Calendar of AMS Meetings and Conferences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Translation of the Eugene Dynkin Interview with Evgenii Mikhailovich Landis
Translation of the Eugene Dynkin Interview with Evgenii Mikhailovich Landis E. B. Dynkin: September 2, 1990. Moscow, Hotel of the Academy of Sciences of the USSR. E. B.: Let's begin at the beginning. You entered the university before the war? E. M.: I entered the university before the war, in 1939. I had been there two months when I was recruited into the army---then the army recruited people the way they did up to a year ago. So there I was in the army, and there I stayed till the end of the war. First I was in Finland\footnote{Finnish-Russian war, November 30, 1939-March 12, 1940, essentially a Soviet war of aggression. Hostilities were renewed in June 1941, when Germany invaded the USSR.}, where I was wounded, and for some time after that was on leave. Then I returned to the army, and then the war began\footnote{On June 22, 1941, when Germany invaded the USSR.} and I was in the army for the whole of the war. E. B.: In what branch? E. M.: At first I was in the infantry, and after returning from Finland and recovering from my wound, I ended up in field artillery. E. B.: The probability of surviving the whole of the war as a foot-soldier would have been almost zero. E. M.: I think that this would have been true also in artillery, since this was field artillery, and that is positioned very close to the front. But this is how it was. When the counter-attack before Moscow began in the spring of 1942, our unit captured a German vehicle---a field ambulance, fully fitted out with new equipment, complete with a set of instructions---in German, naturally. -
Jeffrey Hoffstein Jill Pipher Joseph H. Silverman
Undergraduate Texts in Mathematics Je rey Ho stein Jill Pipher Joseph H. Silverman An Introduction to Mathematical Cryptography Second Edition Undergraduate Texts in Mathematics Undergraduate Texts in Mathematics Series Editors: Sheldon Axler San Francisco State University, San Francisco, CA, USA Kenneth Ribet University of California, Berkeley, CA, USA Advisory Board: Colin Adams, Williams College, Williamstown, MA, USA Alejandro Adem, University of British Columbia, Vancouver, BC, Canada Ruth Charney, Brandeis University, Waltham, MA, USA Irene M. Gamba, The University of Texas at Austin, Austin, TX, USA Roger E. Howe, Yale University, New Haven, CT, USA David Jerison, Massachusetts Institute of Technology, Cambridge, MA, USA Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI, USA Jill Pipher, Brown University, Providence, RI, USA Fadil Santosa, University of Minnesota, Minneapolis, MN, USA Amie Wilkinson, University of Chicago, Chicago, IL, USA Undergraduate Texts in Mathematics are generally aimed at third- and fourth- year undergraduate mathematics students at North American universities. These texts strive to provide students and teachers with new perspectives and novel approaches. The books include motivation that guides the reader to an appreciation of interre- lations among different aspects of the subject. They feature examples that illustrate key concepts as well as exercises that strengthen understanding. More information about this series at http://www.springer.com/series/666 Jeffrey Hoffstein • Jill Pipher Joseph -
President's Report
Newsletter Volume 42, No. 5 • SePTemBeR–oCT oBeR 2012 PRESIDENT’S REPORT AWM Prize Winners. I am pleased to announce the winners of two of the three major prizes given by AWM at the Joint Mathematics Meetings (JMM). The Louise Hay Award is given to Amy Cohen, Rutgers University, in recognition of The purpose of the Association her “contributions to mathematics education through her writings, her talks, and for Women in Mathematics is her outstanding service to professional organizations.” The Gweneth Humphreys • to encourage women and girls to Award is given to James Morrow, University of Washington, in recognition of study and to have active careers in his “outstanding achievements in inspiring undergraduate women to discover and the mathematical sciences, and • to promote equal opportunity and pursue their passion for mathematics.” I quote from the citations written by the the equal treatment of women and selection committees and extend warm congratulations to the honorees. These girls in the mathematical sciences. awards will be presented at the Prize Session at JMM 2013 in San Diego. Congratulations to Raman Parimala, Emory University, who will present the AWM Noether Lecture at JMM 2013, entitled “A Hasse Principle for Quadratic Forms over Function Fields.” She is honored for her groundbreaking research in theory of quadratic forms, hermitian forms, linear algebraic groups, and Galois cohomology. The Noether Lecture is the oldest of the three named AWM Lectures. (The Falconer Lecture is presented at MathFest, and the Sonia Kovalevsky at the SIAM Annual Meeting.) The first Noether Lecture was given by F. Jessie MacWilliams in 1980 in recognition of her fundamental contributions to the theory of error correcting codes. -
Sharing the Global Benefits of Finite Natural Resource Exploitation: a Dynamic Coalitional Stability Perspective Stéphane Gonzalez, Fatma Rostom
Sharing the Global Benefits of Finite Natural Resource Exploitation: A Dynamic Coalitional Stability Perspective Stéphane Gonzalez, Fatma Rostom To cite this version: Stéphane Gonzalez, Fatma Rostom. Sharing the Global Benefits of Finite Natural Resource Exploita- tion: A Dynamic Coalitional Stability Perspective. 2019. halshs-02430751 HAL Id: halshs-02430751 https://halshs.archives-ouvertes.fr/halshs-02430751 Preprint submitted on 7 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. WP 1937 – December 2019 Sharing the Global Benefits of Finite Natural Resource Exploitation: A Dynamic Coalitional Stability Perspective Stéphane Gonzalez, Fatma Zahra Rostom Abstract: The article explores the implications of natural resource scarcity in terms of global cooperation and trade. We investigate whether there exist stable international long-term agreements that take into account the disparities between countries in terms of geological endowments and productive capacity, while caring about future generations. For that purpose, we build an original cooperative game framework, where countries can form coalitions in order to optimize their discounted consumption stream in the long-run, within the limits of their stock of natural resources. We use the concept of the recursive core that satisfies both coalitional stability and time consistency. -
Bondareva, Olga (1937-1991)
Bondareva, Olga (1937-1991) By Myrna Wooders This is a post-peer-review, pre-copyedit version of an article published in The New Palgrave Dictionary of Economics, Second Edition. The definitive publisher-authenticated version, Wooders, Myrna. "Bondareva, Olga (1937–1991)." The New Palgrave Dictionary of Economics. Second Edition. Eds. Steven N. Durlauf and Lawrence E. Blume. Palgrave Macmillan, 2008. The New Palgrave Dictionary of Economics Online. Palgrave Macmillan. 12 November 2013, is available online at: <http://www.dictionaryofeconomics.com/article?id=pde2008_B000323> doi:10.1057/9780230226203. 0144>. Bondareva, Olga (1937–1991) : The New Palgrave Dictionary of Economics Page 1 of 2 The New Palgrave Dictionary of Economics Online Bondareva, Olga (1937–1991) Myrna Wooders From The New Palgrave Dictionary of Economics, Second Edition, 2008 Edited by Steven N. Durlauf and Lawrence E. Blume Keywords balancedness; approximate balancedness; Bondareva, O.; clubs; coalitions; cooperative games; core equivalence; cores; duality; essential superadditivity; game theory; linear programming; local public goods; market games; price-taking equilibrium Article Olga Nikolajevna Bondareva was born in St Petersburg on 27 April 1937. She joined the Mathematical Faculty of the Leningrad State University in 1954, and completed a Ph.D. in mathematics at the Leningrad State University in 1963, in part under the supervision of Nicolaj Vorobiev. Her thesis was entitled ‘The Theory of the Core in an n-Person Game’. Bondareva rose through the ranks at Leningrad State University to become a senior research fellow in 1972 and a leading research fellow in 1989. Because she sympathized with a student who wished to emigrate to Israel, however, she was prohibited from teaching from 1973 until 1989. -
