Candidatus Phytoplasma Mali’ in Different Populations of Cacopsylla Melanoneura in Italy

Total Page:16

File Type:pdf, Size:1020Kb

Candidatus Phytoplasma Mali’ in Different Populations of Cacopsylla Melanoneura in Italy View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio istituzionale della ricerca - Fondazione Edmund Mach Bulletin of Insectology 63 (1): 59-63, 2010 ISSN 1721-8861 Detection of ‘Candidatus Phytoplasma mali’ in different populations of Cacopsylla melanoneura in Italy 1 1 1 1 1 Valeria MALAGNINI , Federico PEDRAZZOLI , Valeria GUALANDRI , Rosaly ZASSO , Elisa BOZZA , Federica 1 2 2 1 FIAMINGO , Alberto POZZEBON , Nicola MORI , Claudio IORIATTI 1Centro Trasferimento Tecnologico, FEM- IASMA, San Michele all’Adige, Trento, Italy 2Department of Environmental Agronomy and Crop Science, University of Padua, Legnaro, Padova, Italy Abstract Cacospylla melanoneura Förster (Hemiptera Psyllidae) is one of the vectors of ‘Candidatus Phytoplasma mali’, which is the causal agent of apple proliferation (AP) disease. In 2006 and 2007, overwintering adult psyllids were collected from different host plants (apple, hawthorn and conifers) in different localities to assess the natural infection of C. melanoneura. AP phytoplasma was detected in insects through the use of PCR amplification with specific primers (AP3/AP4). Eleven percent of the psyllids collected from apple in the Trentino region were infected with AP phytoplasma, as compared with 18.63% of the psyllids collected from apple in the Aosta Valley and none of the psyllids collected from apple in the Veneto region. The percentage of AP-positive overwintering adults was higher in the Aosta Valley than in the Trentino region. Furthermore, considering the level of AP pres- ence in the monitored orchards, a positive correlation between the infection rates in the insects and the percentage of symptomatic plants was observed. Regarding psyllids collected from hawthorn, only few individuals tested positive in Trentino populations, while higher infection levels were found out in the Aosta Valley. Interesting percentages of positive psyllids resulted also in the insects collected from conifers (10.5%). Data obtained in this work demonstrate therefore that ‘Ca. P. mali’ may overwinter in the body of C. melanoneura and that there are differences in the infection proportion among populations. Key words: apple proliferation, phytoplasma, psyllids, Cacopsylla melanoneura, host plants. Introduction emerged with C. melanoneura, with only one successful transmission out of 278 test plants (transmission rate of The agronomic importance of the Hemiptera genus Ca- 0.36%) (Mattedi et al., 2008). copsylla is linked to the role played by several species Despite the incidence of ‘Ca. P. mali’-infected apple as vectors of phytoplasma-associated diseases. Apple plants in all the apple growing areas of Trentino, the proliferation (AP) disease is one of the most severe abundance of both species is dramatically decreasing in problems in Italian apple (Malus domestica Borkh.) or- the last years. Interesting population levels are only pre- chards. In northeastern Italy, symptoms of AP have sent for C. melanoneura in Valsugana, while C. picta been observed since the 1950s (Rui, 1950), but the dis- density has drastically dropped down in the whole re- ease has only recently become widespread, particularly gion and therefore this study focuses on the role of the in Trentino (northeastern Italy), where it has struck the first species in AP epidemiology. cultivars Golden Delicious, Florina and Renetta Canada The biology of C. melanoneura in the apple orchards (Vindimian and Delaiti, 1996). AP causes important of Trentino has been studied in detail (Mattedi et al., economic losses, as infected trees produce small fruits 2007; 2008). Overwintering adults migrate into apple with