Quantifying Spatial Association Between Mineral Deposits And

Total Page:16

File Type:pdf, Size:1020Kb

Quantifying Spatial Association Between Mineral Deposits And Quantifying spatial association between mineral deposits and geology across three African crustal segments of different age, with implication for secular change in mineralization during Earth history. Tshifbiwa Mabidi Town Cape of Thesis submitted in fulfilment of the requirements for the degree of Master of Science University Department of Geological Sciences University of Cape Town February, 2006 AE::ON AFRICA EARTH OOSERVATORY NETWORK EARTH STEWARDSH P THROUGH SCIENCE The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration • I know that plagiarism is wrong. Plagiarism is to use another's work and to pretend that it is one's own. • Each significant contribution to, and quotation in, this thesis from the work, or works, of other people has been attributed, and has been cited and referenced. • This thesis is my own work. ■ I have not allowed, and will not allow, anyone to copy my work with the intention of passing it offas his/her own work. Abstract Variations in enrichment of mineralization, expressed in ore deposits, in the continental crust may be one way to test for secular changes in crustal genesis. This study collates and analyses fundamental information about mineral deposits with which to 'fingerprint' the metal endowment of African crust of different age. Three areas of juvenile African crust (e.g. mantle derived over similar lengths of time of ~500 million years, and excluding recycled older crust) of different ages with similar geology are compared. The areas range in age from 0.5 to 3.0 Ga, [e.g. the Zimbabwe Craton (2.5-3.0 Ga), the Birimian Shield (1.8-2.3 Ga), and the Arabian-Nubian Shield (0.5-1.0 Ga)]. The three areas have a total of 2671 mineral deposits, which are divided into six groups according to their geochemical affinities. Using these known deposits, mineral potential maps are created through a data- driven approach, using weights of evidence (WotE). The layers/themes used in Woffi are (1) lithology, (2) structures (faults and shear zones), and (3) lithological contacts. The analysis shows that there is strong lithology control on mineralization in all three areas. Archean crust has high predictive values compared to the younger crust. A measure of spatial association (spatial coefficient), based on the WotE approach, is also used to 'fingerprint' the met I endowment in the three selected regions of African crust. The patterns of the mineral deposits distribution within all regions shows that each region has a unique metal endowment, and that there is a greater concentration of mineral deposits in the crust of the Archean Zimbabwe Craton relative to the younger crust of the Birimian and Arabian-Nubian Shields. The analysis of this study therefore quantitatively corroborates studies that suggest older crust is more mineral diverse and more enriched in mineral deposits than younger crust. Thus, secular changes in mineralization or rates of tectonic processes, or both, are implicated, and mineral endowment in the African crust has undergone major evolutionary changes from Archean to Neoproterozoic time. Keywords: Zimbabwe Craton; Birimian Shield; Arabian-Nubian Shield; Continental crust; Secular change; Mineral deposits; Archean; Paleoproterozoic; Neoproterozoic; Weights-of­ Evidence model, Spatial analyses, GIS, Mineral potential maps 11 Acknowledgements I would like to express my special thanks to my supervisors Prof. Maarten de Wit and Prof. Christien Thiart, for the guidance, patience, mentorship and motivation that helped me combine my interest in both computing and geology. I am sincerely in debt to them for their guidance and for their continuous support at every stage throughout this study. Prof. Maarten de Wit requires special praise for his belief that it was all possible. He has inspired me to produce nothing less than my best, which was often more than I thought I could do. Maarten and Christien, you are much more than supervisors to me. This research began with data collection from various sources into a unified GIS database. Part of datasets was taken from GO-GEOID (Gondwana Geoscientific Indexing Database), now housed at AEON, that originated from a PhD thesis of Wendy Wilsher. Digital geological features of Africa used throughout this project were mostly obtained from Council for Geosciences, and De Beers Group in Centurion where I visited and I was lucky to spend some time with Lindsay Urban, Navitha Dukkan and Dr Moctar Doucoure in their GIS Department. I w uld like to thank them for the time and effort they put into my project. For this I would like to thank Dr Mike de Wit, with whom I also had a valuable discussion. I would also like to thank his group, for making my visit to Centurion not only as productive as possible, but also very pleasant. I would like to thank Dr Hielke A. Jelsma, whom I visited in De Beers-Geoscience Centre in Johannesburg and Prof. Paul. H.G.M. Dirks for sending me valuable datasets of the Zimbabwe Craton. Nick Lindenberg, the UCT-Geographical Information Systems Manager, is thanked for sharing his expertise, which has greatly improved my work and his valuable time is greatly appreciated. The support from fellow students and staff in the Department of Geological Sciences, notably my fellow AEON companions, Dr. Jacek Stankiewicz, Dr. Justine Tinker, Dr. Daud Jamal, John Decker, and Shaun Moore, are thanked for their support, encouragement and valuable ideas that I have received. I am also grateful for the