ENHANCED DYNKIN DIAGRAMS DONE RIGHT Introduction
ENHANCED DYNKIN DIAGRAMS DONE RIGHT V. MIGRIN AND N. VAVILOV Introduction In the present paper we draw the enhanced Dynkin diagrams of Eugene Dynkin and Andrei Minchenko [8] for senior exceptional types Φ = E6; E7 and E8 in a right way, `ala Rafael Stekolshchik [26], indicating not just adjacency, but also the signs of inner products. Two vertices with inner product −1 will be joined by a solid line, whereas two vertices with inner product +1 will be joined by a dotted line. Provisionally, in the absense of a better name, we call these creatures signed en- hanced Dynkin diagrams. They are uniquely determined by the root system Φ itself, up to [a sequence of] the following tranformations: changing the sign of any vertex and simultaneously switching the types of all edges adjacent to that vertex. Theorem 1. Signed enhanced Dynkin diagrams of types E6, E7 and E8 are depicted in Figures 1, 2 and 3, respectively. In this form such diagrams contain not just the extended Dynkin diagrams of all root subsystems of Φ | that they did already by Dynkin and Minchenko [8] | but also all Carter diagrams [6] of conjugacy classes of the corresponding Weyl group W (Φ). Theorem 2. The signed enhanced Dynkin diagrams of types E6, E7 and E8 contain all Carter|Stekolshchik diagrams of conjugacy classes of the Weyl groups W (E6), W (E7) and W (E8). In both cases the non-parabolic root subsystems, and the non-Coxeter conjugacy classes occur by exactly the same single reason, the exceptional behaviour of D4, where the fundamental subsystem can be rewritten as 4 A1, or as a 4-cycle, respectively, which constitutes one of the most manifest cases of the octonionic mathematics [2], so plumbly neglected by Vladimir Arnold (mathematica est omnis divisa in partes tres, see [1]). -
MPSAC Membership List
MATHEMATICAL AND PHYSICAL SCIENCES ADVISORY COMMITTEE MEMBERSHIP LIST Term Expires: 03/31/2021 Dr. Robert Bryant Duke University [email protected] Biographical Information: http://fds.duke.edu/db/aas/math/faculty/bryant/ Dr. William Zajc Columbia University [email protected] Biographical Information: http://www.nevis.columbia.edu/~zajc/MakeZajcCV.pdf Biographical Information on MPSAC members can be found at the publically available web sites indicated with each name. NSF is not responsible for the content of those web sites. MATHEMATICAL AND PHYSICAL SCIENCES ADVISORY COMMITTEE MEMBERSHIP LIST Term Expires: 09/30/2022 Dr. Susanne Brenner Louisiana State University [email protected] Biographical Information: https://www.math.lsu.edu/~brenner/ Dr. Lynne Hillenbrand California Institute of Technology [email protected] Biographical Information: http://www.astro.caltech.edu/~lah/Site/%40Caltech.html Biographical Information on MPSAC members can be found at the publically available web sites indicated with each name. NSF is not responsible for the content of those web sites. MATHEMATICAL AND PHYSICAL SCIENCES ADVISORY COMMITTEE MEMBERSHIP LIST Term Expires: 09/30/2021 Dr. Miguel Garcia-Garibay University of California, Los Angeles [email protected] Biographical Information https://www.chemistry.ucla.edu/directory/garcia-garibay-miguel Dr. Catherine Hunt University of Virginia [email protected] Biographical Information: https://engineering.virginia.edu/faculty/katie-hunt Dr. Andrew Millis Columbia University/Simons Foundation [email protected] [email protected] Biographical Information https://physics.columbia.edu/content/andrew-j-millis Biographical Information on MPSAC members can be found at the publically available web sites indicated with each name. NSF is not responsible for the content of those web sites. -
Program of the Sessions San Diego, California, January 9–12, 2013
