Reproductive Strategies of Plant-Sap Sucking Insects with Special Focus on Thysanoptera
Total Page:16
File Type:pdf, Size:1020Kb
Reproductive strategies of plant-sap sucking insects with special focus on Thysanoptera Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftliche Fakultät I – Biowissenschaften – der Martin-Luther-Universität Halle-Wittenberg, vorgelegt von Frau Stephanie Krüger geb. am 23.12.1986 in Leipzig Gutachter: Prof. Dr. Gerald Moritz Prof. Dr. Rolf Beutel Dr. Laurence Mound Tag der Verteidigung: 03.05.2016 CONTENTS Abbreviations I List of publications III Chapter 1: Introduction 1 1.1 General introduction 1 1.2 Scope of this thesis 4 1.3 References 6 Chapter 2: Morphology of the external and internal reproductive 11 organs of selected insect species, with special focus on Thysanoptera 2.1 Summary 11 2.2 General morphology of external and internal reproductive system 12 in pterygote insects 2.3 Biology and morphology of the individual species 16 2.3.1 Thysanoptera 16 2.3.1.1 Biology of Echinothrips americanus 16 2.3.1.2 Morphology of Echinothrips americanus 18 2.3.2 Hemiptera 22 2.3.2.1 Biology of Pyrrhocoris apterus 22 2.3.2.2 Morphology of Pyrrhocoris apterus 23 2.3.2.3 Biology of Campyloneura virgula 28 2.3.2.4 Morphology of Campyloneura virgula 29 2.3.2.5 Biology of Arboridia ribauti 32 2.3.2.6 Morphology of Arboridia ribauti 32 2.4 Discussion 35 2.5 References 37 Chapter 3: Reproductive behavior of Echinothrips americanus 41 (Thysanoptera: Thripidae) 3.1 Summary 41 3.2 Introduction 42 3.3 Material and Methods 43 3.4 Results 46 3.5 Discussion 50 3.6 References 53 Chapter 4: Offspring sex ratio and development are determined by 55 copulation activity in Echinothrips americanus MORGAN 1913 (Thysanoptera: Thripidae) 4.1 Summary 55 4.2 Introduction 56 4.3 Material and Methods 57 4.4 Results 59 4.5 Discussion 63 4.6 References 66 Chapter 5: Sternal glands in Thysanoptera 72 5.1. Sternal gland structures in males of bean flower thrips, Megalurothrips 73 sjostedti and Poinsettia thrips Echinothrips americanus in comparison with those of western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae) 5.1.1 Summary 73 5.1.2 Introduction 75 5.1.3 Material and Methods 76 5.1.3.1 Insects 76 5.1.3.2 Microscopy 76 5.1.3.3 Whole mounting and measurement of pore plates and sternite 77 cuticular areas 5.1.3.4 Statistical analysis 77 5.1.4 Results 78 5.1.4.1 Frankliniella occidentalis 78 5.1.4.2 Echinothrips americanus 82 5.1.4.3 Megalurothrips sjostedti 83 5.1.5 Discussion 89 5.1.6 References 94 5.2 Histochemical studies of sternal glands in economically important pest thrips 98 5.2.1 Summary 98 5.2.2 Introduction 99 5.2.3 Material and Methods 100 5.2.4 Results 101 5.2.5 Discussion 105 5.2.6 References 107 5.3 Correlation of sternal gland, body size and mating success in 109 Echinothrips americanus (Thysanoptera: Thripidae) 5.3.1 Summary 109 5.3.2 Introduction 110 5.3.3 Material and Methods 111 5.3.4 Results 114 5.3.5 Discussion 115 5.3.6 References 117 Chapter 6: Male pheromones influencing mating success of 119 Echinothrips americanus (Insecta, Thysanoptera, Thripidae) 6.1 Summary 119 6.2 Introduction 120 6.3 Material and Methods 121 6.4 Results 122 6.5 Discussion 124 6.6 References 125 Chapter 7: General discussion on reproductive strategies 129 of Echinothrips americanus Chapter 8: Summary/Zusammenfassung 142 Acknowledgement/Danksagung IV Supplementary Material-directory VI Curriculum Vitae VIII Eigenständigkeitserklärung/ XI Statement of authorship Abbreviations ABBREVIATIONS abd abdomen met metathorax acc gl accessory gland mg midgut aed aedeagus mg I fore part of mid gut ao aorta mg II mid gut loop and forward- AF-AB aldehyde fuchsine-alcian directed part of mid gut blue staining mg III hind part of mid gut ATER agranular tubular M l abd dors ext endoplasmatic reticulum Musculus longitudinalis abdominis bc bursa copulatrix dorsalis exterior BFT Bean Flower Thrips M l abd dors int bl basal lobe Musculus longitudinalis abdominis bsl basal lamina dorsalis interior c chitin capsule M l abd ventr cc conducting canal Musculus longitudinalis abdominis cer cerci ventralis cov common oviduct M p-t Musculus pleuro-tergalis cr cuticular ridge MS mass spectrometer dl dorsal lobe ms muscle edth endotheca mt malpighian tubule ejb ejaculatory bulb M t-s Musculus tergo-sternalis ejd ejaculatory duct n nucleus ep1-3 epithelial layer 1-3 nc nerve cord eppt eppiproct nu nutrition cord f follicle epithelium o oocyte fc fat cells o-gl orange gland g germarium ov ovary GC gas chromatograph ovp ovipositor glc gland cell p paramere gly glycogen paed primitive aedeagus gpr gonopore papt paraproct hc haemocoel par vag gl Parietal- vaginal gland hg hind gut PASH periodic acid-Schiff`s i intercellular system reagent-haematoxylin staining IPM integrated pest pbl parabasal lobe management phb phallobase L:D light: dark phl phallus lov lateral oviduct phtc phallotheca m mitochondria phtr phallotrema mb mushroom bodies pm peritoneal membrane mbb microvilli brush border pmr primitive aedeagus I Abbreviations pph paraphyses ppl pore plate (= areae porosae) pX paratergite X r reservoir rER