Otices of The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Calendar of AMS Meetings and Conferences
Calendar of AMS Meetings and Conferences This calendar lists all meetings and conferences approved prior to the date this insofar as is possible. Abstracts should be submitted on special forms which are issue went to press. The summer and annual meetings are joint meetings of the available in many departments of mathematics and from the headquarters office of Mathematical Association of America and the American Mathematical Society. The the Society. Abstracts of papers to be presented at the meeting must be received meeting dates which fall rather far in the future are subject to change; this is par at the headquarters of the Society in Providence, Rhode Island, on or before the ticularly true of meetings to which no numbers have been assigned. Programs of deadline given below for the meeting. The abstract deadlines listed below should the meetings will appear in the issues indicated below. First and supplementary be carefully reviewed since an abstract deadline may expire before publication of announcements of the meetings will have appeared in earlier issues. Abstracts a first announcement. Note that the deadline for abstracts for consideration for of papers presented at a meeting of the Society are published in the journal Ab presentation at special sessions is usually three weeks earlier than that specified stracts of papers presented to the American Mathematical Society in the issue below. For additional information, consult the meeting announcements and the list corresponding to that of the Notices which contains the program of the meeting, of special sessions. Meetings Abstract Program Meeting# Date Place Deadline Issue 876 * October 30-November 1 , 1992 Dayton, Ohio August 3 October 877 * November ?-November 8, 1992 Los Angeles, California August 3 October 878 * January 13-16, 1993 San Antonio, Texas OctoberS December (99th Annual Meeting) 879 * March 26-27, 1993 Knoxville, Tennessee January 5 March 880 * April9-10, 1993 Salt Lake City, Utah January 29 April 881 • Apnl 17-18, 1993 Washington, D.C. -
Contemporary Mathematics 220
CONTEMPORARY MATHEMATICS 220 Homotopy Theory via Algebraic Geometry and Group Representations Proceedings of a Conference on Homotopy Theory March 23-27, 1997 Northwestern University Mark Mahowald Stewart Priddy Editors http://dx.doi.org/10.1090/conm/220 Selected Titles in This Series 220 Mark Mahowald and Stewart Priddy, Editors, Homotopy theory via algebraic geometry and group representations, 1998 219 Marc Henneaux, Joseph Krasil'shchik, and Alexandre Vinogradov, Editors, Secondary calculus and cohomological physics, 1998 218 Jan Mandel, Charbel Farhat, and Xiao-Chuan Cai, Editors, Domain decomposition methods 10, 1998 217 Eric Carlen, Evans M. Harrell, and Michael Loss, Editors, Advances in differential equations and mathematical physics, 1998 216 Akram Aldroubi and EnBing Lin, Editors, Wavelets, multiwavelets, and their applications, 1998 215 M. G. Nerurkar, D.P. Dokken, and D. B. Ellis, Editors, Topological dynamics and applications, 1998 214 Lewis A. Coburn and Marc A. Rieffel, Editors, Perspectives on quantization, 1998 213 Farhad Jafari, Barbara D. MacCluer, Carl C. Cowen, and A. Duane Porter, Editors, Studies on composition operators, 1998 212 E. Ramirez de Arellano, N. Salinas, M. V. Shapiro, and N. L. Vasilevski, Editors, Operator theory for complex and hypercomplex analysis, 1998 211 J6zef Dodziuk and Linda Keen, Editors, Lipa's legacy: Proceedings from the Bers Colloquium, 1997 210 V. Kumar Murty and Michel Waldschmidt, Editors, Number theory, 1998 209 Steven Cox and Irena Lasiecka, Editors, Optimization methods in partial differential equations, 1997 208 MichelL. Lapidus, Lawrence H. Harper, and Adolfo J. Rumbos, Editors, Harmonic analysis and nonlinear differential equations: A volume in honor of Victor L. Shapiro, 1997 207 Yujiro Kawamata and Vyacheslav V. -
On Beta Elements in the Adams-Novikov Spectral Sequence