Program of the Sessions San Diego, California, January 9–12, 2013 AMS Short Course on Random Matrices, Part Monday, January 7 I MAA Short Course on Conceptual Climate Models, Part I 9:00 AM –3:45PM Room 4, Upper Level, San Diego Convention Center 8:30 AM –5:30PM Room 5B, Upper Level, San Diego Convention Center Organizer: Van Vu,YaleUniversity Organizers: Esther Widiasih,University of Arizona 8:00AM Registration outside Room 5A, SDCC Mary Lou Zeeman,Bowdoin upper level. College 9:00AM Random Matrices: The Universality James Walsh, Oberlin (5) phenomenon for Wigner ensemble. College Preliminary report. 7:30AM Registration outside Room 5A, SDCC Terence Tao, University of California Los upper level. Angles 8:30AM Zero-dimensional energy balance models. 10:45AM Universality of random matrices and (1) Hans Kaper, Georgetown University (6) Dyson Brownian Motion. Preliminary 10:30AM Hands-on Session: Dynamics of energy report. (2) balance models, I. Laszlo Erdos, LMU, Munich Anna Barry*, Institute for Math and Its Applications, and Samantha 2:30PM Free probability and Random matrices. Oestreicher*, University of Minnesota (7) Preliminary report. Alice Guionnet, Massachusetts Institute 2:00PM One-dimensional energy balance models. of Technology (3) Hans Kaper, Georgetown University 4:00PM Hands-on Session: Dynamics of energy NSF-EHR Grant Proposal Writing Workshop (4) balance models, II. Anna Barry*, Institute for Math and Its Applications, and Samantha 3:00 PM –6:00PM Marina Ballroom Oestreicher*, University of Minnesota F, 3rd Floor, Marriott The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 34, Issue 1 of Abstracts is ten minutes. -
February 2012
LONDON MATHEMATICAL SOCIETY NEWSLETTER No. 411 February 2012 Society NEW YEAR (www.pugwash.org/) and ‘his Meetings role from the 1960s onward in HONOURS LIST 2012 rebuilding the mathematical ties and Events Congratulations to the following between European countries, who have been recognised in the particularly via the European 2012 New Year Honours list: Mathematical Society (EMS)’. Friday 24 February The ambassador went on to say, Mary Cartwright Knight Bachelor (KB) ‘[and] many people remember Lecture, London Simon Donaldson, FRS, Profes- the care you took when you [page 7] sor of Mathematics, Imperial were President of the Royal So- College London, for services to ciety, to cultivate closer ties with 26–30 March mathematics. [our] Académie des Sciences’. LMS Invited Lectures, Glasgow [page 11] 1 Commander of the Order of the MATHEMATICS Friday 27 April British Empire (CBE) POLICY ROUND-UP Women in Ursula Martin, Professor of Com- Mathematics Day, puter Science and Vice-Principal January 2012 of Science and Engineering, London [page 13] RESEARCH Queen Mary, University of Lon- Saturday 19 May don, for services to computer CMS registers ongoing concerns Poincaré Meeting, science. over EPSRC Fellowships London The Council for the Mathemati- Wednesday 6 June FRENCH HONOUR cal Sciences (CMS) has written Northern Regional to EPSRC to register its major Meeting, Newcastle FOR SIR MICHAEL continuing concerns about the [page 5] ATIYAH scope and operation of EPSRC Fellowships and other schemes Friday 29 June Former LMS President Sir Michael to support early-career research- Meeting and Hardy Atiyah, OM, FRS, FRSE has been ers in the mathematical sciences. -
Memorial Statements
MEMORIAL STATEMENTS Cornell University Faculty 2016-2017 Office of the Dean of Faculty Ithaca, New York Table of Contents 5 Marvin I. Adleman 9 Martin Alexander 14 Bruce L. Anderson 17 John M. Bird 21 Arthur L. Bloom 25 Malcolm C. Bourne 32 Muriel S. Brink 35 Harlan B. Brumsted 41 Harold R. Capener 44 Susan M. Christopherson 49 Roger C. Cramton 52 Marjorie M. Devine 55 Alan Dobson 58 Clifford J. Earle 63 Chester Forshey 68 James W. Gair 74 Robert Gowin 79 Lawrence S. Hamilton 85 Peter C. Hinkle 88 Wolfgang Holdheim 91 Robert E. Hughes 94 Karel J. Husa 98 Lynne H. Irwin 102 Andre T. Jagendorf 106 Ann Johnson 110 Richard P. Korf 114 Arthur S. Lieberman 118 Theodore J. Lowi 124 Russell E. MacDonald 126 Franklin K. Moore 132 Mary A. Morrison 135 Edwin B. Oyer 139 Richard H. Penner 142 Gregory Poe 146 Herbert Schryver 149 Alain Seznec 2 153 Daniel G. Sisler 158 Seymour Smidt 162 Donald F. Smith 166 Robert J. Smith 170 Rose Steidl 173 Gilbert S. Stoewsand 177 Mark A. Turnquist 184 Natalie W. Uhl 190 David B. Wilson 194 Paul Yarbrough 197 Milton Zaitlin 201 Robert Zall 3 Preface The University Faculty has always followed the practice of including within the faculty records a memorial resolution on the death of one of its members. The faculty modified this custom that was begun in the earliest days of Cornell University in 1938 as follows: Upon the death of a member of the University Faculty, the President or Dean of Faculty shall formally notify the Faculty at the next meeting and those present shall rise in respect for the memory of the deceased member. -
