Analysis of Novel Targets in the Pathobiology of Prostate Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Novel Targets in the Pathobiology of Prostate Cancer ANALYSIS OF NOVEL TARGETS IN THE PATHOBIOLOGY OF PROSTATE CANCER by Katherine Elizabeth Bright D’Antonio B.S. in Biology, Gettysburg College, 2002 Submitted to the Graduate Faculty of School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cellular and Molecular Pathology University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This thesis was presented by Katherine D’Antonio It was defended on April 13, 2009 and approved by Beth Pflug, PhD, Associate Professor of Urology Luyuan Li, PhD, Associate Professor of Pathology George Michalopoulos, MD, PhD, Professor of Pathology Dan Johnson, PhD, Associate Professor of Medicine Dissertation Advisor: Robert Getzenberg, PhD, Professor of Urology ii Copyright © by Katherine D’Antonio 2009 iii ANALYSIS OF NOVEL TARGETS IN THE PATHOBIOLOGY OF PROSTATE CANCER Katherine D’Antonio, PhD University of Pittsburgh, 2009 The process of developing a greater understanding of the fundamental molecular mechanisms involved in prostate carcinogenesis will provide insights into the questions that still plague the field of prostate cancer research. The goal of this study was to identify altered genes that may have utility either as biomarkers, for improved diagnostic or prognostic application, or as novel targets important in the pathobiology of prostate cancer. We hypothesize that an improved understanding of the genomic and proteomic alterations associated with prostate cancer will facilitate the identification of novel biomarkers and molecular pathways critical to prostate carcinogenesis. In order to enhance our knowledge of the molecular alterations associated with prostate cancer, our laboratory performed microarray analysis comparing gene expression in healthy normal prostate to that in prostate cancer tissue. Of the greater than 400 genes with significantly altered expression identified in our study, MT2A, Tacc2, Nell2, FosB, PCP4, and Cyr61 were selected for further evaluation to confirm expression changes and evaluate their potential impact in prostate cancer. Analysis of MT2A, Tacc2, and Nell2 expression patterns failed to demonstrate significant changes between prostate cancer and donor prostate tissue and, therefore, these results do not support their further development as prostate cancer biomarkers. We demonstrated that PCP4 was expressed predominently in the stromal compartment of the prostate and was expressed at similar levels in the stroma of normal and prostate cancer tissue. Interestingly, protein expression of PCP4 in a panel of colon cancer tissues was dramatically iv higher in adenoma and adenocarcinoma tissues compared to donor and benign colon tissue and, consequently, we feel that PCP4 has more potential as a biomarker in colon cancer than in prostate cancer. We also demonstrated that FosB and Cyr61 were upregulated in prostate cancer tissues over donor prostate tissues. Based on expression analysis of FosB and expression and functional analysis of Cyr61, we believe that these two targets have the greatest potental to be functionally significant in the etiology of prostate cancer. v TABLE OF CONTENTS PREFACE...................................................................................................................................XV 1.0 INTRODUCTION........................................................................................................ 1 1.1 PROSTATE GLAND .......................................................................................... 1 1.2 MALE REPRODUCTIVE SYSTEM ................................................................ 5 1.3 PROSTATE DEVELOPMENT ......................................................................... 6 1.4 PROSTATIC DISEASE...................................................................................... 7 1.4.1 Prostatitis....................................................................................................... 7 1.4.2 Benign Prostatic Hyperplasia ...................................................................... 9 1.5 PATHOBIOLOGY OF CANCER ................................................................... 11 1.5.1 Expression Changes, A Hallmark of Cancer............................................ 11 1.5.2 Metastasis..................................................................................................... 13 1.6 PROSTATE CANCER...................................................................................... 15 1.6.1 Risk Factors................................................................................................. 20 1.6.2 Diagnostics................................................................................................... 22 1.6.3 Stage and Grade.......................................................................................... 22 1.6.4 Genetics........................................................................................................ 26 1.6.5 Treatment .................................................................................................... 27 1.7 PROSTATE CANCER BIOMARKERS......................................................... 29 vi 1.7.1 The Issue of Over-Treatment..................................................................... 29 1.7.2 Prostate Specific Antigen ........................................................................... 30 1.7.3 Prostate Cancer Antigen 3 ......................................................................... 33 1.7.4 Alpha-methylacyl-CoA Racemase............................................................. 34 1.7.5 Early Prostate Cancer Antigen 2............................................................... 35 2.0 PROJECT BACKGROUND AND METHODS...................................................... 