rough endoplasmatic reticulum recp rectal papilla rsb rod-shaped bacteria RH relative humidity RT room temperature sal gl salivary gland sb spermathecal ball sbu spermathecal bulb sc secretory cell sem v seminal vesicle sen sensilla smp sigmoid process spth spermatheca spth d spermathecal duct spth gl spermathecal gland sp spermatozoa stgl sternal gland sty stylus t testes tc trophic core tf terminal filament tph tropharium vag vagina vd vas deferens 1-3 compartment 1-3 1vl 1st valvula 2vl 2nd valvula 3vl 3rd valvula 1vfl 1st valvifera 2vfl 2nd valvifera arrow region of special interest asterisk (*) extracellular cavity II List of Publications LIST OF PUBLICATIONS This thesis is based on the following manuscripts: Chapter 3 Krüger S, Jilge M, Moritz G, (in prep.) Reproductive behavior of Echinothrips americanus (Thysanoptera: Thripidae). Chapter 4 Krüger S, Mound LA, Moritz G, 2015. Offspring sex ratio and development are determined by copulation activity in Echinothrips americanus MORGAN 1913 (Thysanoptera: Thripidae). Journal of Applied Entomology, doi: 10.1111/jen.12280 Section 5.1 Krüger S, Subramanian S, Saliou N, Moritz G, 2015. Sternal gland structures in males of bean flower thrips, Megalurothrips sjostedti and Poinsettia thrips Echinothrips americanus in comparison with those of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Arthropod Structure and Development 44, 455-467. Section 5.2 Krüger S, Jilge M, Moritz G, (in prep.) Histochemical studies of sternal glands in economically important pest thrips. Section 5.3 Krüger S, Hesse C, Moritz G, (in prep.) Correlation of sternal gland, body size and mating success in Echinothrips americanus (Thysanoptera: Thripidae) Chapter 6 Krüger S, Radisch D, Lindemann P, Moritz G, Tschuch G (under rereview) Male pheromones influencing mating success of Echinothrips americanus (Insecta, Thysanoptera, Thripidae). Journal of Chemical Ecology. III Introduction CHAPTER 1 INTRODUCTION 1.1 General introduction Each year, about 15 % of crop yield is lost to insects worldwide (Maxmen 2013), and in the years 2006 and 2007 over 5,200 million lbs of pesticides were used, of which about 900 million lbs were insecticides. This corresponds to expenditure on pesticides of about $US 38,000 million (insecticides $US 11,000 Mio) worldwide (Grube et al. 2011). Several pest species belong to the superorder Paraneoptera. The included species are characterized by their special piercing and/or sucking mouthparts and corresponding diet. Additionally, some of them act as important vectors of phyto-, zoo- and human-pathogenic microorganisms. The Paraneoptera includes at least 4 orders: Hemiptera, Thysanoptera, Phthiraptera and Psocoptera, with about 100,000 described species. Monophyly of Paraneoptera is widely accepted (e.g. Grimaldi and Engel 2005, Yoshizawa and Saigusa 2001), based on several autapomorphies: reduced number of tarsomeres, complete ganglion fusion, absence of cerci, partial reduction or absence of labial palpi, asymmetric mandibles, stylet-like laciniae, enlarged postclypeus, mostly six Malpighian tubules and the absence of sternum I (Kristensen 1991, Grimaldi and Engel 2005, Beutel et al. 2013). The evolutionary history of paraneopterans is reflected in the structure and function of their mouthparts (Fig. 1). Basal paraneopterans (psocopterans and some basal thrips) are microbial surface feeders. The psocopterans have the most generalized “picking” mouthparts. Thysanoptera and anopluran lice developed probing and puncturing mouthparts, whereas Hemipterans possess a distinctive piercing and sucking rostrum or beak (Grimaldi and Engel 2005). Thysanoptera and Hemiptera evolved on a diet of plant fluids, despite Fig. 1 Relationships among recent orders and suborders some ancestral predatory species, which suck of the Paraneoptera, with their diets (Grimaldi and the hemolymph of their prey. Blood feeding Engel 2005) by ectoparasitic lice arose independently (Grimaldi and Engel 2005) (Fig.1). 1 Introduction Nevertheless, the relationships between Thysanoptera, Hemiptera and Psocoptera are still under discussion (e.g. Buckman et al. 2013, Heming and Moritz 2013). Several authors assume Hemiptera to be sister group of the Thysanoptera (Condylognatha), which is supported by morphological and molecular data (Henning 1969, Boudreaux 1979, Lyal 1985, Whiting et al. 1997, Johnson et al. 2004, Yoshizawa and Johnson 2005, Ishiwata et al. 2011, Cui et al. 2013, Beutel et al. 2013, Wang et al. 2013). Alternatively, Thysanoptera form a clade with the Psocodea (Micracercaria) based on their bi- flagellate sperm (Baccetti 1979, Jamieson 1987), the prominent dorsal cibarial dilator (Willmann 2005) and molecular analyses (Wheeler et al. 2001, Mound and Morris 2007, Buckman et al. 2013). With regard to their agricultural importance, the main focus in this study is on the Thysanoptera, and partly on selected representatives of the Hemiptera. The order Hemiptera is the largest group within the Paraneoptera, and four traditional subgroups are currently recognised: Sternorrhyncha, Auchenorrhyncha, Heteroptera and Coleorrhyncha (Grimaldi and Engel 2005).