Pneumonia: Prevention and Care at Home
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Captive Orcas
Captive Orcas ‘Dying to Entertain You’ The Full Story A report for Whale and Dolphin Conservation Society (WDCS) Chippenham, UK Produced by Vanessa Williams Contents Introduction Section 1 The showbiz orca Section 2 Life in the wild FINgerprinting techniques. Community living. Social behaviour. Intelligence. Communication. Orca studies in other parts of the world. Fact file. Latest news on northern/southern residents. Section 3 The world orca trade Capture sites and methods. Legislation. Holding areas [USA/Canada /Iceland/Japan]. Effects of capture upon remaining animals. Potential future capture sites. Transport from the wild. Transport from tank to tank. “Orca laundering”. Breeding loan. Special deals. Section 4 Life in the tank Standards and regulations for captive display [USA/Canada/UK/Japan]. Conditions in captivity: Pool size. Pool design and water quality. Feeding. Acoustics and ambient noise. Social composition and companionship. Solitary confinement. Health of captive orcas: Survival rates and longevity. Causes of death. Stress. Aggressive behaviour towards other orcas. Aggression towards trainers. Section 5 Marine park myths Education. Conservation. Captive breeding. Research. Section 6 The display industry makes a killing Marketing the image. Lobbying. Dubious bedfellows. Drive fisheries. Over-capturing. Section 7 The times they are a-changing The future of marine parks. Changing climate of public opinion. Ethics. Alternatives to display. Whale watching. Cetacean-free facilities. Future of current captives. Release programmes. Section 8 Conclusions and recommendations Appendix: Location of current captives, and details of wild-caught orcas References The information contained in this report is believed to be correct at the time of last publication: 30th April 2001. Some information is inevitably date-sensitive: please notify the author with any comments or updated information. -
Legionnaires' Disease
epi TRENDS A Monthly Bulletin on Epidemiology and Public Health Practice in Washington Legionnaires’ disease Vol. 22 No. 11 Legionellosis is a bacterial respiratory infection which can result in severe pneumonia and death. Most cases are sporadic but legionellosis is an important public health issue because outbreaks can occur in hotels, communities, healthcare facilities, and other settings. Legionellosis Legionellosis was first recognized in 1976 when an outbreak affected 11.17 more than 200 people and caused more than 30 deaths, mainly among attendees of a Legionnaires’ convention being held at a Philadelphia hotel. Legionellosis is caused by numerous different Legionella species and serogroups but most epiTRENDS P.O. Box 47812 recognized infections are due to Olympia, WA 98504-7812 L. pneumophila serogroup 1. The extent to which this is due to John Wiesman, DrPH, MPH testing bias is unclear since only Secretary of Health L. pneumophila serogroup 1 is Kathy Lofy, MD identified via commonly used State Health Officer urine antigen tests; other species Scott Lindquist, MD, MPH Legionella pneumophila multiplying and serogroups must be identified in a human lung cell State Epidemiologist, through PCR or culture, tests Communicable Disease www.cdc.gov which are less commonly ordered. Jerrod Davis, P.E. Assistant Secretary The disease involves two clinically distinct syndromes: Pontiac fever, Disease Control and Health Statistics a self-limited flu-like illness without pneumonia; and Legionnaires’ disease, a potentially fatal pneumonia with initial symptoms of fever, Sherryl Terletter Managing Editor cough, myalgias, malaise, and sometimes diarrhea progressing to symptoms of pneumonia which can be severe. Health conditions that Marcia J. -
The Use of Non-Human Primates in Research in Primates Non-Human of Use The
The use of non-human primates in research The use of non-human primates in research A working group report chaired by Sir David Weatherall FRS FMedSci Report sponsored by: Academy of Medical Sciences Medical Research Council The Royal Society Wellcome Trust 10 Carlton House Terrace 20 Park Crescent 6-9 Carlton House Terrace 215 Euston Road London, SW1Y 5AH London, W1B 1AL London, SW1Y 5AG London, NW1 2BE December 2006 December Tel: +44(0)20 7969 5288 Tel: +44(0)20 7636 5422 Tel: +44(0)20 7451 2590 Tel: +44(0)20 7611 8888 Fax: +44(0)20 7969 5298 Fax: +44(0)20 7436 6179 Fax: +44(0)20 7451 2692 Fax: +44(0)20 7611 8545 Email: E-mail: E-mail: E-mail: [email protected] [email protected] [email protected] [email protected] Web: www.acmedsci.ac.uk Web: www.mrc.ac.uk Web: www.royalsoc.ac.uk Web: www.wellcome.ac.uk December 2006 The use of non-human primates in research A working group report chaired by Sir David Weatheall FRS FMedSci December 2006 Sponsors’ statement The use of non-human primates continues to be one the most contentious areas of biological and medical research. The publication of this independent report into the scientific basis for the past, current and future role of non-human primates in research is both a necessary and timely contribution to the debate. We emphasise that members of the working group have worked independently of the four sponsoring organisations. Our organisations did not provide input into the report’s content, conclusions or recommendations. -