36 2.1 HYPOTHESIS ................................................................................................... 36 2.2 TARGET GENES MODIFIED IN PROSTATE CANCER.......................... 37 2.2.1 Metallothionein 2A...................................................................................... 37 2.2.2 Transformin, acidic coiled-coiled containing protein 2........................... 38 2.2.3 Nell2.............................................................................................................. 39 2.2.4 FosB.............................................................................................................. 42 2.2.5 Purkinje Cell Protein 4............................................................................... 44 2.2.6 Cysteine-rich, angiogenic inducer, 61 ....................................................... 44 2.2.6.1 CCN protein family............................................................................. 44 2.2.6.2 The normal role of Cyr61................................................................... 45 2.2.6.3 Cyr61 in disease................................................................................... 46 2.2.6.4 Cyr61 in cancer ................................................................................... 46 2.3 MATERIALS AND METHODS...................................................................... 47 2.3.1 Cell Culture ................................................................................................. 47 2.3.2 Tissues and Tissue Microarrays ................................................................ 47 2.3.3 Immunohistochemistry............................................................................... 48 2.3.4 Scoring and TMA Analysis ........................................................................ 49 vii 2.3.5 Nested Case-Control Study: Rational, Parameters and Tissues ............ 50 2.3.6 Protein Isolation.......................................................................................... 53 2.3.7 Immunoblot Analysis.................................................................................. 54 2.3.8 RNA Isolation.............................................................................................. 55 2.3.9 Semi-quantitative PCR............................................................................... 56 2.3.10 Quantitative PCR........................................................................................ 57 2.3.11 Cloning......................................................................................................... 59 2.3.12 Transient and Stable Transfection............................................................ 60 2.3.13 Microarray Analysis ................................................................................... 61 2.3.14 Growth and Survival Assays...................................................................... 62 2.3.15 Cell Doubling Time..................................................................................... 62 2.3.16 Migration and Invasion .............................................................................. 63 2.3.17 Statistical Analysis ...................................................................................... 64 3.0 GENE EXPRESSION CHANGES IN PROSTATE CANCER............................. 65 3.1 INTRODUCTION ............................................................................................. 65 3.2 RESULTS ........................................................................................................... 66 3.2.1 Expression of MT2A in prostate cancer ................................................... 66 3.2.2 Expression of Tacc2 in prostate cancer ...................................................
Recommended publications
  • A Regulator of Aldosterone Synthesis in Human Adrenocortical Tissues
    S J A FELIZOLA and others PCP4: a regulator of aldosterone 52:2 159–167 Research synthesis PCP4: a regulator of aldosterone synthesis in human adrenocortical tissues Saulo J A Felizola, Yasuhiro Nakamura, Yoshikiyo Ono1, Kanako Kitamura, Kumi Kikuchi1, Yoshiaki Onodera, Kazue Ise, Kei Takase2, Akira Sugawara3, Namita Hattangady4, William E Rainey4, Fumitoshi Satoh1 and Hironobu Sasano Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Correspondence Miyagi 980-8575, Japan should be addressed 1Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Hospital, Sendai, Japan to Y Nakamura Departments of 2Diagnostic Radiology 3Molecular Endocrinology, Tohoku University Graduate School of Medicine, Email 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan yasu-naka@ 4Department of Physiology and Medicine, University of Michigan, Ann Arbor, Michigan, USA patholo2.med.tohoku.ac.jp Abstract Purkinje cell protein 4 (PCP4) is a calmodulin (CaM)-binding protein that accelerates calcium Key Words association and dissociation with CaM. It has been previously detected in aldosterone- " Purkinje cell protein 4 (PCP4) producing adenomas (APA), but details on its expression and function in adrenocortical " adrenal cortex tissues have remained unknown. Therefore, we performed the immunohistochemical " aldosterone analysis of PCP4 in the following tissues: normal adrenal (NA; nZ15), APA (nZ15), cortisol- " calmodulin (CaM) producing adenomas (nZ15), and idiopathic hyperaldosteronism cases (IHA; nZ5). APA " CYP11B2 samples (nZ45) were also submitted to quantitative RT-PCR of PCP4, CYP11B1, and CYP11B2, Journal of Molecular Endocrinology as well as DNA sequencing for KCNJ5 mutations. Transient transfection analysis using PCP4 siRNA was also performed in H295R adrenocortical carcinoma cells, following ELISA analysis, and CYP11B2 luciferase assays were also performed after PCP4 vector transfection in order to study the regulation of PCP4 protein expression.
