay apple are light, with narrow diameter, medium length, broad seeds, narrow and small leaves, with small leaf area. The rose apple fruit present medium mass, width and length, with broad seeds, narrow leaves, medium length and small leaf area. The water apple fruit are light, broad, long, without seeds, with broad leaves, long and having medium leaf area. -
Nomenclature of Syzygium Gracile (Myrtaceae)
BLUMEA 48: 489 – 490 Published on 28 November 2003 doi: 10.3767/000651903X489456 NOMENCLATURE OF SYZYGIUM GRACILE (MYRTACEAE) J.F. VELDKAMP Nationaal Herbarium Nederland, Universiteit Leiden branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands; e-mail: [email protected] SUMMARY Syzygium glabratum is the correct name for Syzygium gracile. Key words: Syzygium glabratum, Syzygium gracile, Syzygium ramosissimum, Myrtaceae, Malesia. Ms. Amshoff (1945) coined the combination Syzygium gracile (Korth.) Amshoff, based on Jambosa gracilis Korth. (1847). She cited an apparently earlier place where the combination would have been made: the ‘Noodflora voor Java’ (1944). However, all new taxa and combinations found there must be regarded as invalid, as the Noodflora was prepared to safeguard Backer’s manuscripts in a number of places. Hence the publication in 1945 was necessary to validate some new names and taxa. However, Amshoff also cited Myrtus glabrata Blume (1826–1827: 1083, ‘1088’), which is a later homonym of M. glabrata Sw. (1788). She was apparently not aware that Blume’s taxon was given a valid name, Jambosa glabrata, by De Candolle (1828), i.e. older than Korthals’ name. Syzygium gracile (Korth.) Amshoff is superfluous: ‘glabratum’ should have been used, as there seems to be no Syzygium glabratum then and now (IPNI, May 21, 2003). The synonymy of the taxon is: Syzygium glabratum [Blume] (DC.) Veldk., comb. nov. Myrtus glabrata Blume, Bijdr. 17 (1826–1827) 1083, non Sw. (1788). — Jambosa glabrata DC., (1828) 287. — Clavimyrtus glabrata Blume (1850) 114. — Eugenia blumeana Kuntze (1891) 239, nom. nov., non E. glabrata DC. (1828). — Lectotype of Clavimyrtus Blume, designated by Merr. -
Many Guava Plants (Syzygium Malaccense L.) Agribusiness Strategy in Jombang East Java
International Journal of Applied Environmental Sciences ISSN 0973-6077 Volume 14, Number 4 (2019), pp. 339-350 © Research India Publications http://www.ripublication.com Many Guava Plants (Syzygium malaccense L.) Agribusiness Strategy in Jombang East Java Suparno and Sumarji Universitas Islam Kadiri East Java Indonesia Abstract Many guava plants (Syzygium malaccense L.) are cultivated in Gondangmanis Village, Bandar Kedung Mulyo District, Jombang Regency, East Java. The plant is very suitable with environmental conditions in Gondangmanis village so that people call Gondangmanis guava, has high yield potential, blackish purple fruit color, fresh sweetness, white flesh color such as cotton, fragrant fruit aroma and has been certified by the Minister of Agriculture of the Republic of Indonesia No: 308 / Kpts / SR.120 / 4/2006 under the name guava Gondangmanis. The research objective was to establish the agribusiness strategy of Gondangmanis guava. The research location was in Gondangmanis village, Bandar Kedung Mulyo District, Jombang Regency, East Java. Research time starting April to June 2019. SWOT and QSPM analysis methods. The conclusion of the analysis was chosen SO Strategy. The highest attraction value is found in strategy 1 (SO) with a sum attractiveness (TAS) of 6.85, which is taking action between the local government, the main actors, community leaders, village-owned enterprises, to produce superior quality and quantity of fruit and protect and preserve Gondangmanis guava as a characteristic that is owned by Gondangmanis Village, Bandar Kedung District, Mulyo Jombang, East Java. Keywords: Gondangmanis Guava, Agribusiness, SWOT Analysis, QSPM Analysis. I. INTRODUCTION Many guava (head guava and red guava) is a fruit plant of guavas relatives which is an annual fruit plant originating from the Indo-China region, Malaysia, the Philippines, Indonesia. -
Physico-Chemical Characterization, Bioactive Compounds and Antioxidant Activity of Malay Apple [Syzygium Malaccense (L.) Merr