Obliterative Bronchiolitis, Cryptogenic Organising Pneumonitis and Bronchiolitis Obliterans Organizing Pneumonia: Three Names for Two Different Conditions
Eur Reaplr J EDITORIAL 1991, 4, 774-775 Obliterative bronchiolitis, cryptogenic organising pneumonitis and bronchiolitis obliterans organizing pneumonia: three names for two different conditions R.M. du Bois, O.M. Geddes Over the last five years, increasing confusion has has been applied to conditions in which airflow obstruc developed over the use of the terms "bronchiolitis tion is prominent and in which response to treatment is obliterans" and "bronchiolitis obliterans organizing poor. pneumonia". The confusion stems largely from the common use of the term "bronchiolitis obliterans" or "obliterative bronchiolitis" in the diagnostic labels applied "Cryptogenic organizing pneumonitis" or "bronchi· to two entities which are quite distinct clinically but which otitis obliterans organizing pneumonia" (BOOP) bear certain resemblances histologically. Cryptogenic organizing pneumonitis was first described by DAVISON et al. [7] in 1983. The clinical syndrome ObUterative bronchiolitis consisted of breathlessness, malaise, fever, high erythrocyte sedimentation rate (ESR), pneumonic In 1977, GEODES et al. [1] reported the case histories shadowing on chest radiograph with a restrictive of six patients whose clinical condition was characterized pulmonary function defect and low gas transfer coeffi by airways obliteration in association with rheumatoid cient. On histological examination of lung biopsy mate· arthritis. The striking clinical features were of rapidly rial, the typical and distinguishing feature was the progressive breathlessness and the fmding on examination presence of connective tissue within the alveoli, alveolar of a high-pitched mid-inspiratory squeak heard over the ducts and, occasionally, in respiratory bronchioles. This lung fields. Chest radiographs showed hyperinflated lungs connective tissue consisted of "loosely woven fibres of but were otherwise normal. -
Guinea Pig Care
Caring for your Guinea Pig Basic HusBandry General Information Vital Statistics Guinea Pig Body Weight: Male 900g–1,2000g; Female 700–900g Life Span: Average 4–5 years; Maximum 8 years Sexual Maturity: Male 3–4 months of age; Female 2–3 months of age Behavior and Handling • Guinea pigs should be held gently with two hands. Their hind end should always be supported. • When handling guinea pigs, try to avoid excessive noise, needless excitement, and over-handling. • Children handling the guinea pig should sit on the floor and hold the guinea pig in their lap. Children should only handle guinea pigs under adult supervision. • Guinea pigs do not adapt well to changes in their food or environment. Hair barbering (chewing of the fur) may occur in situations of stress and overcrowding. If this occurs please contact your veterinarian. Reproductive Information • It is extremely important not to let your female guinea pig breed as she reaches six months of age. At around this age, the bones of the pelvis fuse if the animal has not been bred. If a guinea pig in this condition becomes pregnant, she will most likely require high risk surgery to remove the babies. • Guinea pigs are social animals and will establish a pecking order that is frequently male-dominated. Overcrowding may incite aggression among guinea pigs, and noncastrated males may be aggressive towards other males in the presence of females. • Guinea pigs should be kept as single pets, or should be kept in separate cages. Housing • Guinea pigs should be housed separately in a cage that is a minimum of 2 ft. -
Bovine Respiratory Disease & Diagnostic Veterinary Medicine
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Range Beef Cow Symposium Animal Science Department 2009 Bovine Respiratory Disease & Diagnostic Veterinary Medicine (Managing Respiratory Diseases in the Herd) Donald Montgomery Wyoming State Veterinary Laboratory, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/rangebeefcowsymp Part of the Animal Sciences Commons Montgomery, Donald, "Bovine Respiratory Disease & Diagnostic Veterinary Medicine (Managing Respiratory Diseases in the Herd)" (2009). Range Beef Cow Symposium. 280. https://digitalcommons.unl.edu/rangebeefcowsymp/280 This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Range Beef Cow Symposium by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Proceedings, The Range Beef Cow Symposium XXI December 1, 2 and 3 2009, Casper, WY Bovine Respiratory Disease & Diagnostic Veterinary Medicine (Managing Respiratory Diseases in the Herd) Donald Montgomery, DVM, PhD, Dipl ACVP Pathologist and Director, Wyoming State Veterinary Laboratory Year in and year out, diseases of the respiratory system are a major cause of illness and death in cattle from 6 weeks to two years of age. Sadly, this is as true today as it was 30 years ago despite development of new and improved vaccines, new broad spectrum antibiotics, and increased fundamental knowledge as to the cause of disease. WHY? I don‟t have the answer and I doubt if anyone does. As a pathologist, I often see firsthand the devastating effects that bacteria can have in the lungs of cattle that die from respiratory disease complex or shipping fever. -