poor flavour. orchards between the end of January and February. The aetiological agent, ‘Candidatus Phytoplasma Oviposition begins between the end of February and the mali’ (Seemüller and Schneider, 2004), is transmitted beginning of March and this activity lasts about 30-40 by two psyllids, with different efficiencies: Cacopsylla days. The first nymphs appear at the end of March and picta (Förster) is the main vector in north-eastern Italy the new generation of adults emerges at the end of (Carraro et al., 2001b) and C. melanoneura (Förster) in April. As the adults develop, they migrate to other shel- north-western Italy (Tedeschi et al., 2002). Studies con- ter plants and disappear from the orchard before the end ducted in Germany confirm the role of C. picta in the of June. epidemiology of AP disease, excluding the latter species During the same period, C. melanoneura can also be (Jarausch B. et al., 2004; Mayer et al., 2009). Both spe- found on hawthorn (Crataegus monogyna Jacq. and C. cies are present in Trentino, but with different distribu- oxyacantha L.) (Ossiannilsson, 1992), on which high tions: C. melanoneura is ubiquist and shows the highest population densities have been reported even in some population densities in bottom valley environments locations of Trentino (Pedrazzoli et al., 2005). Recently, (Adige Valley and Valsugana); the presence of C. picta experiments conducted in north-western Italy found that is limited to hilly areas, such as Non and Sole Valley C. melanoneura individuals collected from hawthorn (Mattedi et al., 2008). Transmission experiments with carried AP-group phytoplasmas (Tedeschi et al., 2005; the two psyllids were therefore conducted also in this 2009). region over a six-years period (Mattedi et al., 2008). Besides hawthorn and apple, C. melanoneura has also Owing to these trials, the role of C. picta was confirmed been found on other plants, particularly on conifers such (transmission rate of 4.1%), while contradictory results as Picea abies (L.) H. Karst., Pinus sylvestris L., P. mugo Turra, on which the new generation of adults is Molecular analyses thought to overwinter (Conci et al., 1992; Ossiannils- Individual specimens were frozen, lyophilized, ho- son, 1992; Lauterer, 1999). P. abies is the main forest mogenized, and then stored at -80 °C until their DNA species of Trentino region, covering more than one third could be extracted. Total genomic DNA was extracted of the total forest area (137203 ha out of 407500 ha) from the samples following the CTAB (cetyltrimethyl- (INFC, 2005). To date, several studies have been con- ammonium bromide) method (Doyle and Doyle, 1990). ducted on the overwintering habits of this species in To assess the presence of ‘Ca. P. mali’, all of the col- Trentino (Pedrazzoli et al., 2005; Mattedi et al., 2007). lected insects were subjected to PCR amplification of a A regular presence has been found on Norway spruce non-ribosomal DNA region of 162 bp with the specific and pine in only a few high-altitude locations (Pedraz- primers AP3/AP4 (Jarausch et al., 1994). The PCR as- zoli et al., 2005). says were performed with 100-150 ng DNA, 375 nM of The different roles assigned to C. melanoneura by the each primer and the 2x Go Taq® Green Master Mix studies conducted to date suggest the existence of dif- (Promega, Madison, USA), in a final reaction volume of ferent populations, characterized by a different level of 20 µl. The PCR parameters were as follows: an initial infectivity. To examine these differences thoroughly, denaturation of 2 min at 95 °C and 40 cycles with 30 sec molecular analyses were performed on overwintered C. at 95 °C, 30 sec at 57 °C, 30 sec at 72 °C and a final ex- melanoneura collected from different plant species (ap- tension of 5 min at 72 °C. Amplifications were per- ple, hawthorn and conifers) in several areas