RESEARCH ARTICLE Physico-Chemical Characterization, Bioactive Compounds and Antioxidant Activity of Malay Apple [Syzygium malaccense (L.) Merr. & L.M. Perry] Polyana Campos Nunes1, Jailane de Souza Aquino2, Ismael Ivan Rockenbach3*, Tânia Lúcia Montenegro Stamford1 1 Department of Nutrition, Centre for Health Sciences, Federal University of Pernambuco–UFPE, Recife, Pernambuco, Brazil, 2 Department of Nutrition, Centre for Health Sciences, Federal University of Paraíba– a11111 UFPB, João Pessoa, Paraíba, Brazil, 3 Department of Food Technology, Centre for Technology and Regional Development, Federal University of Paraíba–UFPB, João Pessoa, Paraíba, Brazil * [email protected] Abstract OPEN ACCESS The purpose of this study was to evaluate the physico-chemical characteristics, bioactive Citation: Nunes PC, Aquino JdS, Rockenbach II, Stamford TLM (2016) Physico-Chemical compounds and antioxidant activity of Malay apple fruit (Syzygium malaccense) grown in Characterization, Bioactive Compounds and Brazil with regard to the geographical origin and its peel fractions and edible portion ana- Antioxidant Activity of Malay Apple [Syzygium lyzed independently. Fruit diameter, weight, yield, and centesimal composition, ascorbic malaccense (L.) Merr. & L.M. Perry]. PLoS ONE 11 acid, reductive sugars, total soluble solids, pH and fiber content were determined. Total (6): e0158134. doi:10.1371/journal.pone.0158134 phenolics (1293 mg gallic acid equivalent/100 g) and total anthocyanins (1045 mg/100 g) Editor: David A Lightfoot, College of Agricultural contents were higher in the peel, with the major anthocyanin identified using HPLC-DAD- Sciences, UNITED STATES MS/MS as cyanidin 3-glucoside. Higher values for DPPH antiradical scavenging activity Received: January 25, 2016 (47.52 μMol trolox equivalent antioxidant capacity/g) and Ferric Reducing Antioxidant Accepted: June 10, 2016 Potential (FRAP, 0.19 mM ferreous sulfate/g) were also observed in the peel fraction. -
Atoll Research Bulletin No. 503 the Vascular Plants Of
ATOLL RESEARCH BULLETIN NO. 503 THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS BY NANCY VANDER VELDE ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. AUGUST 2003 Uliga Figure 1. Majuro Atoll THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS ABSTRACT Majuro Atoll has been a center of activity for the Marshall Islands since 1944 and is now the major population center and port of entry for the country. Previous to the accompanying study, no thorough documentation has been made of the vascular plants of Majuro Atoll. There were only reports that were either part of much larger discussions on the entire Micronesian region or the Marshall Islands as a whole, and were of a very limited scope. Previous reports by Fosberg, Sachet & Oliver (1979, 1982, 1987) presented only 115 vascular plants on Majuro Atoll. In this study, 563 vascular plants have been recorded on Majuro. INTRODUCTION The accompanying report presents a complete flora of Majuro Atoll, which has never been done before. It includes a listing of all species, notation as to origin (i.e. indigenous, aboriginal introduction, recent introduction), as well as the original range of each. The major synonyms are also listed. For almost all, English common names are presented. Marshallese names are given, where these were found, and spelled according to the current spelling system, aside from limitations in diacritic markings. A brief notation of location is given for many of the species. The entire list of 563 plants is provided to give the people a means of gaining a better understanding of the nature of the plants of Majuro Atoll. -
What's in Your Tropical Fruit?1
FSHN 07-08 What’s in Your Tropical Fruit?1 Susan S. Percival and Brooke Findley2 Florida ranked ninth in the nation for total cash receipts from fruit, with nearly 28% of this from field crops and other crops not including vegetables. Additionally, Florida’s top export is fruit; in 2003, Florida ranked second in the nation in fruit exports (3). Since the production of tropical fruits is an important part of the economy of the state, highlighting the nutritional benefits of these fruits enhances their marketability and appeal. However, the lack of comprehensive information about the nutritional properties of these foods presents a challenge. The purpose of this publication is to evaluate the current information available on the nutrient composition of Figure 1. Tropical Fruit Day (2005). tropical fruits. The