Submitted exclusively to the London Mathematical Society doi:10.1112/0000/000000 On β-elements in the Adams-Novikov spectral sequence Hirofumi Nakai and Douglas C. Ravenel Dedicated to Professor Takao Matumoto on his sixtieth birthday Abstract In this paper we detect invariants in the comodule consisting of β-elements over the Hopf algebroid (A(m + 1);G(m + 1)) defined in[Rav02], and we show that some related Ext groups vanish below a certain dimension. The result obtained here will be extensively used in [NR] to extend the range of our knowledge for π∗(T (m)) obtained in[Rav02]. Contents 1. Introduction ................ 1 2. The construction of Bm+1 ............. 5 3. Basic methods for finding comodule primitives ........ 8 4. 0-primitives in Bm+1 .............. 11 5. 1-primitives in Bm+1 .............. 13 6. j-primitives in Bm+1 for j > 1 ........... 16 7. Higher Ext groups for j = 1 ............ 20 Appendix A. Some results on binomial coefficients ........ 21 Appendix B. Quillen operations on β-elements ........ 24 References ................. 26 1. Introduction In this paper we describe some tools needed in the method of infinite descent, which is an approach to finding the E2-term of the Adams-Novikov spectral sequence converging to the stable homotopy groups of spheres. It is the subject of [Rav86, Chapter 7], [Rav04, Chapter 7] and [Rav02]. We begin by reviewing some notation. Fix a prime p. Recall the Brown-Peterson spectrum BP . Its homotopy groups and those of BP ^ BP are known to be polynomial algebras π∗(BP ) = Z(p)[v1; v2 :::] and BP∗(BP ) = BP∗[t1; t2 :::]: In [Rav86, Chapter 6] the second author constructed intermediate spectra 0 ::: S(p) = T (0) / T (1) / T (2) / T (3) / / BP with T (m) is equivalent to BP below the dimension of vm+1. -
Nominations for President
ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society September 2013 Volume 60, Number 8 The Calculus Concept Inventory— Measurement of the Effect of Teaching Methodology in Mathematics page 1018 DML-CZ: The Experience of a Medium- Sized Digital Mathematics Library page 1028 Fingerprint Databases for Theorems page 1034 A History of the Arf-Kervaire Invariant Problem page 1040 About the cover: 63 years since ENIAC broke the ice (see page 1113) Solve the differential equation. Solve the differential equation. t ln t dr + r = 7tet dt t ln t dr + r = 7tet dt 7et + C r = 7et + C ln t ✓r = ln t ✓ WHO HAS THE #1 HOMEWORK SYSTEM FOR CALCULUS? THE ANSWER IS IN THE QUESTIONS. When it comes to online calculus, you need a solution that can grade the toughest open-ended questions. And for that there is one answer: WebAssign. WebAssign’s patent pending grading engine can recognize multiple correct answers to the same complex question. Competitive systems, on the other hand, are forced to use multiple choice answers because, well they have no choice. And speaking of choice, only WebAssign supports every major textbook from every major publisher. With new interactive tutorials and videos offered to every student, it’s not hard to see why WebAssign is the perfect answer to your online homework needs. It’s all part of the WebAssign commitment to excellence in education. Learn all about it now at webassign.net/math. 800.955.8275 webassign.net/math WA Calculus Question ad Notices.indd 1 11/29/12 1:06 PM Notices 1051 of the American Mathematical Society September 2013 Communications 1048 WHAT IS…the p-adic Mandelbrot Set? Joseph H. -
Martin's Maximum and Weak Square