Can Animal Models Really Teach Us Anything About Pneumonia? Pro
EDITORIAL | PRO/CON DEBATE Can animal models really teach us anything about pneumonia? Pro Carlos J. Orihuela1, Ulrich A. Maus2,3 and Jeremy S. Brown4 Affiliations: 1Dept of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA. 2Dept of Experimental Pneumology, Hannover School of Medicine, Hannover, Germany. 3German Center for Lung Research, Hannover, Germany. 4UCL Respiratory, University College London, London, UK. Correspondence: Jeremy S. Brown, UCL Respiratory, University College London, Rayne Building, 5 University Street, London, UK. E-mail: [email protected] @ERSpublications Animal models can provide incredibly detailed data on pathogenesis and immunology of lung infections, and will be essential for the development of novel therapeutic/preventative strategies to reduce the morbidity and mortality caused by pneumonia http://bit.ly/2pdCzcH Cite this article as: Orihuela CJ, Maus UA, Brown JS. Can animal models really teach us anything about pneumonia? Pro. Eur Respir J 2020; 55: 1901539 [https://doi.org/10.1183/13993003.01539-2019]. Introduction Despite highly effective antibiotics and intensive care support, the mortality associated with pneumonia has not substantially decreased since the 1960s [1]. Hence, there remains a major requirement for improved treatment and preventative strategies, which will need new knowledge on the pathogenesis of pneumonia. Animal models have obvious high value when investigating the molecular mechanisms involved in pneumonia pathogenesis, but they are also directly relevant for clinically orientated research into new therapies and vaccines, complications of pneumonia, and identifying high risk groups. In this article we describe how research using animal models will be essential if we are to reduce the immense morbidity and mortality associated with pneumonia. -
Legionellosis: Legionnaires' Disease/ Pontiac Fever
Legionellosis: Legionnaires’ Disease/ Pontiac Fever What is legionellosis? Legionellosis is an infection caused by the bacterium Legionella pneumophila, which acquired its name in 1976 when an outbreak of pneumonia caused by this newly recognized organism occurred among persons attending a convention of the American Legion in Philadelphia. The disease has two distinct forms: • Legionnaires' disease, the more severe form of infection which includes pneumonia, and • Pontiac fever, a milder illness. How common is legionellosis in the United States? An estimated 8,000 to 18,000 people get Legionnaires' disease in the United States each year. Some people can be infected with the Legionella bacterium and have mild symptoms or no illness at all. Outbreaks of Legionnaires' disease receive significant media attention. However, this disease usually occurs as a single isolated case not associated with any recognized outbreak. When outbreaks do occur, they are usually recognized in the summer and early fall, but cases may occur year-round. About 5% to 30% of people who have Legionnaires' disease die. What are the usual symptoms of legionellosis? Patients with Legionnaires' disease usually have fever, chills, and a cough. Some patients also have muscle aches, headache, tiredness, loss of appetite, and, occasionally, diarrhea. Chest X-rays often show pneumonia. It is difficult to distinguish Legionnaires' disease from other types of pneumonia by symptoms alone; other tests are required for diagnosis. Persons with Pontiac fever experience fever and muscle aches and do not have pneumonia. They generally recover in 2 to 5 days without treatment. The time between the patient's exposure to the bacterium and the onset of illness for Legionnaires' disease is 2 to 10 days; for Pontiac fever, it is shorter, generally a few hours to 2 days. -
Mucosal Immunology of Acute Bacterial Pneumonia
Mucosal Immunology of Acute Bacterial Pneumonia Alice Prince Editor Mucosal Immunology of Acute Bacterial Pneumonia Editor Alice Prince Columbia University New York , NY, USA ISBN 978-1-4614-5325-3 ISBN 978-1-4614-5326-0 (eBook) DOI 10.1007/978-1-4614-5326-0 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2012951432 © Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, speci fi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro fi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied speci fi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a speci fi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Top 20 Pneumonia Facts—2019