nutrient information (amounts of fiber, Credits: UF/IFAS Vitamin A, Vitamin C, folate, potassium, calcium and iron) for the tropical fruits examined was compiled from the Introduction USDA National Nutrient Database for Standard Reference Fruits are abundant in nutrients, such as fiber, potas- (4, 5) (see Table 1). These values were then compared to the sium, folate, and Vitamin C. Moreover, they also contain daily reference values for food labeling (6) and evaluated carotenoids and polyphenols, which act as antioxidants in relation to the percent provided per serving. According within the body. Eating large amounts of plant-based foods to the FDA, a “good” source of a nutrient provides 10-19% has been associated with lowered rates of cardiovascular of the daily reference value, while an “excellent” source disease (1, 2) and with decreased risk of cancer and stroke provides 20% of the daily reference value (6, 7). -
Effects of Aboriginal People On
EFFECTS OF ABORIGINAL PEOPLE ON VEGETATION OF THE HAWAIIAN ISLANDS The Hawaiian Islands were settled by ocean-voyaging Polynesians, probably from the Marquesas, an island group 4,000 km (2,400 mi) to the southeast. Evidence for the af- finity of the Hawaiian and Marquesan peoples is derived from similarities of language, body type, and agricultural plants (Kirch 1985a). However, there may have been more than one wave of immigration, and contact between Hawai'i and island groups other than the Marquesas (i.e., the Society Islands) apparently occurred as well (Dye, in press). The time of first settlement has been variously reported. Earlier estimates were often around 800 A.D. (Green 1971; Handy and Handy 1972), but Kirch (1985a) estimated that colonization of the Hawaiian Islands occurred as early as 300 A.D., or more conser- vatively 400 A.D. (Kirch 1982). Kirch reasoned that such an early date for first ar- rival is likely because permanent settlements were distributed on all the main islands by the 6th century and such development would have required time. One of the earliest dated archaeological sites that has been excavated is the Bellows or Waimanalo Beach site on O'ahu, which appears to have been initially occupied between 450 and 500 A.D. (Kirch 1974) or possibly as early as 327 A.D. (Tuggle et al. 1978). Another site of early human habitation is Halawa Dunes on Moloka'i, dated from 600 A.D. (Kirch 1974; Kirch and Kelly 1975). Human Population Size Although humans have been occupying the Hawaiian Islands for more than 1,500 years, the size of the original population was probably quite low, and the impact on the Ha- waiian environment was correspondingly small at first. -
Syzygium and Related Genera (Myrtaceae) in Auckland
12 SYZYGIUM AND RELATED GENERA (MYRTACEAE) IN AUCKLAND R.O. Gardner The Australian members of this alliance have been expertly revised by Hyland (1983) making it possible to improve acquaintance with the five species in Syzygium Acmena and Waterhousea that are grown in Auckland for ornament and shelter. These are essentially trees of warm latitudes along Australias eastern coast but they find our climate and probably richer soils congenial and often it seems grow better here than in their homeland. None however have properly naturalized though undispersed juveniles and a few adults do occur. The disposition into genera is based largely upon characters of the. fruit and seed. What appears to be a simple baccate "monkey apple" may conceal unusual features like ruminate cotyledons or a missing seed coat so the fruits of these species produced here in abundance are very interesting to dissect and compare. Leaf silhouettes of the five Australian species are shown in Figure IA. Acmena smithii lillipilli monkey apple (NZ) Very common around Auckland as a street or specimen tree and in hedges. Seedlings occur close to the plantings but most succumb to scale and thrips. Some of the seedlings at Purewa cemetery have a lignotuber unlike most Australian forms of the species (Figure IB). Waterhousea floribunda weeping lillipilli (formerly Syzygium floribundum Eugenia ventenatii) Only seen in a few old gardens e.g. at Highwic The Pines Western Park being fine trees to c. 15 m tall 80 cm dbh and especially beautiful in spring with their pendent new foliage of pink and yellow; a species which should be much more often grown in this country.