support and encouragement that I have received from Robert Netshitungulwana, Simon Mabolani, James Mudau and Zibisani Bagai. Financially, this project would never happen without the generosity of Prof. Maarten de Wit. The National Research Foundation provided financial support during this project. Finally, I would like to express my special thanks to my parents, family, friends and Tshilidzi for their unbelievable support, ultra-patience and endless trust. Not forgetting the Almighty God who always being on my side throughout this study. lll TABLE OF CONTENTS Declaration ........... ... ............................................................................... .i Abstract .................................................................................................... .ii Acknowledgements ..................................... .. .... ............ ............................ .iii Table of Contents ..................................................................................... .iv List of Figures ......................................................................................... ix List of Tables ........................ ....................... ... ... ... ............... .................... xv Chapter 1: Introduction 1-1 1.1 Objectives ......................................................................................... 1-4 1.2 Definitions of a craton and a shield ....................... ... ............................... 1-5 1.3 Definition of mineral potential ................................................................. 1-5 1.4 Methodology .... .................................................................................. 1-6 Chapter 2: Geologic architecture of three different African crustal segments 2-1 2.1 The Archean Zimbabwe Craton .............................................................2-1 2.1.1 Geological Setting ................................................................. 2-4 2.1.2 Tectonic Setting .......................................... .. ........................ 2-7 2.1.3 Mineralization ...................................................................... 2-9 2.2 The Paleoproterozoic Birimian Shield ..................................................... 2-12 2. 2.1 Geological Setting ................................................................ 2-12 2. 2. 2 Tectonic Setting .. ..................................................................... 2-18 2.2.3 Mineralization .................................................................... 2-21 2.3 The Neoproteroz ic Arabian-Nubian Shield ............................................... 2-24 2. 3.1 Geological Setting ................................................................... .2-24 2.3.2 Tectonic Setting .......................................... ........................... 2-26 2.3.3 Mineralization ...................................................................... 2-29 2.4 Summary of the Mineral Deposits of three regions of African crust of different age ................................................... ... .... .... ............... .. ................2-31 IV Chapter 3: Database: acquisition and structure 3-1 3.1 Spatial Data Input ............................................................................... 3-1 3.1.1 Mineral Theme ........................................................................... 3-3 3.1.2 Geology Theme ............................................................................. 3-6 3.1.3 Faults Theme ........................................................................... 3-10 Chapter 4: Spatial odelling Methodology 4-1 4.1 Introduction .... .. ........................................................................ .. .... 4-1 4.2 Knowledge Driven Models
Recommended publications
  • Research Article Pan-African Paleostresses and Reactivation of the Eburnean Basement Complex in Southeast Ghana (West Africa)
    Hindawi Publishing Corporation Journal of Geological Research Volume 2012, Article ID 938927, 15 pages doi:10.1155/2012/938927 Research Article Pan-African Paleostresses and Reactivation of the Eburnean Basement Complex in Southeast Ghana (West Africa) Mahaman Sani Tairou,1 Pascal Affaton,2 Solomon Anum,3 and Thomas Jules Fleury2 1 D´epartement de G´eologie, Facult´e des Sciences, Universit´edeLom´e, BP 1515, Lom´e, Togo 2 Aix-Marseille Universit´e, CNRS, IRD, CEREGE UMR34, 13545 Aix en Provence Cedex 04, France 3 Geological Survey Department, Koforidua Eastern Region, P.O. Box 672, Koforidua, Ghana Correspondence should be addressed to Mahaman Sani Tairou, [email protected] Received 28 March 2012; Revised 18 May 2012; Accepted 25 May 2012 Academic Editor: Quan-Lin Hou Copyright © 2012 Mahaman Sani Tairou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This faulting tectonics analysis concerns the southernmost segment of the Dahomeyide Orogen and the West-African craton eastern margin in southeast Ghana. The analysis of strike-slip faults in the frontal units of the Dahomeyide Belt indicates that four distinct compressive events (NE-SW, ENE-WSW to E-W, ESE-WNW to SE-NW and SE-NW to SSE-NNW) originated the juxtaposition of the Pan-African Mobile Zone and the West-African craton. These paleostress systems define a clockwise rotation of the compressional axis during the structuring of the Dahomeyide Orogen (650–550 Ma). The SE-NW and SSE-NNW to N-S compressional axes in the cratonic domain and its cover (Volta Basin) suggest that the reactivation of the eastern edge of the West African craton is coeval with the last stages of the Pan-African tectogenesis in southeast Ghana.