of Italy. formed in a Gene Amp® PCR System 9700 (Applied Hawthorn hedgerows are a common component of the Biosystems, Foster City, CA, USA). The total DNA ex- rural landscape of Trentino region, so that often they are tracted from infected insects and a reaction blank (Milli- close to apple orchards. The knowledge of the infectiv- Q water) were included in the experiments as controls. ity of C. melanoneura collected from hawthorn plants PCR products were analyzed by electrophoresis on 1.5% could be informative about alternative inoculum w/v agarose gels stained with SYBR® Safe DNA gel sources. stain (Invitrogen, Carlsbad, CA, USA) and visualized In the present work, we report the results of these in- under UV light with the Gel Doc XR System molecular vestigations, underlining the correlation between the in- imager (BIO-RAD, Hercules, CA, USA; figure 1). fection level in the different plants and in the insects. Data analysis The correlation between the proportion of infected in- Materials and methods sects and the presence of symptomatic plants in apple or- chards was analysed applying the median test for the cor- Insect collection relation between two variables proposed by Blomqvist The research was conducted in the Trentino and Ve- (1950). As there is not an official classification of the neto regions (northeastern Italy) and in the Aosta Valley level of infected orchards, we did an arbitrary classifica- (northwestern Italy) between 2005 and 2007, as reported tion dividing apple orchards in four classes: low (with a in table 1. Overwintering adults of C. melanoneura were percentage of symptomatic plants ranging from 0 to 10), collected from apple trees and hawthorn bushes at the middle (from 10% to 30% of symptomatic plants), high end of March and from conifers during December and (from 30% to 50%) and very high (more than 50%). This January, using the beat tray method. The specimens analysis was not carried out for the other plant species, as were identified using Ossiannilsson’s keys (1992). no symptoms were detected on hawthorn and conifers. Table 1. Samples of C. melanoneura populations collected from different host plants in different locations. The to- tal number of psyllids analysed, the proportion of AP-infected samples and infection level in the sampled orchards are given. Insects Infection level in the Host plant Locality Location infected/tot. percentage sampled orchards Apple Borgo (Trentino) 46°3'N 11°29'E 11/96 11.46% very high " Oltrecastello (Trentino) 46°4'N 11°9'E 27/113 23.87% high " S.
Recommended publications
  • UNIVERSITÀ DEGLI STUDI DEL MOLISE Department
    UNIVERSITÀ DEGLI STUDI DEL MOLISE Department of Agricultural, Environmental and Food Sciences Ph.D. course in: AGRICULTURE TECHNOLOGY AND BIOTECHNOLOGY (CURRICULUM: Sustainable plant production and protection) (CYCLE XXIX) Ph.D. thesis NEW INSIGHTS INTO THE BIOLOGY AND ECOLOGY OF THE INSECT VECTORS OF APPLE PROLIFERATION FOR THE DEVELOPMENT OF SUSTAINABLE CONTROL STRATEGIES Coordinator of the Ph.D. course: Prof. Giuseppe Maiorano Supervisor: Prof. Antonio De Cristofaro Co-Supervisor: Dr. Claudio Ioriatti Ph.D. student: Tiziana Oppedisano Matr: 151603 2015/2016 “Nella vita non c’è nulla da temere, c’è solo da capire.” (M. Curie) Index SUMMARY 5 RIASSUNTO 9 INTRODUCTION 13 Phytoplasmas 13 Taxonomy 13 Morphology 14 Symptomps 15 Transmission and spread 15 Detection 17 Phytoplasma transmission by insect vectors 17 Phytoplasma-vector relationship 18 Homoptera as vectors of phytoplasma 19 ‘Candidatus Phytoplasma mali’ 21 Symptomps 21 Distribution in the tree 22 Host plant 24 Molecular characterization and diagnosis 24 Geographical distribution 25 AP in Italy 25 Transmission of AP 27 Psyllid vectors of ‘Ca. P. mali’ 28 Cacopsylla picta Förster (1848) 29 Cacopsylla melanoneura Förster (1848) 32 Other known vectors 36 Disease control 36 Aims of the research 36 References 37 CHAPTER 1: Apple proliferation in Valsugana: three years of disease and psyllid vectors’ monitoring 49 CHAPTER 2: Evaluation of the current vectoring efficiency of Cacopsylla melanoneura and Cacopsylla picta in Trentino 73 CHAPTER 3: The insect vector Cacopsylla picta vertically