American Thoracic Society Top 20 Pneumonia Facts—2019 1. Pneumonia is an infection of the lung. The lungs fill 12. Antibiotics can be effective for many of the bacteria with fluid and make breathing difficult. Pneumonia that cause pneumonia. For viral causes of pneumonia, disproportionately affects the young, the elderly, and antibiotics are ineffective and should not be used. There are the immunocompromised. It preys on weakness and few or no treatments for most viral causes of pneumonia. vulnerability. 13. Antibiotic resistance is growing amongst the bacteria 2. Pneumonia is the world’s leading cause of death among that cause pneumonia. This often arises from the overuse children under 5 years of age, accounting for 16% of all and misuse of antibiotics in and out of the hospital. New deaths of children under 5 years old killing approximately and more effective antibiotics are urgently needed. 2,400 children a day in 2015. There are 120 million episodes 14. Being on a ventilator raises especially high risk for of pneumonia per year in children under 5, over 10% of serious pneumonia. Ventilator-associated pneumonia is which (14 million) progress to severe episodes. There was an more likely to be caused by antibiotic-resistant microbes estimated 880,000 deaths from pneumonia in children under and can require the highest antibiotic use in the critically ill the age of five in 2016. Most were less than 2 years of age. population. 3. In the US, pneumonia is less often fatal for children, but 15. Our changing interactions with the microbial world mean it is still a big problem. -
Legionella Pneumonia (Legionnaires' Disease)
ROY COOPER • Governor MANDY COHEN, MD, MPH • Secretary BETH LOVETTE, MPH, BSN, RN• Acting Director Division of Public Health Legionella Pneumonia (Legionnaires’ Disease) Background on Legionella Pneumonia (Legionnaires’ Disease): Legionella is a bacterium commonly found in the environment, particularly in warm water. Legionella bacteria can cause two different illnesses: A kind of pneumonia (lung disease) called Legionnaire’s disease, and a milder infection without pneumonia, known as Pontiac fever. People can come in contact with Legionella when they breathe in a mist or vapor (small droplets of water in the air) containing the bacteria. Most people who come in contact with the bacteria do not become ill. Key points: • Legionnaires’ disease is a form of pneumonia caused by the Legionella bacteria. • Symptoms include high fever, chills, cough, body aches, headache and fatigue. Individuals with Legionnaires’ disease may need to be hospitalized. The disease typically begins 2–10 days after exposure to the bacteria. It can be treated effectively with antibiotics. • Legionella bacteria are found naturally in the environment, usually in warm water, such as in hot tubs, cooling towers, hot water tanks, large plumbing systems and decorative fountains. They do not seem to grow in car or window air-conditioners. • People can get infected when they breathe in a mist or vapor (small droplets of water in the air) that has been contaminated with Legionella bacteria. • Legionella does not spread from person-to-person. • Most people who are exposed -
IDSA/ATS Consensus Guidelines on The
SUPPLEMENT ARTICLE Infectious Diseases Society of America/American Thoracic Society Consensus Guidelines on the Management of Community-Acquired Pneumonia in Adults Lionel A. Mandell,1,a Richard G. Wunderink,2,a Antonio Anzueto,3,4 John G. Bartlett,7 G. Douglas Campbell,8 Nathan C. Dean,9,10 Scott F. Dowell,11 Thomas M. File, Jr.12,13 Daniel M. Musher,5,6 Michael S. Niederman,14,15 Antonio Torres,16 and Cynthia G. Whitney11 1McMaster University Medical School, Hamilton, Ontario, Canada; 2Northwestern University Feinberg School of Medicine, Chicago, Illinois; 3University of Texas Health Science Center and 4South Texas Veterans Health Care System, San Antonio, and 5Michael E. DeBakey Veterans Affairs Medical Center and 6Baylor College of Medicine, Houston, Texas; 7Johns Hopkins University School of Medicine, Baltimore, Maryland; 8Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi School of Medicine, Jackson; 9Division of Pulmonary and Critical Care Medicine, LDS Hospital, and 10University of Utah, Salt Lake City, Utah; 11Centers for Disease Control and Prevention, Atlanta, Georgia; 12Northeastern Ohio Universities College of Medicine, Rootstown, and 13Summa Health System, Akron, Ohio; 14State University of New York at Stony Brook, Stony Brook, and 15Department of Medicine, Winthrop University Hospital, Mineola, New York; and 16Cap de Servei de Pneumologia i Alle`rgia Respirato`ria, Institut Clı´nic del To`rax, Hospital Clı´nic de Barcelona, Facultat de Medicina, Universitat de Barcelona, Institut d’Investigacions Biome`diques August Pi i Sunyer, CIBER CB06/06/0028, Barcelona, Spain. EXECUTIVE SUMMARY priate starting point for consultation by specialists. Substantial overlap exists among the patients whom Improving the care of adult patients with community- these guidelines address and those discussed in the re- acquired pneumonia (CAP) has been the focus of many cently published guidelines for health care–associated different organizations, and several have developed pneumonia (HCAP).