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000{000 S 0002-9939(XX)0000-0 MARTIN'S MAXIMUM AND WEAK SQUARE JAMES CUMMINGS AND MENACHEM MAGIDOR (Communicated by Julia Knight) Abstract. We analyse the influence of the forcing axiom Martin's Maximum on the existence of square sequences, with a focus on the weak square principle λ,µ. 1. Introduction It is well known that strong forcing axioms (for example PFA, MM) and strong large cardinal axioms (strongly compact, supercompact) exert rather similar kinds of influence on the combinatorics of infinite cardinals. This is perhaps not so sur- prising when we consider the widely held belief that essentially the only way to obtain a model of PFA or MM is to collapse a supercompact cardinal to become !2. We quote a few results which bring out the similarities: 1a) (Solovay [14]) If κ is supercompact then λ fails for all λ ≥ κ. 1b) (Todorˇcevi´c[15]) If PFA holds then λ fails for all λ ≥ !2. ∗ 2a) (Shelah [11]) If κ is supercompact then λ fails for all λ such that cf(λ) < κ < λ. ∗ 2b) (Magidor, see Theorem 1.2) If MM holds then λ fails for all λ such that cf(λ) = !. 3a) (Solovay [13]) If κ is supercompact then SCH holds at all singular cardinals greater than κ. 3b) (Foreman, Magidor and Shelah [7]) If MM holds then SCH holds. 3c) (Viale [16]) If PFA holds then SCH holds. In fact both the p-ideal di- chotomy and the mapping reflection principle (which are well known con- sequences of PFA) suffice to prove SCH. -
Number Theory, Analysis and Geometry
Number Theory, Analysis and Geometry Dorian Goldfeld • Jay Jorgenson • Peter Jones Dinakar Ramakrishnan • Kenneth A. Ribet John Tate Editors Number Theory, Analysis and Geometry In Memory of Serge Lang 123 Editors Dorian Goldfeld Jay Jorgenson Department of Mathematics Department of Mathematics Columbia University City University of New York New York, NY 10027 New York, NY 10031 USA USA [email protected] [email protected] Peter Jones Dinakar Ramakrishnan Department of Mathematics Department of Mathematics Yale University California Institute of Technology New Haven, CT 06520 Pasadena, CA 91125 USA USA [email protected] [email protected] Kenneth A. Ribet John Tate Department of Mathematics Department of Mathematics University of California at Berkeley Harvard University Berkeley, CA 94720 Cambridge, MA 02138 USA USA [email protected] [email protected] ISBN 978-1-4614-1259-5 e-ISBN 978-1-4614-1260-1 DOI 10.1007/978-1-4614-1260-1 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011941121 © Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. -
Lecture Notes in Mathematics
Lecture Notes in Mathematics For information about Vols. 1-1145 please contact your bookseller Vol. 1173: H. DeHs, M. Knebusch, Locally Semialgebraic Spaces. XVI, or Springer-Verlag. 329 pages. 1g95, Vol. 1146: 5eminaire d'Aigebre Paul Dubreil et Marie-Paula Malliavin. Vol. 1174: Categories in Continuum Physics, Buffalo 1982. Seminar. Proceedings, 1g63-1984. Edite par M.-P. Malliavin. IV, 420 pages. Edited by F.W. Lawvere and S.H. Schanuel. V, t26 pages. t986. 1985. Vol. 1175: K. Mathiak, Valuations of Skew Fields and Projective Vol. 1147: M. Wschebor, Surfaces Aleatoires. VII, 11t pages. 1985. Hjelmslev Spaces. VII, 116 pages. 1986. Vol. 1t48: Mark A. Kon, Probability Distributions in Quantum Statistical Vol. 1176: R.R. Bruner, J.P. May, J.E. McClure, M. Steinberger, Mechanics. V, 12t pages. 1985. Hoo Ring Spectra and their Applications. VII, 388 pages. 1988. Vol. 1149: Universal Algebra and Lattice Theory. Proceedings, 1984. Vol. 1t77: Representation Theory I. Finite Dimensional Algebras. Edited by S. D. Comer. VI, 282 pages. 1985. Proceedings, t984. Edited by V. Dlab, P. Gabriel and G. Michler. XV, 340 pages. 1g86. Vol. 1150: B. Kawohl, Rearrangements and Convexity of Level Sets in Vol. 1178: Representation Theory II. Groups and Orders. Proceed PDE. V, 136 pages. 1985. ings, 1984. Edited by V. Dlab, P. Gabriel and G. Michler. XV, 370 Vol 1151: Ordinary and Partial Differential Equations. Proceedings, pages. 1986. 1984. Edited by B.D. Sleeman and R.J. Jarvis. XIV, 357 pages. 1985. Vol. 1179: Shi J .-Y. The Kazhdan-Lusztig Cells in Certain Affine Weyl Vol. 1152: H. Widom, Asymptotic Expansions for Pseudodifferential Groups. -
ON BEYOND HATCHER! in the Fall Semester of 2012, Constantin