    [Show full text]
  • Biodiversa-Project Description-Final Version-110213
    1.A. Detailed description of the research area and research plan Context of the proposal Biological invasions (bioinvasions) are defined as the successful establishment and spread of species outside their native range. They act as a major driver of global changes in species distribution. Diverse organisms and ecosystems may be involved, and although not all invasions have a negative impact, the ecological consequences often include the loss of native biological diversity and changes in community structure and ecosystem activity. There may also be additional negative effects on agriculture, forests, fisheries, and human health. National governments, intergovernmental structures like the European Commission and international organizations such as EPPO, CABI and IUCN have therefore mobilized to (i) introduce international laws on invasive species, (ii) organize international networks of scientists and stakeholders to study bioinvasions, and (iii) formalize the cooperation between national environmental or agricultural protection agencies (e.g. the French Agence Nationale de Sécurité Sanitaire, ANSES). Several billion euros are spent annually to address the problems caused by bioinvasions and the scientific community has focused on predicting and controlling future invasions by understanding how they occur. A peer-reviewed journal entitled "Biological Invasions” has been published since 1999. Ecologists have long drawn attention to the negative ecological effects of invasive species, whereas the evolutionary aspects of bioinvasions have received comparatively little attention. This reflects the fact that: i) invasive populations were thought to experience significant bottlenecks during their introduction to new environments and thus possess a limited potential to evolve; and ii) evolution was considered too slow to play a significant role given the relatively short timescale of the invasion process.
    [Show full text]
  • VINEYARD BIODIVERSITY and INSECT INTERACTIONS! ! - Establishing and Monitoring Insectariums! !
    ! VINEYARD BIODIVERSITY AND INSECT INTERACTIONS! ! - Establishing and monitoring insectariums! ! Prepared for : GWRDC Regional - SA Central (Adelaide Hills, Currency Creek, Kangaroo Island, Langhorne Creek, McLaren Vale and Southern Fleurieu Wine Regions) By : Mary Retallack Date : August 2011 ! ! ! !"#$%&'(&)'*!%*!+& ,- .*!/'01)!.'*&----------------------------------------------------------------------------------------------------------------&2 3-! "&(')1+&'*&4.*%5"/0&#.'0.4%/+.!5&-----------------------------------------------------------------------------&6! ! &ABA <%5%+3!C0-72D0E2!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!F! &A&A! ;D,!*2!G*0.*1%-2*3,!*HE0-3#+3I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!J! &AKA! ;#,2!0L!%+D#+5*+$!G*0.*1%-2*3,!*+!3D%!1*+%,#-.!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!B&! 7- .*+%)!"/.18+&--------------------------------------------------------------------------------------------------------------&,2! ! ! KABA ;D#3!#-%!*+2%53#-*MH2I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!BN! KA&A! O3D%-!C#,2!0L!L0-H*+$!#!2M*3#G8%!D#G*3#3!L0-!G%+%L*5*#82!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&P! KAKA! ?%8%53*+$!3D%!-*$D3!2E%5*%2!30!E8#+3!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&B! 9- :$"*!.*;&5'1/&.*+%)!"/.18&-------------------------------------------------------------------------------------&3<!