    [Show full text]
  • Proteomic Profile of Human Spermatozoa in Healthy And
    Cao et al. Reproductive Biology and Endocrinology (2018) 16:16 https://doi.org/10.1186/s12958-018-0334-1 REVIEW Open Access Proteomic profile of human spermatozoa in healthy and asthenozoospermic individuals Xiaodan Cao, Yun Cui, Xiaoxia Zhang, Jiangtao Lou, Jun Zhou, Huafeng Bei and Renxiong Wei* Abstract Asthenozoospermia is considered as a common cause of male infertility and characterized by reduced sperm motility. However, the molecular mechanism that impairs sperm motility remains unknown in most cases. In the present review, we briefly reviewed the proteome of spermatozoa and seminal plasma in asthenozoospermia and considered post-translational modifications in spermatozoa of asthenozoospermia. The reduction of sperm motility in asthenozoospermic patients had been attributed to factors, for instance, energy metabolism dysfunction or structural defects in the sperm-tail protein components and the differential proteins potentially involved in sperm motility such as COX6B, ODF, TUBB2B were described. Comparative proteomic analysis open a window to discover the potential pathogenic mechanisms of asthenozoospermia and the biomarkers with clinical significance. Keywords: Proteome, Spermatozoa, Sperm motility, Asthenozoospermia, Infertility Background fertilization failure [4] and it has become clear that iden- Infertility is defined as the lack of ability to achieve a tifying the precise proteins and the pathways involved in clinical pregnancy after one year or more of unprotected sperm motility is needed [5]. and well-timed intercourse with the same partner [1]. It is estimated that around 15% of couples of reproductive age present with infertility, and about half of the infertil- Application of proteomic techniques in male ity is associated with male partner [2, 3].
    [Show full text]
  • Metallothionein-Protein Interactions
    DOI 10.1515/bmc-2012-0049 BioMol Concepts 2013; 4(2): 143–160 Review S í lvia Atrian * and Merc è Capdevila Metallothionein-protein interactions Abstract: Metallothioneins (MTs) are a family of univer- Introduction sal, small proteins, sharing a high cysteine content and an optimal capacity for metal ion coordination. They take Metallothioneins (MTs) are a family of small ( < 10 kDa), part in a plethora of metal ion-related events (from detoxi- extremely heterogeneous proteins, sharing a high cysteine fication to homeostasis, storage, and delivery), in a wide content (15 – 30 % ) that confers them an optimal capacity range of stress responses, and in different pathological for metal ion coordination. After their discovery in horse processes (tumorigenesis, neurodegeneration, and inflam- kidneys by Bert Vallee in 1957 (1) , MTs have been identi- mation). The information on both intracellular and extra- fied and characterized in most prokaryotic and all eukary- cellular interactions of MTs with other proteins is here otic organisms. Besides metal ion detoxification, they comprehensively reviewed. In mammalian kidney, MT1/ have been related to a plethora of physiological events, MT2 interact with megalin and related receptors, and with from the homeostasis, storage, and delivery of physiologi- the transporter transthyretin. Most of the mammalian MT cal metals, to the defense against a wide range of stresses partners identified concern interactions with central nerv- and pathological processes (tumor genesis, neurodegen- ous system (mainly brain) proteins, both through physical eration, inflammation, etc.). It is now a common agree- contact or metal exchange reactions. Physical interactions ment among MT researchers that the ambiguity when mainly involve neuronal secretion multimers.