ON BEYOND HATCHER! ERIC PETERSON In the Fall semester of 2012, Constantin Teleman encouraged me to run a short seminar which would teach attendees about advanced algebraic topology. UC-Berkeley runs a pair of graduate courses in algebraic topology which more or less go through Allen Hatcher’s Algebraic Topology, but there is a long road from there to the forefront of the field. Getting students research-ready inside of four seminar talks is an impossible task, of course, and so instead my goal is to sketch a picture of some of the major components of the field, so that students know enough of the flavor of the subject to at least identify whether they’re intrigued by its questions and its methods, and then further to know where to look to learn more. To reinforce the impression that there’s a lot going on in algebraic topology, each day will be very distinctly flavored from the others, and no day will require absolutely understanding any day that came before it. In the same vein, few things will be completely proven, but I hope to at least define the topological things under discussion. Some knowledge from related fields (algebraic geometry, primarily) will be assumed without hesitation. Each of these talks is meant to last roughly 50 minutes. The reader should additionally be warned that, due to my limited worldliness, these notes are bent sharply toward what I consider interesting. This means that they are highly algebraic, and they make no mention of exciting geometric things in stable homotopy theory — like string topology, for one example of many. -
A Cardinal Preserving Extension Making the Set of Points of Countable V Cofinality Nonstationary
A CARDINAL PRESERVING EXTENSION MAKING THE SET OF POINTS OF COUNTABLE V COFINALITY NONSTATIONARY MOTI GITIK, ITAY NEEMAN, AND DIMA SINAPOVA Abstract. Assuming large cardinals we produce a forcing extension of V which preserves cardinals, does not add reals, and makes the set of points of countable V cofinality in κ+ nonstationary. Continuing to force further, we obtain an extension in which the set of points of countable V cofinality in ν is nonstationary for every regular ν ≥ κ+. Finally we show that our large cardinal assumption is optimal. The results in this paper were inspired by the following question, posed in a preprint (http://arxiv.org/abs/math/0509633v1, 27 September 2005) to the paper Viale [9]: Suppose V ⊂ W and V and W have the same cardinals and the same reals. Can it be shown, in ZFC alone, that for every cardinal κ, there is in V a <ω + partition {As | s ∈ κ } of the points of κ of countable V cofinality, into disjoint sets which are stationary in W ? In this paper we show that under some assumptions on κ there is a reals and cardinal preserving generic extension W which satisfies that the set of points of κ+ of countable V cofinality is nonstationary. In particular, a partition as above cannot be found for each κ. Continuing to force further, we produce a reals and cardinal preserving extension in which the set of points of λ of countable V cofinality is nonstationary for every regular λ ≥ κ+. All this is done under the large cardinal assumption that for each α<κ there exists θ<κ with Mitchell order at least α. -
Harish-Chandra 1923–1983
NATIONAL ACADEMY OF SCIENCES HARISH- C HANDRA 1 9 2 3 – 1 9 8 3 A Biographical Memoir by R O G E R H O W E Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2011 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photo by Herman Landshoff; Courtesy Archives of the Institute for Advanced Study. HARISH-CHANDRA October 11, 1923–October 12, 1983 BY ROGER HOWE He taught them the Kshatria code of honor: that a warrior may never refuse a challenge…. The Five Sons of Pandu, The Story of the Mahabharata Retold by Elizabeth Seeger ARISH-CHANDRA WAS, if not the exclusive architect, cer- Htainly the chief engineer of harmonic analysis on semisimple Lie groups. This subject, with roots deep in mathematical physics and analysis, is a synthesis of Fou- rier analysis, special functions and invariant theory, and it has become a basic tool in analytic number theory, via the theory of automorphic forms. It essentially did not ex- ist before World War II, but in very large part because of the labors of Harish-Chandra, it became one of the major mathematical edifices of the second half of the twentieth century. Harish-Chandra was born in 1923 in Uttar Pradesh, in northern India. His family belonged to the Kshatria (war- rior) caste. Kshatria traditionally were rulers, landowners, and military leaders, and more recently have commonly been businessmen or civil servants. Harish-Chandra’s father, Chandrakishore, was a civil engineer who monitored and maintained the dikes and irrigation canals that sustain agri- 3 B IOGRA P HICAL MEMOIRS culture on the North Indian plains. -