    [Show full text]
  • Field Evaluation of the Relative Susceptibility of Six Pear Varieties to the Pear Psylla (Cacopsylla Pyricola (Foerster, 1848))
    doi:10.14720/aas.2019.114.1.5 Original research article / izvirni znanstveni članek Field evaluation of the relative susceptibility of six pear varieties to the pear psylla (Cacopsylla pyricola (Foerster, 1848)) Mohammad Saeed EMAMI 1,2 Received February 04, 2019; accepted August 02, 2019. Delo je prispelo 04. februarja 2019, sprejeto 02. avgusta 2019. Field evaluation of the relative susceptibility of six pear vari- Ovrednotenje relativne občutljivosti šestih sort hrušk na eties to the pear psylla (Cacopsylla pyricola (Foerster, 1848)) malo hruševo bolšico (Cacopsylla pyricola (Foerster, 1848)) Abstract: The pear psylla, Cacopsylla pyricola (Foerster, Izvleček: Mala hruševa bolšica, Cacopsylla pyricola (För- 1848) (Hemiptera: Psyllidae), is one of the most detrimental ster, 1848) (Hemiptera: Psyllidae), je eden izmed najbolj uniču- pests in commercial pear orchards. Varieties with low infesta- jočih škodljivcev v komercialnih nasadih hrušk. Sorte z majnim tion level to pear psylla would offer to integrated psyllid man- deležem okužbe z bolšico bi lahko uporabili pri integriranem agement. The natural infestation level of six pear varieties to upravljanju s hruševo bolšico. Naravna okužba s hruševo bolši- pear psylla was studied under field conditions during three suc- co je bila preučevana na šestih sortah hrušk na prostem v treh cessive years. The pear varieties consisted of ‘Comice’, ‘Buerre zaporednih letih. Sorte hrušk so bile:‘Comice’, ‘Buerre Giffard’, Giffard’, ‘Bonne Louise’, ‘Felestini’, ‘Shahmiveh’, and ‘Sebri’. Psyl- ‘Bonne Louise’, ‘Felestini’, ‘Shahmiveh’, in ‘Sebri’. Populacija lid population was sampled weekly by limb jarring method and bolšic je bila vzorčena tedensko s stresanjem vej in naključno selecting 10 leaves randomly per tree. The results indicated that izbiro 10 listov na drevo.
    [Show full text]
  • Trophobiosis Between Formicidae and Hemiptera (Sternorrhyncha and Auchenorrhyncha): an Overview
    December, 2001 Neotropical Entomology 30(4) 501 FORUM Trophobiosis Between Formicidae and Hemiptera (Sternorrhyncha and Auchenorrhyncha): an Overview JACQUES H.C. DELABIE 1Lab. Mirmecologia, UPA Convênio CEPLAC/UESC, Centro de Pesquisas do Cacau, CEPLAC, C. postal 7, 45600-000, Itabuna, BA and Depto. Ciências Agrárias e Ambientais, Univ. Estadual de Santa Cruz, 45660-000, Ilhéus, BA, [email protected] Neotropical Entomology 30(4): 501-516 (2001) Trofobiose Entre Formicidae e Hemiptera (Sternorrhyncha e Auchenorrhyncha): Uma Visão Geral RESUMO – Fêz-se uma revisão sobre a relação conhecida como trofobiose e que ocorre de forma convergente entre formigas e diferentes grupos de Hemiptera Sternorrhyncha e Auchenorrhyncha (até então conhecidos como ‘Homoptera’). As principais características dos ‘Homoptera’ e dos Formicidae que favorecem as interações trofobióticas, tais como a excreção de honeydew por insetos sugadores, atendimento por formigas e necessidades fisiológicas dos dois grupos de insetos, são discutidas. Aspectos da sua evolução convergente são apresenta- dos. O sistema mais arcaico não é exatamente trofobiótico, as forrageadoras coletam o honeydew despejado ao acaso na folhagem por indivíduos ou grupos de ‘Homoptera’ não associados. As relações trofobióticas mais comuns são facultativas, no entanto, esta forma de mutualismo é extremamente diversificada e é responsável por numerosas adaptações fisiológicas, morfológicas ou comportamentais entre os ‘Homoptera’, em particular Sternorrhyncha. As trofobioses mais diferenciadas são verdadeiras simbioses onde as adaptações mais extremas são observadas do lado dos ‘Homoptera’. Ao mesmo tempo, as formigas mostram adaptações comportamentais que resultam de um longo período de coevolução. Considerando-se os inse- tos sugadores como principais pragas dos cultivos em nível mundial, as implicações das rela- ções trofobióticas são discutidas no contexto das comunidades de insetos em geral, focalizan- do os problemas que geram em Manejo Integrado de Pragas (MIP), em particular.