    [Show full text]
  • A Comparative Analysis of Transcribed Genes in the Mouse Hypothalamus and Neocortex Reveals Chromosomal Clustering
    A comparative analysis of transcribed genes in the mouse hypothalamus and neocortex reveals chromosomal clustering Wee-Ming Boon*, Tim Beissbarth†, Lavinia Hyde†, Gordon Smyth†, Jenny Gunnersen*, Derek A. Denton*‡, Hamish Scott†, and Seong-Seng Tan* *Howard Florey Institute, University of Melbourne, Parkville 3052, Australia; and †Genetics and Bioinfomatics Division, Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville 3050, Australia Contributed by Derek A. Denton, August 26, 2004 The hypothalamus and neocortex are subdivisions of the mamma- representing all of the genes that are expressed (qualitative and lian forebrain, and yet, they have vastly different evolutionary quantitative) in the hypothalamus and neocortex under standard histories, cytoarchitecture, and biological functions. In an attempt conditions. to define these attributes in terms of their genetic activity, we have In the current study, we describe the use of the Serial Analysis compared their genetic repertoires by using the Serial Analysis of of Gene Expression (SAGE) database, which allows simulta- Gene Expression database. From a comparison of 78,784 hypothal- neous detection of the expression levels of the entire genome amus tags with 125,296 neocortical tags, we demonstrate that each without a priori knowledge of gene sequences (13). SAGE takes structure possesses a different transcriptional profile in terms of advantage of the fact that a small sequence tag taken from a gene ontological characteristics and expression levels. Despite its defined position within the transcript is sufficient to identify the more recent evolutionary history, the neocortex has a more com- gene (from known cDNA or EST sequences), and up to 40 tags plex pattern of gene activity.
    [Show full text]
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • Supplementary Table 3 Complete List of RNA-Sequencing Analysis of Gene Expression Changed by ≥ Tenfold Between Xenograft and Cells Cultured in 10%O2
    Supplementary Table 3 Complete list of RNA-Sequencing analysis of gene expression changed by ≥ tenfold between xenograft and cells cultured in 10%O2 Expr Log2 Ratio Symbol Entrez Gene Name (culture/xenograft) -7.182 PGM5 phosphoglucomutase 5 -6.883 GPBAR1 G protein-coupled bile acid receptor 1 -6.683 CPVL carboxypeptidase, vitellogenic like -6.398 MTMR9LP myotubularin related protein 9-like, pseudogene -6.131 SCN7A sodium voltage-gated channel alpha subunit 7 -6.115 POPDC2 popeye domain containing 2 -6.014 LGI1 leucine rich glioma inactivated 1 -5.86 SCN1A sodium voltage-gated channel alpha subunit 1 -5.713 C6 complement C6 -5.365 ANGPTL1 angiopoietin like 1 -5.327 TNN tenascin N -5.228 DHRS2 dehydrogenase/reductase 2 leucine rich repeat and fibronectin type III domain -5.115 LRFN2 containing 2 -5.076 FOXO6 forkhead box O6 -5.035 ETNPPL ethanolamine-phosphate phospho-lyase -4.993 MYO15A myosin XVA -4.972 IGF1 insulin like growth factor 1 -4.956 DLG2 discs large MAGUK scaffold protein 2 -4.86 SCML4 sex comb on midleg like 4 (Drosophila) Src homology 2 domain containing transforming -4.816 SHD protein D -4.764 PLP1 proteolipid protein 1 -4.764 TSPAN32 tetraspanin 32 -4.713 N4BP3 NEDD4 binding protein 3 -4.705 MYOC myocilin -4.646 CLEC3B C-type lectin domain family 3 member B -4.646 C7 complement C7 -4.62 TGM2 transglutaminase 2 -4.562 COL9A1 collagen type IX alpha 1 chain -4.55 SOSTDC1 sclerostin domain containing 1 -4.55 OGN osteoglycin -4.505 DAPL1 death associated protein like 1 -4.491 C10orf105 chromosome 10 open reading frame 105 -4.491
    [Show full text]
  • TACC1–Chtog–Aurora a Protein Complex in Breast Cancer