    [Show full text]
  • Callovian and Tithonian Paleogeography Legend (.Pdf)
    CALLOVIAN AND TITHONIAN AaTa Aaiun-Tarfay a Basin EVB East Venezuela Basin Mar Mardin SBet Subbetic Adha Adhami Ev ia Ev ia MarB Marmarica Basin SuBu Subbucov inian PALEOGEOGRAPHY Adri Adriatic Ex Li Ex ternal Ligurian Mars Marseille SuDa Susuz Dag LEGEND Akse Akseki Ex Ri Ex ternal Rif MAt Middle Atlas SuGe Supra-Getic Alda Aldama Ex Su Ex ternal Subetic MaU May a Uplift SuMo Supramonte Almo Almopias Ex u Ex uma MazP Mazagan Plateau Tab Tabriz Author: Caroline Wilhem Ana Anamas Fat Fatric Mec Mecsek Taba Tabas University of Lausanne - Institute of Earth Sciences Ani Anina FCB Flemish Cap Basin MC Massif Central Tac Tacchi Sheet 3 (3 sheets: 2 maps + legend; explanatory text) Ann Annecy Flor Florida Med Medv elica TadB Taoudeni Basin Anta Antaly a FoAm Foz do Amazonas Basin Mel Meliata Tahu Tahue Apu Apulia Fran Francardo Men Menderes Tal Talesh Aqui Aquitaine Basin Fri Friuli Meri Merida TaMi Tampica-Misant Basina Argo Argolis Gab Gabrov o Mese Meseta TanA Tanaulipas Arch PALEOENVIRONMENTS Armo Armorica GalB Galicia Bank MeSu Median Subbetic TaOr Talea Ori Ask Askipion Gav Gav roro Mig Migdhalista Tat Tatric Exposed land Atla Atlas GBB Grand Banks Basin Mir Mirdita Teh Tehran GeBB Georges Bank Basin Fluviodeltaic environment BaCa Baja California Mist Mistah Terek Terek BaDa Barla Dag GCau Great Caucasus Mix Mix teca TeT Tellian Trough Evaporitic platform Bade Badenli Geme Gemeric Mo Mostar Theo Theokafta Baju Bajuv aric Gen Genev a MoeP Moesian Platform TimB Timimoun Basin Terrigenous shelf and shallow basin Bako Bakony Gere Gerecse Monc
    [Show full text]
  • Provisional Programme
    June 2016 DOWNLOADS PROVISIONAL PROGRAMME The provisional technical program was set during the first week in June, although the schedule of times and venues for 4th Announcement Circular presentations and posters will only be finalized mid- July. Currently, there are 4,824 accepted abstracts from over 5,200 submissions, of which 3087 are oral presentations and 1,737 are posters. These are divided between the three core topics, Geoscience in Society (31%), Geology in the Economy (24%) and Fundamental Geoscience (45%). There are between three and fifteen major symposia or general sessions per theme of which there are 48. There are nine plenary presentations, all of which are directed at themes of particular current relevance in the global earth sciences. See the website. Topics include: Formation of continental crust Science and the professions: service to society Climate and human evolution The mining industry and society Shale gas - the technical challenges Extraction technologies and the life cycle of metals Earthquakes in Africa Palaeobiology from fossil bones Under the core theme, Geoscience in Society, there are a considerable number of geoheritage and geoconservation presentations. Climate change is a high interest topic (as predicted!). Communication to the public sector is addressed, as is mapping of Africa and the world. Geohazards, engineering geology and environmental geoscience all SOCIAL MEDIA have strong support. Geoeducation at secondary and tertiary level is well represented. There is considerable interest in professionalism in the geosciences and geoethics. All of these topics are typically under-represented in conferences world-wide, and anyone interested in these subjects should definitely have a close look at this part of the program.