    [Show full text]
  • Identification of Plant DNA in Adults of the Phytoplasma Vector Cacopsylla
    insects Article Identification of Plant DNA in Adults of the Phytoplasma Vector Cacopsylla picta Helps Understanding Its Feeding Behavior Dana Barthel 1,*, Hannes Schuler 2,3 , Jonas Galli 4, Luigimaria Borruso 2 , Jacob Geier 5, Katrin Heer 6 , Daniel Burckhardt 7 and Katrin Janik 1,* 1 Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), IT-39040 Auer (Ora), Italy 2 Faculty of Science and Technology, Free University of Bozen-Bolzano, IT-39100 Bozen (Bolzano), Italy; [email protected] (H.S.); [email protected] (L.B.) 3 Competence Centre Plant Health, Free University of Bozen-Bolzano, IT-39100 Bozen (Bolzano), Italy 4 Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria; [email protected] 5 Department of Botany, Leopold-Franzens-Universität Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; [email protected] 6 Faculty of Biology—Conservation Biology, Philipps Universität Marburg, Karl-von-Frisch-Straße 8, D-35043 Marburg, Germany; [email protected] 7 Naturhistorisches Museum, Augustinergasse 2, CH-4001 Basel, Switzerland; [email protected] * Correspondence: [email protected] (D.B.); [email protected] (K.J.) Received: 10 November 2020; Accepted: 24 November 2020; Published: 26 November 2020 Simple Summary: Cacopsylla picta is an insect vector of apple proliferation phytoplasma, the causative bacterial agent of apple proliferation disease. In this study, we provide an answer to the open question of whether adult Cacopsylla picta feed from other plants than their known host, the apple plant. We collected Cacopsylla picta specimens from apple trees and analyzed the composition of plant DNA ingested by these insects.
    [Show full text]
  • Insect Vectors of Phytoplasmas - R
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Insect Vectors of Phytoplasmas - R. I. Rojas- Martínez INSECT VECTORS OF PHYTOPLASMAS R. I. Rojas-Martínez Department of Plant Pathology, Colegio de Postgraduado- Campus Montecillo, México Keywords: Specificity of phytoplasmas, species diversity, host Contents 1. Introduction 2. Factors involved in the transmission of phytoplasmas by the insect vector 3. Acquisition and transmission of phytoplasmas 4. Families reported to contain species that act as vectors of phytoplasmas 5. Bactericera cockerelli Glossary Bibliography Biographical Sketch Summary The principal means of dissemination of phytoplasmas is by insect vectors. The interactions between phytoplasmas and their insect vectors are, in some cases, very specific, as is suggested by the complex sequence of events that has to take place and the complex form of recognition that this entails between the two species. The commonest vectors, or at least those best known, are members of the order Homoptera of the families Cicadellidae, Cixiidae, Psyllidae, Cercopidae, Delphacidae, Derbidae, Menoplidae and Flatidae. The family with the most known species is, without doubt, the Cicadellidae (15,000 species described, perhaps 25,000 altogether), in which 88 species are known to be able to transmit phytoplasmas. In the majority of cases, the transmission is of a trans-stage form, and only in a few species has transovarial transmission been demonstrated. Thus, two forms of transmission by insects generally are known for phytoplasmas: trans-stage transmission occurs for most phytoplasmas in their interactions with their insect vectors, and transovarial transmission is known for only a few phytoplasmas. UNESCO – EOLSS 1. Introduction The phytoplasmas are non culturable parasitic prokaryotes, the mechanisms of dissemination isSAMPLE mainly by the vector insects.