    Oncogene (2003) 22, 8102–8116 & 2003 Nature Publishing Group All rights reserved 0950-9232/03 $25.00 www.nature.com/onc TACC1–chTOG–Aurora A protein complex in breast cancer Nathalie Conte1,Be´ ne´ dicte Delaval1, Christophe Ginestier1, Alexia Ferrand1, Daniel Isnardon2, Christian Larroque3, Claude Prigent4, Bertrand Se´ raphin5, Jocelyne Jacquemier1 and Daniel Birnbaum*,1 1Department of Molecular Oncology, U119 Inserm, Institut Paoli-Calmettes, IFR57, Marseille, France; 2Imaging Core Facility, Institut Paoli-Calmettes, Marseille, France; 3E229 Inserm, CRLC Val d’Aurelle/Paul Lamarque, Montpellier, France; 4Laboratoire du cycle cellulaire, UMR 6061 CNRS, IFR 97, Faculte´ de Me´decine, Rennes, France; 5Centre de Ge´ne´tique Mole´culaire, Gif-sur-Yvette, France The three human TACC (transforming acidic coiled-coil) metabolism, including mitosis and intracellular trans- genes encode a family of proteins with poorly defined port of molecules, is progressing but many components functions that are suspected to play a role in oncogenesis. remain to be discovered and characterized. We describe A Xenopus TACC homolog called Maskin is involved in here the interaction of the TACC1 protein with several translational control, while Drosophila D-TACC interacts protein partners that makes it a good candidate to with the microtubule-associated protein MSPS (Mini participate in microtubule-associated processes in nor- SPindleS) to ensure proper dynamics of spindle pole mal and tumoral cells. microtubules during cell division. We have delineated here In
    [Show full text]
  • Experimental Validation of the Regulated Expression of Large Numbers of Non-Coding Rnas from the Mouse Genome
    Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Article Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome Timothy Ravasi,1,4,5 Harukazu Suzuki,2,4 Ken C. Pang,1,3,4 Shintaro Katayama,2,4 Masaaki Furuno,2,4,6 Rie Okunishi,2 Shiro Fukuda,2 Kelin Ru,1 Martin C. Frith,1,2 M. Milena Gongora,1 Sean M. Grimmond,1 David A. Hume,1 Yoshihide Hayashizaki,2 and John S. Mattick1,7 1ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia; 2Laboratory for Genome Exploration Research Group, RIKEN Genomic Science Center, RIKEN Yokohama Institute, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; 3T Cell Laboratory, Ludwig Institute for Cancer Research, Austin & Repatriation Medical Centre, Heidelberg VIC 3084, Australia Recent large-scale analyses of mainly full-length cDNA libraries generated from a variety of mouse tissues indicated that almost half of all representative cloned sequences did not contain an apparent protein-coding sequence, and were putatively derived from non-protein-coding RNA (ncRNA) genes. However, many of these clones were singletons and the majority were unspliced, raising the possibility that they may be derived from genomic DNA or unprocessed pre-mRNA contamination during library construction, or alternatively represent nonspecific “transcriptional noise.” Here we show, using reverse transcriptase-dependent PCR, microarray, and Northern blot analyses, that many of these clones were derived from genuine transcripts of unknown function whose expression appears to be regulated.
    [Show full text]
  • Genetic Variant in 3' Untranslated Region of the Mouse Pycard Gene
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437184; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 Title: 4 Genetic Variant in 3’ Untranslated Region of the Mouse Pycard Gene Regulates Inflammasome 5 Activity 6 Running Title: 7 3’UTR SNP in Pycard regulates inflammasome activity 8 Authors: 9 Brian Ritchey1*, Qimin Hai1*, Juying Han1, John Barnard2, Jonathan D. Smith1,3 10 1Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 11 Cleveland, OH 44195 12 2Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 13 44195 14 3Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western 15 Reserve University, Cleveland, OH 44195 16 *, These authors contributed equally to this study. 17 Address correspondence to Jonathan D. Smith: email [email protected]; ORCID ID 0000-0002-0415-386X; 18 mailing address: Cleveland Clinic, Box NC-10, 9500 Euclid Avenue, Cleveland, OH 44195, USA. 19 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437184; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 20 Abstract 21 Quantitative trait locus mapping for interleukin-1 release after inflammasome priming and activation 22 was performed on bone marrow-derived macrophages (BMDM) from an AKRxDBA/2 strain intercross.