    [Show full text]
  • Taoudeni Basin Report
    Integrated and Sustainable Management of Shared Aquifer Systems and Basins of the Sahel Region RAF/7/011 TAOUDENI BASIN 2017 INTEGRATED AND SUSTAINABLE MANAGEMENT OF SHARED AQUIFER SYSTEMS AND BASINS OF THE SAHEL REGION EDITORIAL NOTE This is not an official publication of the International Atomic Energy Agency (IAEA). The content has not undergone an official review by the IAEA. The views expressed do not necessarily reflect those of the IAEA or its Member States. The use of particular designations of countries or territories does not imply any judgement by the IAEA as to the legal status of such countries or territories, or their authorities and institutions, or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. INTEGRATED AND SUSTAINABLE MANAGEMENT OF SHARED AQUIFER SYSTEMS AND BASINS OF THE SAHEL REGION REPORT OF THE IAEA-SUPPORTED REGIONAL TECHNICAL COOPERATION PROJECT RAF/7/011 TAOUDENI BASIN COUNTERPARTS: Mr Adnane Souffi MOULLA (Algeria) Mr Abdelwaheb SMATI (Algeria) Ms Ratoussian Aline KABORE KOMI (Burkina Faso) Mr Alphonse GALBANE (Burkina Faso) Mr Sidi KONE (Mali) Mr Aly THIAM (Mali) Mr Brahim Labatt HMEYADE (Mauritania) Mr Sidi Haiba BACAR (Mauritania) EXPERT: Mr Jean Denis TAUPIN (France) Reproduced by the IAEA Vienna, Austria, 2017 INTEGRATED AND SUSTAINABLE MANAGEMENT OF SHARED AQUIFER SYSTEMS AND BASINS OF THE SAHEL REGION INTEGRATED AND SUSTAINABLE MANAGEMENT OF SHARED AQUIFER SYSTEMS AND BASINS OF THE SAHEL REGION Table of Contents 1.
    [Show full text]
  • A Fundamental Precambrian–Phanerozoic Shift in Earth's Glacial
    Tectonophysics 375 (2003) 353–385 www.elsevier.com/locate/tecto A fundamental Precambrian–Phanerozoic shift in earth’s glacial style? D.A.D. Evans* Department of Geology and Geophysics, Yale University, P.O. Box 208109, 210 Whitney Avenue, New Haven, CT 06520-8109, USA Received 24 May 2002; received in revised form 25 March 2003; accepted 5 June 2003 Abstract It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene–Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian–Permian, Ordovician–Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic–Cambrian ‘‘explosion’’ of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth’s longterm climate, superimposed by developing regulatory feedbacks
    [Show full text]
  • Mineralization and Sustainable Development in the West African Craton: from field Observations to Modelling
    Downloaded from http://sp.lyellcollection.org/ by guest on September 25, 2021 Mineralization and sustainable development in the West African Craton: from field observations to modelling Tahar Aïfa Université de Rennes, CNRS, Géosciences Rennes–UMR 6118, Bât. 15, Campus de Beaulieu, 35042 Rennes, France 0000-0002-1573-7668 [email protected] Abstract: This Special Publication combines results obtained by interdisciplinary groups from numerous aca- demic institutions working on Paleoproterozoic formations to decipher the origins of the main mineralization resources in the West African Craton (WAC) and their impacts on African economic development. Structural, geophysical, sedimentological, stratigraphical, geochemical, petrophysical and mineralogical analyses have been used to highlight the complexities involved in mineralization emplacement and its origin and evolution within the WAC. Fourteen articles, mainly of basic research carried out in the WAC and surrounding areas, contribute to new knowledge in mineral research with updated references. They show that the geodynamic evo- lution of the WAC is complex from one area to another: it involves subduction, collision and obduction during several deformation phases ranging from Birimian (2.3–2.0 Ga) to Pan-African (650–450 Ma) events. Miner- alization is mainly controlled by tectonics within shear zones, orogenic belts, basins and faulting systems occur- ring in the various corridors. Mineralized fluid circulation is stressed and injected into appropriate formations and precipitate several types of well-documented ore deposits: porphyry, metal-bearing, volcanogenic massive sulfide, sedimentary exhalative and lateritic. Various modelling techniques, when integrated, help in under- standing the mechanisms of mineralization emplacement, some of which are still a matter of debate.