Notices of the American Mathematical Society
OF THE 1994 AMS Election Special Section page 7 4 7 Fields Medals and Nevanlinna Prize Awarded at ICM-94 page 763 SEPTEMBER 1994, VOLUME 41, NUMBER 7 Providence, Rhode Island, USA ISSN 0002-9920 Calendar of AMS Meetings and Conferences This calendar lists all meetings and conferences approved prior to the date this issue insofar as is possible. Instructions for submission of abstracts can be found in the went to press. The summer and annual meetings are joint meetings with the Mathe· January 1994 issue of the Notices on page 43. Abstracts of papers to be presented at matical Association of America. the meeting must be received at the headquarters of the Society in Providence, Rhode Abstracts of papers presented at a meeting of the Society are published in the Island, on or before the deadline given below for the meeting. Note that the deadline for journal Abstracts of papers presented to the American Mathematical Society in the abstracts for consideration for presentation at special sessions is usually three weeks issue corresponding to that of the Notices which contains the program of the meeting, earlier than that specified below. Meetings Abstract Program Meeting# Date Place Deadline Issue 895 t October 28-29, 1994 Stillwater, Oklahoma Expired October 896 t November 11-13, 1994 Richmond, Virginia Expired October 897 * January 4-7, 1995 (101st Annual Meeting) San Francisco, California October 3 January 898 * March 4-5, 1995 Hartford, Connecticut December 1 March 899 * March 17-18, 1995 Orlando, Florida December 1 March 900 * March 24-25, -
A Framework for Forcing Constructions at Successors of Singular Cardinals
A FRAMEWORK FOR FORCING CONSTRUCTIONS AT SUCCESSORS OF SINGULAR CARDINALS JAMES CUMMINGS, MIRNA DAMONJA, MENACHEM MAGIDOR, CHARLES MORGAN, AND SAHARON SHELAH Abstract. We describe a framework for proving consistency re- sults about singular cardinals of arbitrary conality and their suc- cessors. This framework allows the construction of models in which the Singular Cardinals Hypothesis fails at a singular cardinal κ of uncountable conality, while κ+ enjoys various combinatorial prop- erties. As a sample application, we prove the consistency (relative to that of ZFC plus a supercompact cardinal) of there being a strong limit singular cardinal κ of uncountable conality where SCH fails + and such that there is a collection of size less than 2κ of graphs on κ+ such that any graph on κ+ embeds into one of the graphs in the collection. Introduction The class of uncountable regular cardinals is naturally divided into three disjoint classes: the successors of regular cardinals, the successors of singular cardinals and the weakly inaccessible cardinals. When we 2010 Mathematics Subject Classication. Primary: 03E35, 03E55, 03E75. Key words and phrases. successor of singular, Radin forcing, forcing axiom, uni- versal graph. Cummings thanks the National Science Foundation for their support through grant DMS-1101156. Cummings, Dºamonja and Morgan thank the Institut Henri Poincaré for their support through the Research in Paris program during the period 24-29 June 2013. Dºamonja, Magidor and Shelah thank the Mittag-Leer Institute for their sup- port during the month of September 2009. Mirna Dºamonja thanks EPSRC for their support through their grants EP/G068720 and EP/I00498. Morgan thanks EPSRC for their support through grant EP/I00498.