    [Show full text]
  • Population Dynamics of Cacopsylla Melanoneura (Hemiptera: Psyllidae) in Northeast Italy and Its Role in the Apple Proliferation Epidemiology in Apple Orchards
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino Population dynamics of Cacopsylla melanoneura (Hemiptera: Psyllidae) in Northeast Italy and its role in the Apple proliferation epidemiology in apple orchards This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/131823 since 2015-12-23T15:20:08Z Published version: DOI:10.1603/EC11237 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 02 October 2021 This is an author version of the contribution published on : Questa è la versione dell’autore dell’opera: [Journal of Economic Entomology, 105(2), 2012, DOI: http://dx.doi.org/10.1603/EC11237 ] The definitive version is available at: La versione definitiva è disponibile alla URL: [http://esa.publisher.ingentaconnect.com/content/esa/jee/2012/00000105/0000000 2/art00004] 1 1 1 Tedeschi et al.: Cacopsylla melanoneura: 12 Rosemarie Tedeschi 2 dynamics of orchard colonization 13 DIVAPRA – Entomologia e Zoologia 3 14 applicate all’Ambiente “C. Vidano” 4 15 Facoltà di Agraria 5 16 Università degli Studi di Torino 6 Journal of Economic Entomology 17 Via Leonardo da Vinci 44 7 Arthropods in Relation to Plant Disease 18 10095 Grugliasco (TO), Italy. 8 19 Phone: +39.011.6708675 9 20 Fax: +39.011.2368675 10 21 E-mail: [email protected] 11 22 23 24 25 26 Population dynamics of Cacopsylla melanoneura (Hemiptera: Psyllidae) in Northeast 27 Italy and its role in the Apple proliferation epidemiology in apple orchards 28 29 Rosemarie Tedeschi 1, Mario Baldessari 2, Valerio Mazzoni 2, Federica Trona 2 & Gino Angeli 2 30 31 1DIVAPRA – Entomologia e Zoologia applicate all’Ambiente “C.
    [Show full text]
  • Shropshire-Entomology-Issue-8.Pdf
    Shropshire Entomology – April 2013 (No.7) A bi-annual newsletter focussing upon the study of insects and other invertebrates in the county of Shropshire (V.C. 40) March 2014 (Vol. 8) Editor: Pete Boardman [email protected] ~ Welcome ~ Welcome to the 8th edition of the Shropshire Entomology newsletter. As ever I hope you enjoy it and it inspires you to submit your own articles relating to any aspect of entomology relevant to Shropshire or Shropshire entomologists. It is sometime since we published the last edition but hopefully there will be the same appetite for entomological news as ever. In the last newsletter we detailed a number of new County Recorders and within this edition are some of the fruits of their labours from 2013, which I feel are particularly valuable. Edition 9 will be due at the beginning of October with the cut off date for contributions being Friday 19th September. Hopefully the summer will bring plenty of entomological experiences that can be shared amongst Shropshire’s entomologists whether they are accounts of new species or just interesting sightings, all are welcomed. If anyone would like to catalogue all of the articles in this and the previous 7 newsletters as a volunteer activity I’d be pleased to hear from you. Note – past newsletters are available for download as PDF’s from www.invertebrate-challenge.org.uk/newsletters-and- resources.aspx ~ Contents ~ Invertebrate Survey of the Rea Brook Valley, Shrewsbury: Pete Boardman The Shropshire Invertebrate Exchange Scheme: Pete Boardman Two landscapes
    [Show full text]
  • Chapter 6 Capturing Insect Vectors of Phytoplasmas
    Chapter 6 Capturing Insect Vectors of Phytoplasmas Phyllis Weintraub and Jürgen Gross Abstract Insect vectors of phytoplasmas are limited to leafhoppers, planthoppers, and psyllids. While populations can be monitored by a number of passive techniques in the fi eld, the capture of live insects is necessary for manipulation and study. A number of physical methods for capturing these insects already exist, but more innovative traps equipped with infochemical lures for species-speci fi c monitoring and mass trapping are being developed. Key words: Beat sheet , Emergence cages , Infochemicals , Kairomones , Mass trapping , Monitoring , Pheromones , Push-pull method , Sticky traps , Vacuuming , Volatile organic compounds 1. Introduction There are three mechanisms for phytoplasmas to infect plants: insect feeding, vegetative propagation/grafting, or connection between infected and noninfected plants by parasitic plants such as Cuscuta spp. Insect feeding is the most important means of transmission at a local level. All known vectors are species of Hemiptera, which has important consequences in the epidemiol- ogy of the pathogen: both immature and adults feed on the same plants; they feed speci fi cally in certain plant tissues such as the phloem where phytoplasmas reside; and feeding is nondestructive and does not elicit plant defense responses. The vectors are limited to the Cicadellidae, Fulgoromorpha, and Psyllidae ( 1 ) . In the competent vector, the phytoplasma must be able to pene- trate the midgut cells and migrate to and replicate in speci fi c cells in the salivary gland to be transmitted. The period of time from acquisition to transmission competence is known as the latent period and can be days to months in length.