    [Show full text]
  • Lower Crust Exhumation During Paleoproterozoic (Eburnean) Orogeny
    Precambrian Research 274 (2016) 82–109 Contents lists available at ScienceDirect Precambrian Research jo urnal homepage: www.elsevier.com/locate/precamres Lower crust exhumation during Paleoproterozoic (Eburnean) orogeny, NW Ghana, West African Craton: Interplay of coeval contractional deformation and extensional gravitational collapse a,∗ b c a,e d Sylvain Block , Mark Jessell , Laurent Aillères , Lenka Baratoux , Olivier Bruguier , f d d g Armin Zeh , Delphine Bosch , Renaud Caby , Emmanuel Mensah a Géosciences Environnement Toulouse, Observatoire Midi Pyrénées, 14 ave E. Belin, 31400 Toulouse, France b Center for Exploration Targeting, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, WA, Australia c Monash University, School of Geosciences, Wellington Road, Clayton 3800, VIC, Australia d Géosciences Montpellier, Université Montpellier 2-CNRS, cc 066, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France e IFAN, Cheikh Anta Diop, Dakar, Senegal f Institut für Geowissenschaften, Altenhöfer Allee 1, D-60438 Frankfurt am Main, Germany g Geological Survey Department of Ghana, Accra, Ghana a r t i c l e i n f o a b s t r a c t Article history: We present new litho-structural and metamorphic maps of the Paleoproterozoic (2.25–2.00 Ga) West Received 1 December 2014 African Craton in northern Ghana, based on the interpretation of field observations and airborne geophys- Received in revised form 31 August 2015 ical datasets. The study reveals contrasting metamorphic domains consisting of high-grade gneisses and Accepted 17 October 2015 low-grade volcano–sedimentary belts, separated by shear zones and assembled during the Paleoprotero- Available online 29 October 2015 zoic Eburnean orogeny (2.15–2.07 Ga).
    [Show full text]
  • Gold in Mali
    Acta Montanistica Slovaca Ročník 4 (1999), 4, 311-318 Gold in Mali 1 Imrich Kušnír Zlato v Mali Článok sa, okrem stručného úvodu do geológie regiónu, zaoberá popisom hlavných zlatých ložísk Mali, kde sa t.č. ťaží viac ako 20 t zlata ročne. Súčasné objavy zlata v tejto Západoafrickej krajine sú totiž príkladom, ako orientácia geologického prieskumu územia s dobrým potenciálom pre určitú nerastnú surovinu a použitie vhodnej metódy môže viesť k úspechu. Zlato sa v Mali ťaží už od nepamäti, ale ekonomicky významné ložiská (s prepočítanými zásobami 50 až 240 ton Au), sú objavované len v poslednom období. Presnejšie odvtedy, odkedy sa prieskum sústredil na zóny proterozoických epimetamorfovaých vulkano-sedimentárnych hornín (tzv. Birrimian greenstone belts) Západoafrického kratónu, s použitím geochémie, ako jednej z hlavných prieskumných metód. Keď si prieskumári uvedomili, že "Birrimian" môže mať rovnaký potenciál na zlato ako archaické "greenstones", ktoré sú hlavným zdrojom zlata na svete a že geochémia môže byt účinnou metódou pre prieskum krajiny s plochým povrchom, bez východov hornín, ktorá je charakteristická pre väčšinu územia Mali (a celej Západnej a Strednej Afriky). Key words: Mali, West Africa, West African craton, Tuareg shield, Proterozoic, Birrimian, Pan-african orogeny, precambrian greenstones, gold, lode gold, auriferous tourmalinites. Introduction Gold mining in Mali has a long history. In 1433, its renowned emperor Kanku Mussa brought 8 tons of gold on his pilgrimage to Mecca. Local population has exploited gold since immemorial times. Nowadays, several thousands of "artisan" miners exploit numerous sites and their production is estimated at more than 2 tons of gold per year. Industrial mining began in the 1970's (Kalana mine), following a large exploration programme by SONAREM with the soviet assistance (Golder et al., 1965; Boltroukevitch, 1973).