    [Show full text]
  • Up-Regulation of Metallothionein Isoforms in Keloid Keratinocytes
    Lim 31_8 30/12/05 15:12 Page 385 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 17: 385-389, 2006 385 Up-regulation of metallothionein isoforms in keloid keratinocytes D. LIM1, T.T. PHAN2, G.W. YIP1 and B.H. BAY1 1Department of Anatomy, National University of Singapore, 4 Medical Drive, Singapore 117597; 2Department of Surgery and Division of Bioengineering, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074 Received August 31, 2005; Accepted October 17, 2005 Abstract. Keloids are proliferative growths of dermal by Kagi and Vallee (4) and Kagi et al (5). MTs have selective collagen, usually resulting from excessive tissue response binding to metals such as zinc, copper and cadmium (6) and during wound healing. There is evidence that keratinocytes are involved in the detoxification of heavy metals such as may promote keloidogenesis via epithelial-mesenchymal cadmium and mercury. MTs are known to be associated with interactions. Metallothioneins (MTs) are known to be involved protection against DNA damage and oxidative stress (7). in the fundamental cellular processes of growth and apoptosis. MTs have been implicated in the fundamental processes of In this study, we evaluated the expression of MT isoforms in cell proliferation, differentiation and apoptosis (8). There are normal and keloid keratinocytes. The expression patterns of >10 functional MT isoforms in humans, which encode four ten functional MT isoforms were assessed using real-time main groups of MT proteins viz. MT-1, MT-2, MT-3 and RT-PCR in primary cultures of normal and keloid keratino- MT-4 proteins (9-11). The MT-1 protein comprises many cytes.
    [Show full text]
  • (BPA) Exposure Biomarkers in Ovarian Cancer
    Journal of Clinical Medicine Article Identification of Potential Bisphenol A (BPA) Exposure Biomarkers in Ovarian Cancer Aeman Zahra 1, Qiduo Dong 1, Marcia Hall 1,2 , Jeyarooban Jeyaneethi 1, Elisabete Silva 1, Emmanouil Karteris 1,* and Cristina Sisu 1,* 1 Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; [email protected] (A.Z.); [email protected] (Q.D.); [email protected] (M.H.); [email protected] (J.J.); [email protected] (E.S.) 2 Mount Vernon Cancer Centre, Northwood HA6 2RN, UK * Correspondence: [email protected] (E.K.); [email protected] (C.S.) Abstract: Endocrine-disrupting chemicals (EDCs) can exert multiple deleterious effects and have been implicated in carcinogenesis. The xenoestrogen Bisphenol A (BPA) that is found in various consumer products has been involved in the dysregulation of numerous signalling pathways. In this paper, we present the analysis of a set of 94 genes that have been shown to be dysregulated in presence of BPA in ovarian cancer cell lines since we hypothesised that these genes might be of biomarker potential. This study sought to identify biomarkers of disease and biomarkers of disease- associated exposure. In silico analyses took place using gene expression data extracted from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Differential expression was further validated at protein level using immunohistochemistry on an ovarian cancer tissue microarray. We found that 14 out of 94 genes are solely dysregulated in the presence of BPA, while the remaining 80 genes are already dysregulated (p-value < 0.05) in their expression pattern Citation: Zahra, A.; Dong, Q.; Hall, as a consequence of the disease.
    [Show full text]
  • Molecular Effects of Isoflavone Supplementation Human Intervention Studies and Quantitative Models for Risk Assessment
    Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis committee Promotors Prof. Dr Pieter van ‘t Veer Professor of Nutritional Epidemiology Wageningen University Prof. Dr Evert G. Schouten Emeritus Professor of Epidemiology and Prevention Wageningen University Co-promotors Dr Anouk Geelen Assistant professor, Division of Human Nutrition Wageningen University Dr Lydia A. Afman Assistant professor, Division of Human Nutrition Wageningen University Other members Prof. Dr Jaap Keijer, Wageningen University Dr Hubert P.J.M. Noteborn, Netherlands Food en Consumer Product Safety Authority Prof. Dr Yvonne T. van der Schouw, UMC Utrecht Dr Wendy L. Hall, King’s College London This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 20 June 2014 at 13.30 p.m. in the Aula. Vera van der Velpen Molecular effects of isoflavone supplementation: Human intervention studies and quantitative models for risk assessment 154 pages PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English ISBN: 978-94-6173-952-0 ABSTRact Background: Risk assessment can potentially be improved by closely linked experiments in the disciplines of epidemiology and toxicology.
    [Show full text]