Notes on Stochastic Processes
Notes on stochastic processes Paul Keeler March 20, 2018 This work is licensed under a “CC BY-SA 3.0” license. Abstract A stochastic process is a type of mathematical object studied in mathemat- ics, particularly in probability theory, which can be used to represent some type of random evolution or change of a system. There are many types of stochastic processes with applications in various fields outside of mathematics, including the physical sciences, social sciences, finance and economics as well as engineer- ing and technology. This survey aims to give an accessible but detailed account of various stochastic processes by covering their history, various mathematical definitions, and key properties as well detailing various terminology and appli- cations of the process. An emphasis is placed on non-mathematical descriptions of key concepts, with recommendations for further reading. 1 Introduction In probability and related fields, a stochastic or random process, which is also called a random function, is a mathematical object usually defined as a collection of random variables. Historically, the random variables were indexed by some set of increasing numbers, usually viewed as time, giving the interpretation of a stochastic process representing numerical values of some random system evolv- ing over time, such as the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule [120, page 7][51, page 46 and 47][66, page 1]. Stochastic processes are widely used as math- ematical models of systems and phenomena that appear to vary in a random manner. They have applications in many disciplines including physical sciences such as biology [67, 34], chemistry [156], ecology [16][104], neuroscience [102], and physics [63] as well as technology and engineering fields such as image and signal processing [53], computer science [15], information theory [43, page 71], and telecommunications [97][11][12]. -
Harish-Chandra 1923–1983
NATIONAL ACADEMY OF SCIENCES HARISH- C HANDRA 1 9 2 3 – 1 9 8 3 A Biographical Memoir by R O G E R H O W E Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2011 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photo by Herman Landshoff; Courtesy Archives of the Institute for Advanced Study. HARISH-CHANDRA October 11, 1923–October 12, 1983 BY ROGER HOWE He taught them the Kshatria code of honor: that a warrior may never refuse a challenge…. The Five Sons of Pandu, The Story of the Mahabharata Retold by Elizabeth Seeger ARISH-CHANDRA WAS, if not the exclusive architect, cer- Htainly the chief engineer of harmonic analysis on semisimple Lie groups. This subject, with roots deep in mathematical physics and analysis, is a synthesis of Fou- rier analysis, special functions and invariant theory, and it has become a basic tool in analytic number theory, via the theory of automorphic forms. It essentially did not ex- ist before World War II, but in very large part because of the labors of Harish-Chandra, it became one of the major mathematical edifices of the second half of the twentieth century. Harish-Chandra was born in 1923 in Uttar Pradesh, in northern India. His family belonged to the Kshatria (war- rior) caste. Kshatria traditionally were rulers, landowners, and military leaders, and more recently have commonly been businessmen or civil servants. Harish-Chandra’s father, Chandrakishore, was a civil engineer who monitored and maintained the dikes and irrigation canals that sustain agri- 3 B IOGRA P HICAL MEMOIRS culture on the North Indian plains.