    [Show full text]
  • An Introduction to Psyllids (Of Bedfordshire) Joe Botting
    An introduction to Psyllids (of Bedfordshire) Joe Botting Cacopsylla fulguralis Basics • A group of Stenorrhyncha, most closely related to aphids • Small to very small (1-5 mm) • Worldwide ~3000 species, ~85 in UK (increasing due to introductions) • Poorly recorded in UK – no prior recording scheme, and status of many species unclear • Strongly host-specific • Some commercial pests, particularly of fruit trees (Cacopsylla mali, C. pyricola) • Often regarded as “difficult” – which may be unfair. But probably isn't. Finding psyllids Easily found by sweeping or beating selected plants: In summer, herbaceous or arborescent dicots (almost exclusively) – especially native deciduous trees. All are host-specific. In winter, evergreen shelter plants – especially conifers or yew. Some species on evergreen hosts (e.g. box – below) Most species are host-specific, so you need to know which plants to target. Once you find them, watch out for them going ‘ping’ (nearly as bad as leafhoppers…). Spanioneura fonscolombii (on box, all year) Identification • Two major families: Psyllidae & Triozidae (other families represented by introductions) • Many species superficially similar, and need microscopic examination • Dissection rarely needed, so high-resolution macrophotographs are quite often sufficient if showing the right features • Some species very difficult to confirm from single specimens; male and female often critical to a reliable ID Chamaepsylla hartigi Colouring Body Colouring Varies seasonally: usually palest (green/yellow/orange) when teneral, then darkens steadily over several months, particularly on dorsal surface: Wing Colouring Trioza alacris Usually very distinctive for species with patterned or coloured wings, although some are still difficult. Various species (especially certain Cacopsylla spp.) with very pale colouring that must be seen against a white background – this is also unreliable.
    [Show full text]
  • Minnesota's Top 124 Terrestrial Invasive Plants and Pests
    Photo by RichardhdWebbWebb 0LQQHVRWD V7RS 7HUUHVWULDO,QYDVLYH 3ODQWVDQG3HVWV 3ULRULWLHVIRU5HVHDUFK Sciencebased solutions to protect Minnesota’s prairies, forests, wetlands, and agricultural resources Contents I. Introduction .................................................................................................................................. 1 II. Prioritization Panel members ....................................................................................................... 4 III. Seventeen criteria, and their relative importance, to assess the threat a terrestrial invasive species poses to Minnesota ...................................................................................................................... 5 IV. Prioritized list of terrestrial invasive insects ................................................................................. 6 V. Prioritized list of terrestrial invasive plant pathogens .................................................................. 7 VI. Prioritized list of plants (weeds) ................................................................................................... 8 VII. Terrestrial invasive insects (alphabetically by common name): criteria ratings to determine threat to Minnesota. .................................................................................................................................... 9 VIII. Terrestrial invasive pathogens (alphabetically by disease among bacteria, fungi, nematodes, oomycetes, parasitic plants, and viruses): criteria ratings
    [Show full text]