    [Show full text]
  • Back Matter (PDF)
    Index Page numbers in italic denote figures. Page numbers in bold denote tables. Accra Plains Migmatite, correlation with Me´dio Coreau´ Bafia Group 86 domain 102–103, 114 Bahia–Gabon continental bridge 153, 154 Adamastor ocean Baixo Araguaia Supergroup 174, 299 closure 260, 265, 269, 270, 271, 271, 273 geochronology 184, 189, 190, 191 subduction 229, 231 Baltica Adamawa fault 92 palaeogeography 13–16, 14, 15, 17,22–23 Adamawa–Yade´ domain 85, 85, 87, 88,90–91 palaeomagnetic poles 10, 11 Afagados do Ingrazeira fault 72 Bambui Group 165, 201, 206 A´ gua Clara domain 241, 242 Bandeirinha Formation 36, 36, 37 A´ guas Belas–Caninde´ suite 80, 81 Bangweulu block 33, 43–45 Akanyaru Supergroup 33, 41–43, 45 Baoule´ –Mossi domain 142–144 Albian gap 379, 382, 384, 392 Barro Alto complex 204 Ale´m Paraı´ba shear zone 222 basalt, Brazilian margin 373 Algodo˜es Unit 53 basins Alto Moxoto´ terrane 72, 77, 92 sag Alto Pajeu´ terrane 72, 73, 77, 78, 92 Espirito Santo Basin 379 Amazonia Sa˜o Francisco craton 33, 34, 35–36, 39 palaeogeography 13–16, 14, 15, 16, 17, 21, 22–23 salt, Brazilian margin 366–370, 367, 375 palaeomagnetic poles 12,13 sedimentary Amazonian craton 102 Borborema Province 56 geochronology 177, 189, 191 Garupi Belt 141 Andrelaˆndia Group 164, 202, 205, 217 Parana´ –Cape–Karoo 319–337 Angola craton 4, 5, 223, 224, 225–226 rift, Brazilian margin, uplifted flanks 383–387 correlation with Cabo Frio terrane 292 Sa˜o Francisco–Congo craton 33–46 Apiaı´ terrane 214, 218, 221, 222–223, 229 Sa˜o Luı´s craton 140, 141 Apparent Polar Wander Path
    [Show full text]
  • Geology and Petroleum Resources of Central and East-Central Africa by James A. Peterson* Open-File Report 85-589 This Report Is
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Geology and petroleum resources of central and east-central Africa By James A. Peterson* Open-File Report 85-589 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature Missoula, Montana 1985 CONTENTS Page Abs tract 1 Introduction 2 Sources of Information 2 Geography 2 Acknowledgment s 2 Regional geology 5 Structure 5 Horn of Africa 5 Plateau and rift belt 11 Red Sea and Gulf of Aden Basins 13 Central Africa interior basins 13 Upper Nile Basin (Sudan trough) 13 Chad, Doba-Doseo (Chari), and lullemmeden (Niger) Basins 13 Benue trough 15 Stratigraphy 15 Precambrian 19 Paleozoic 19 Mesozoic 21 East-central Africa 21 Jurassic 21 Cretaceous 22 Tertiary 22 Central Africa interior basins 26 Benue trough 27 Petroleum geology 27 Somali basin 28 Res ervo i r s 2 9 Source rocks 29 Seals 29 Traps 2 9 Estimated resources 30 Plateau and rift belt 30 Red Sea Basin (western half) 30 Reservoirs 30 Source rocks 34 Seals 34 Traps 34 Estimated resources 34 Central Africa interior basins 34 Reservoirs, source rocks, seals 36 Traps 36 Estimated resources 36 Benue trough 40 Res er voi r s 4 0 Source rocks 40 Seals 40 Traps 40 Estimated resources 40 CONTENTS (continued) Page Resource assessment 42 Procedures 42 As s es smen t 4 3 Comments 43 Selected references 45 ILLUSTRATIONS Figure 1. Index map of north and central Africa 3 2. Generalized structural map of central and east Africa 4 3.
    [Show full text]
  • Congo River Sand and the Equatorial Quartz Factory
    Earth-Science Reviews 197 (2019) 102918 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Congo River sand and the equatorial quartz factory T ⁎ Eduardo Garzantia, , Pieter Vermeeschb, Giovanni Vezzolia, Sergio Andòa, Eleonora Bottia, Mara Limontaa, Pedro Dinisc, Annette Hahnd, Daniel Baudete, Johan De Gravef, Nicole Kitambala Yayag a Laboratory for Provenance Studies, Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milano, Italy b London Geochronology Centre, Department of Earth Sciences, University College London, London, WC1E 6BT, UK c Department of Earth Sciences, MARE – Marine and Environmental Sciences Centre, University of Coimbra, Portugal d MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany e Geodynamics & Mineral Resources, Royal Museum for Central Africa (RMCA), Leuvensesteenweg 13, 3080 Tervuren, Belgium f Department of Geology and Soil Science (WE13), MINPET, Ghent University, Krijgslaan 281/S8, WE13, B-9000 Gent, Belgium g CRGM Centre de Recherches Géologiques et Minières, 44, Av. de la Démocratie, Kinshasa-Gombe, Democratic Republic of Congo ARTICLE INFO ABSTRACT Keywords: A never solved problem in sedimentary petrology is the origin of sandstone consisting exclusively of quartz and Provenance analysis most durable heavy minerals. The Congo River offers an excellent test case to investigate under which tectonic, Equatorial weathering geomorphological, climatic, and geochemical conditions pure quartzose sand is generated today. In both upper U-Pb zircon geochronology and lowermost parts of the catchment, tributaries contain significant amounts of feldspars, rock fragments, or Zircon weatherability moderately stable heavy minerals pointing at the central basin as the main location of the “quartz factory”.
    [Show full text]
  • Geographical and Subject Index
    Index Geographical and Subject Index J\[`d\ekXip 9Xjj`ej E @ek\i`fiYXj`e N < :fdgfj`k\Xe[Zfdgc\oYXj`ej I`]kYXj`e J ;fnenXigYXj`e DXi^`eXcjX^figlcc$XgXikYXj`ej D\[`XeXe[jlY[lZk`feYXj`ej ;\ckX DXafi]iXZkli\qfe\j Geographical Index A B Abd-Al-Kuri (Socotra) 224 Bab el Mandeb (Sudan) 241 Aberdares (Kenya) 136 Babadougou (Ivory Coast) 130 Abidjan (Ivory Coast) 128 Babassa (Central African Republic) 68 Abkorum-Azelik (Niger) 192 Baddredin (Egypt) 96 Abu Ras Plateau (Egypt) 94 Bahariya Oasis (Egypt) 95, 96 Abu Tartur (Egypt) 94, 96 Bakouma (Central African Republic) 68 Abu Zawal (Egypt) 94 Bamako (Mali) 165 Abuja (Nigeria) 196 Bandiagara (Mali) 165 Accra (Ghana) 119 Bangui (Central African Republic) 68 Acholi region (Uganda) 265 Bangweulu Swamp (Zambia) 270 Adrar des Iforas (Algeria) 32, 34 Banjul (Gambia) 114 Addis Ababa (Ethiopia) 106 Baragoi (Kenya) 134 Ader-Doutchi (Niger) 193 Barberton Mountains (South Africa) 230 Adola (Ethiopia) 108 Basila (Benin) 44 Adrar (Mauritania) 169 Bation Peak (Kenya) 135 Adrar des Iforas Mountains (Mali) 162 Batoka Gorge (Zambia) 270 Adua-Axum (Ethiopia) 106 Bayuda Desert (Sudan) 238, 240 Afast (Niger) 192 Beghemder (Ethiopia) 106 Agadez (Niger) 192, 193 Benghazi (Libya) 150 Agadir (Morocco) 176 Bengo (Angola) 41 Agbaja Plateau (Nigeria) 196 Benty (Guinea) 124 Ahnet (Algeria) 34 Benue Valley (Nigeria) 196 AÏr Massif 190, 193 Biankouma (Ivory Coast) 130 Akagera (Rwanda) 206 Bidzar (Cameroon) 60 Akoufa (Niger) 192 Bie (Angola) 41 Alexandra Peak (Uganda) 264 Big Hole (South Africa) 234, 235 Algerian Atlas (Algeria)
    [Show full text]